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JORDAN x-HOMOMORPHISMS ON C*-ALGEBRAS

M. ESHAGHI GORDIJI, N. GHOBADIPOUR AND CHOONKIL PARK

(Communicated by P.-Y. Wu)

Abstract. In this paper, we investigate Jordan s-homomorphisms on C*-algebras associated
with the following functional inequality ||f(252) +f (45%) + f (3H=L) || < || f(a)||. We
moreover prove the superstability and the generalized Hyers-Ulam stability of Jordan s*-ho-
momorphisms on C* -algebras associated with the following functional equation

f<b;a> +f<a;3c> +f<3a+§cfb> - fla).

1. Introduction

The stability of functional equations was first introduced by Ulam [27] in 1940.
More precisely, he proposed the following problem: Given a group G, a metric group
(Ga,d) and a positive number €, does there exist a 6 > 0 such that if a function
f 1 Gi — Gy satisfies the inequality d(f(xy),f(x)f(y)) < & for all x,y € G1, then
there exists a homomorphism T : G| — G, such that d(f(x),T(x)) < & forall x € G;?
As mentioned above, when this problem has a solution, we say that the homomorphisms
from G to G, are stable. In 1941, Hyers [6] gave a partial solution of Ulam’s problem
for the case of approximate additive mappings under the assumption that G| and G,
are Banach spaces. In 1978, Th. M. Rassias [22] generalized the theorem of Hyers
by considering the stability problem with unbounded Cauchy differences. This phe-
nomenon of stability that was introduced by Th. M. Rassias [22] is called generalized
Hyers-Ulam stability or Hyers-Ulam-Rassias stability.

THEOREM 1.1. Let f: E — E’ be a mapping from a norm vector space E into
a Banach space E' subject to the inequality

1F Get3) = £ () = FO < el + Iyl1P) (L.1)

for all x,y € E, where € and p are constants with € >0 and p < 1. Then there exists
a unique additive mapping T : E — E’ such that

2¢
2-2p
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Sforall x e E. If p <0 then inequality (1.1) holds for all x,y # 0, and (1.2) for x #0.
Also, if the function t — f(tx) from R into E' is continuous for each fixed x € E, then
T is R-linear.

During the last decades several stability problems of functional equations have

been investigated by many mathematicians. A large list of references concerning the
stability of functional equations can be found in [1, 2, 3, 11, 16, 25, 26, 28].

DEFINITION 1.2. Let A,B be two C*-algebras. A C-linear mapping f:A — B
is called a Jordan *-homomorphism if

forall a € A.

C. Park [19] introduced and investigated Jordan *-derivations on C*- algebras
associated with the following functional inequality

(@) + £(B) + kF () ka("*b )H

for some integer k greater than 1 and proved the generalized Hyers-Ulam stability of
Jordan x-derivations on C* -algebras associated with the following functional equation

f(aT—i_l)-l-C) :M_Ff(c)

for some integer k greater than 1 (see also [20, 14, 15, 17, 21]).
In this paper, we investigate Jordan *-homomorphisms on C* -algebras associated
with the following functional inequality

b (557) o (55) o (577 | ewen

We moreover prove the generalized Hyers-Ulam stability of Jordan *-homomorphisms
on C*-algebras associated with the following functional equation

f<bga>+f<a—33c>+f<3a+§c—b) ~ f(a).

2. Jordan x-homomorphisms

In this section, we investigate Jordan *-homomorphisms on C* - algebras. Through-
out this section, assume that A, B are two C* -algebras.
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LEMMA 2.1. Let f: A — B be a mapping such that

b—a a—3c 3a4+3c—b
(550w (457) + (*5)

forall a,b,c € A. Then f is additive.

<|f(a@)ls (2.1)

B

Proof. Letting a=b=c=0in (2.1), we get
13£(0)]5 < 1£(0)|5.
So £(0) =0. Letting a = b= 0 in (2.1), we get
1/ (=e)+ f(e)lls < £ (0)[a=0

forall ¢ € A. Hence f(—c) = —f(c) forall ¢ € A. Letting a =0 and b= 6¢ in (2.1),
we get

1/(2c) =2f(c)lls < [/ (0)]lz =0
forall c € A. Hence
f(2¢) =2f(c)
forall ¢ € A. Letting a =0 and b =9c in (2.1), we get
1/ (3c) = fle) =2f(c) s < [ f(0)][5 =0

forall ¢ € A. Hence
f(Be)=3f(c)

forall ¢ € A. Letting a =0 in (2.1), we get

HORERIC

for all a,b,c € A. So

<[£0)ls=0
B

f(%) +f(—c)+f<c—§) =0 (2.2)

forall a,b,c € A. Lett| = c—% and 1, = % in (2.2). Then

f()—=fti+0)+ f(n)=0
for all 7;,#, € A. This means that f is additive. [J

Now we prove the superstability problem for Jordan *-homomorphisms as fol-
lows.
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THEOREM 2.2. Let p <1 and 0 be nonnegative real numbers, and let f:A — B
be a mapping such that

b—a a—3uc 3a+3c—b
fr(55)+ (552 ) s (35)

1f(@®) = f(a)*|lz < 6all”, (2:3)
17 (@) = f(a)*|lz < @la"||” (2.4)

forall p € T :={A € C ;|A| =1} and all a,b,c € A. Then the mapping f:A — B
is a Jordan *-homomorphism.

<|lfl@lls,  (2:2)
B

Proof. Let u =1 in (2.2). By Lemma 2.1, the mapping f : A — B is additive.
Letting a =b =0 in (2.2), we get

| f(—ue)+ufe)lls <[ f(0)z=0
forall c€ A andall u € T'. So
—f(ue)+uf(c) = f(—pe) +uflc) =0

forall c € A and all u € T!. Hence f(uc) = uf(c) forall c € A and all u € T'. By
Theorem 2.1 of [18], the mapping f : A — B is C-linear. It follows from (2.3) that

2
1) = £(@Plls = H 2 f0e) - (100

1

= —|f(n*a®) — f(na)? |15
0

< 7nlal*”

for all @ € A. Thus, since p < 1, by letting n tend to o in last inequality, we obtain
f(a®) = f(a)? for all a € A. On the other hand, it follows from (2.4) that

1706) =@ = | 1 t0a) - (L0

B
1 .

= ~| f(na") — f(na)"|ls
0

< Znla |
n

for all @ € A. Thus, since p < 1, by letting n tend to o in last inequality, we ob-
tain f(a*) = f(a)* for all a € A. Hence the mapping f : A — B is a Jordan *-
homomorphism. [J

THEOREM 2.3. Let p > 1 and 0 be a nonnegative real number, andlet f :A — B
be a mapping satisfying (2.2), (2.3) and (2.4). Then the mapping f : A — B is a
Jordan x-homomorphism.
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Proof. The proof is similar to the proof of Theorem 2.2. [
We prove the generalized Hyers-Ulam stability of Jordan *-homomorphisms on
C* -algebras.

THEOREM 2.4. Suppose that f: A — B is an odd mapping for which there exists
afunction @ :AxA xA— R such that

. [a b oc

lzf)m(?’?’?) <o (2.5)
b
lim 3% <3i3—3£> —0, (2.6)
| f(a®)— f(a)"|lr < @(a,a,a), (2.7)
Hf<“b a) +f<a_33c) +uf(3a3_b+c> — f@)+£(A) = ()| <olab,c)
B

(2.8)

forall a,b,c €A and all u € T'. Then there exists a unique Jordan % -homomorphism
h:A — B such that

a 2a
lita)~st@)ls < 330 (5510 29)
forall acA.
Proof. Letting u =1, b=2a and ¢ =0 in (2.8), we get

37 (5) — r(@)| < ola.20,0

B

for all @ € A. Using the induction method, we have

() -so|<Sro(520)  ew

for all @ € A. In order to show the functions h,(a) = 3"f (4 ) form a convergent se-
quence, we use the Cauchy convergence criterion. Indeed, replace a by s and multi-
ply by 3" in (2.10), where m is an arbitrary positive integer. We find that

s () -0 () [ <78 w0 (3500) e

for all positive integers. Hence by the Cauchy criterion the limit A(a) = limy,_.. h,(a)
exists for each a € A. By taking the limit as 7n — e in (2.10) we see that

-
Ih(a) - @l < 33 (5. 570)
i=0




546 M. E. GORDJI, N. GHOBADIPOUR AND C. PARK

and (2.9) holds forall a € A. Let u =1 and ¢ =0 in (2.8), we get

’P(”;?+f(9 f(“ b)—ﬂ@

for all a,b,c € A. Multiplying both sides (2.12) by 3" and Replacing a,b by 53, 3%7

respectively, we get
nef3a—Db nel @ n a b
‘3f(yﬂ)+3f(yﬂ>+3f<§ﬂT>‘3f(ﬁ>B<3¢<§vﬁﬁ)
(2.13)

for all a,b,c € A. Taking the limit as n — oo, we obtain

h(b;“)+h<g)+h<3“3_b>—h(a)zo (2.14)

for all a,b,c € A. Putting b =2a in (2.14), we get 3h (%) = h(a) forall a € A. Re-
placing a by 2a in (2.14), we get

h(b—2a) + h(6a — b) = 2h(2a) (2.15)

for all a,b € A. Letting b = 2a in (2.15), we get h(4a) = 2h(2a) for all a € A. So
h(2a) =2h(a) forall a € A. Letting 3a —b=s and b—a =1 in (2.14), we get

t s+t t S+t

3) 7" ( 6 ) 3 2
for all s, € A. Hence h(s)+h(r) = h(s+1t) for all s,z € A. So, h is additive. Letting
a=c=0in (2.12) and using the above method, we have h(ub) = uh(b) forall b € A

and all u € T. Hence by the Theorem 2.1 of [18], the mapping f: A — B is C-linear.
Now, let /' : A — B be another C-linear mapping satisfying (2.9). Then we have

|h(a) — ' (a)||p = 3" h(;) ‘h/%)HB
< {ln() -Gl
223l (a 2a )_0

for all a € A. Letting u =1 and a = b =0 in (2.8), we get ||f(c?) — f(c)?||p <

©0(0,0,¢) forall c € A. So
c? c\2
f(ﬁﬂ‘fGﬂ

for all ¢ € A. Hence h(c?) = h(c)? for all ¢ € A. On the other hand we have

c* c\* c ¢ ¢
T R G
f<3n) /(5) e A T TR T
for all ¢ € A. Hence h(c*) = h(c)* for all ¢ € A. Hence h: A — B is a unique Jordan
*-homomorphism. []

< ¢(a,b,0) (2.12)
B

v (5) -Gl

(%)~ h(e)*l5 = lim 3"
n—o0

< lim 32 (o,o, i) —0
n—oo 3n

B

||h(c*) —h(c)*||p = lim 3"
n—oo
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COROLLARY 2.5. Suppose that f : A — B is a mapping with f(0) =0 for which
there exists constant 0 > 0 and py, pa,p3 > 1 such that

7 (B5) 4 (55 s (352 4¢) - @460 st
< 0l + 1117+ e]”),

B

1/ (a") = f(a)[|s < O(l|all” + [[a]”* + [|a] ")
forall a,b,c € A and all u € T. Then there exists a unique Jordan *-homomorphism
h:A — B such that
Ollall”r  6272|af|"

||f(a)—h(a)||3< 1_30—p) 1_3(—>p)

forall acA.

Proof. Letting @(a,b,c) := 0(||a||” + ||b||P> +||c||’3) in Theorem 2.4, we obtain
the result. U

The following corollary is the Isac-Rassias stability.

COROLLARY 2.6. Let y : RTU{0} — RT U{0} be a function with w(0) =
such that

fim w(r)

t—0

t
wist) Sy(w()  steRT,

1
= L.
3w<3> <

Suppose that f : A — B is a mapping with f(0) = 0 satisfying (2.7) and (2.8)
such that

(M52 +r (555 vur (M50 )~ r@410) - e
ow(lal) + w(lbl) + el

forall a,b,c € A where 0 > 0 is a constant. Then there exists a unique Jordan *-ho-
momorphism h: A — B such that

=0,

B

O(1L+y(2)w(llal)
1-3y(})

1h(a) — f(a)ls <
forall a e A.

Proof. Letting @(a,b,c) := 0[y(||al|) + w(||b]]) + w(||c]])] in Theorem 2.4, we
obtain the result. [
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THEOREM 2.7. Suppose that f: A — B is a mapping with f(0) = 0 for which
there exists a function @ : A X A x A — B satisfying (2.7), (2.8) and (2.8) such that

Y 37p(3'a,3'b,3'c) < oo, (2.16)
i=1
lim 372" (3'a,3'b,3/c) = 0 (2.17)

forall a,b,c € A. Then there exists a unique Jordan *-homomorphism h: A — B such
that

Ih(a) — f(a)|ls < i 0(3'a,324,0) (2.18)

forall a e A.

Proof. Letting u =1, b=2a and ¢ =0 in (2.8), we get

|37 (%) - 1| <ola,24,0 (2.19)

B

forall a € A. Replacing a by 3a in (2.19), we get

137" £(3a) = f(a)lls < 37" ¢(3a,2(3a),0)

for all a € A. On can apply the induction method to prove that

n

137" f(3"a) — f(a)llz < 3,37 '9(3'a,2(3'a),0) (2.20)
1

=

for all a € A. In order to show the functions h,(a) = 37"f(3"a) form a convergent
sequence, we use the Cauchy convergence criterion. Indeed, replace a by 3™a and
multiply by 37 in (2.20), where m is an arbitrary positive integer. We find that

m+n . . .
(37 fE ) =37 (M) <Y, 37 0(3'a,2(3'),0) (221)
i=m+1
for all positive integers. Hence by the Cauchy criterion the limit 4 (a) = limy, .. h,(a)

exists for each a € A. By taking the limit as n — <o in (2.20) we see that

37 p(3'a,2(3'a),0)

Mg

1h(a) = f(a)]] < 1

and (2.18) holds for all a € A.
The rest of the proof is similar to the proof of Theorem 2.4. [J]



JORDAN *-HOMOMORPHISMS ON C* -ALGEBRAS 549

COROLLARY 2.8. Suppose that f : A — B is a mapping with f(0) =0 for which
there exists constant 0 > 0 and py, p2,p3 <1 such that

< O([lall”* + [1b]17> + [[c[|72),

17 (@) = f(@)*lls < 6(lla]|” + [|all” + [|al[™*)

forall a,b,c € A and all u € T. Then there exists a unique Jordan *-homomorphism
h:A — B such that

B

OllallPr | 62P2[|a]P
3(1-p1) —1  3(l-p2) — 1

[1f(a) —h(a)|s <
forall acA.

Proof. Letting @(a,b,c) := 0(||a||”t + ||b]|P2 + ||c||’3) in Theorem 2.7, we obtain
the result. O
The following corollary is the Isac-Rassias stability.

COROLLARY 2.9. Let y : RTU{0} — R U{0} be a function with y(0) =0
such that

limM 0,
t—0

v(st) < w(s)w(r) s,t €RT,
37ly(3) <1

Suppose that f : A — B is a mapping with f(0) = 0 satisfying (2.7) and (2.8) such

that
(A5 ) 4 (55) s (52 ) = @410 - st
OLw(lal) + w(Ip1) + wlel)]

for all a,b,c € A where 8 > 0 is a constant. Then there exists a unique Jordan -
homomorphism h: A — B such that

B

0(1+y(2)w(lal)

[h(a) — f(a)l|lp < 1-3"Ty(3)

forall acA.

Proof. Letting @(a,b,c) := 0y (||a||) + w(||b]]) + w(||c|])] in Theorem 2.7, we
obtain the result. [

One can get easily the stability of Hyers-Ulam by the following corollary.
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COROLLARY 2.10. Suppose that f:A — B is a mapping with f(0) =0 for which
there exists constant 0 > 0 such that

(A5 ) o (55 s (352 4¢) - r@-+0) - sier

(@)= f(a)|a< 6

forall a,b,c € A and all u € T. Then there exists a unique Jordan *-homomorphism
h:A — B such that

<0,
B

1f(a) —h(a)llz <6
forall a € A.

Proof. Letting p; = p» = p3 =0 in Corollary 2.8, we obtain the result. [
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