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ON A COMMUTATIVE WJ∗–ALGEBRA OF D+
1 –CLASS

AND ITS BICOMMUTANT

VLADIMIR STRAUSS

Abstract. We study different properties of a commutative WJ∗ -algebra in a Krein space that has
a maximal non-negative subspace represented as a direct sum of its one-dimensional isotropic
subspace and a uniformly positive one. In particulary we give a criteria for the equality between
of a WJ∗ -algebra of this class and its bicommutant.
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