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INDEFINITE BOUNDARY VALUE PROBLEMS ON GRAPHS

SONJA CURRIE AND BRUCE A. WATSON

Abstract. We consider the spectral structure of indefinite second order boundary-value problems
on graphs. A variational formulation for such boundary-value problems on graphs is given and
we obtain both full and half-range completeness results. This leads to a max-min principle and
as a consequence we can formulate an analogue of Dirichlet-Neumann bracketing and this in
turn gives rise to asymptotic approximations for the eigenvalues.
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