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C–ORBIT REFLEXIVE OPERATORS

DON HADWIN, ILEANA IONASCU, MICHAEL MCHUGH AND HASSAN YOUSEFI

Abstract. We introduce the notion of C -orbit reflexivity and study its properties. An operator on
a finite-dimensional space is C -orbit reflexive if and only if the two largest blocks in its Jordan
form corresponding to nonzero eigenvalues with the largest modulus differ in size by at most
one. Most of the proofs of our results in infinite dimensions are obtained from purely algebraic
results we obtain from linear-algebraic analogs of C -orbit reflexivity.
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[26] VLADIMÍR MÜLLER, Kaplansky’s theorem and Banach PI-algebras, Pacific J. Math., 141, 2 (1990),

355–361.
[27] V. MÜLLER, J. VRŠOVSKÝ, On orbit-reflexive operators, J. Lond. Math. Soc. (2), 79, 2 (2009), 497–

510.
[28] HARI BERCOVICI, CIPRIAN FOIAS, CARL PEARCY, Dual algebras with applications to invariant

subspaces and dilation theory, CBMS Regional Conference Series in Mathematics, 56, 1985.
[29] D. SARASON, Invariant subspaces and unstarred operator algebras, Pacific J. Math., 17 (1966), 511–

517.
[30] HASAN A. SHEHADA, Reflexivity of convex subsets of L(H) and subspaces of �p , Internat. J. Math.

Math. Sci., 14, 1 (1991), 55–67.
[31] V.S. SHULMAN, Operators preserving ideals in C*-algebras, Studia Math., 109, 1 (1994), 67–72.
[32] JAMES E. THOMSON, Bounded point evaluations and polynomial approximation, Proc. Amer. Math.

Soc., 123, 6 (1995), 1757–1761.
[33] JOHN VON NEUMANN, Zur Algebra der Funktional operatoren und Theorie der normalen Opera-

toren, Math Ann., 102 (1929) 370–427.

Operators and Matrices
www.ele-math.com
oam@ele-math.com


