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EIGENVALUE PROBLEM MEETS SIERPINSKI TRIANGLE: COMPUTING

THE SPECTRUM OF A NON–SELF–ADJOINT RANDOM OPERATOR

SIMON N. CHANDLER-WILDE, RATCHANIKORN CHONCHAIYA

AND MARKO LINDNER

Abstract. The purpose of this paper is to prove that the spectrum of the non-self-adjoint one-
particle Hamiltonian proposed by J. Feinberg and A. Zee (Phys. Rev. E 59 (1999), 6433–6443)
has interior points. We do this by first recalling that the spectrum of this random operator is
the union of the set of �∞ eigenvalues of all infinite matrices with the same structure. We then
construct an infinite matrix of this structure for which every point of the open unit disk is an �∞

eigenvalue, this following from the fact that the components of the eigenvector are polynomials
in the spectral parameter whose non-zero coefficients are ±1’s, forming the pattern of an infinite
discrete Sierpinski triangle.
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