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Abstract. Boundary relations for a symmetric relation in a Pontryagin space are studied and the
corresponding Weyl families are characterized. In particular, it is shown that every generalized
Nevanlinna family can be realized as the Weyl family of a boundary relation in a Pontryagin
space.

1. Introduction

The notions of boundary triplets and associated Weyl functions play a key role in
the extension theory of symmetric operators and relations. By means of a boundary
triplet all selfadjoint extensions of a given symmetric operator can be parametrized and
their spectral properties can be described efficiently with the help of the Weyl function;
see, e.g. [10, 11]. If the underlying space is a Hilbert space or a Pontryagin space, then
the Weyl function belongs to the class of Nevanlinna or generalized Nevanlinna func-
tions, respectively, and satisfies an additional strictness condition. Conversely, every
Nevanlinna or generalized Nevanlinna function with this additional strictness property
can be realized as a Weyl function of a boundary triplet.

The concept of boundary relations and associated Weyl families for symmetric
operators and relations in Hilbert spaces was introduced in [8] and studied further in
[9]. The notion of boundary relation is a generalization of the notion of boundary
triplet which makes it possible to interpret all Nevanlinna functions and even so-called
Nevanlinna families as Weyl families. This was shown in [8] with the help of the
Naimark dilation theorem; in [2, 3, 7] an alternative realization in reproducing kernel
Hilbert spaces was given.

In the present paper the main interest is in the notions of boundary relations and
Weyl families in a Pontryagin space setting; for the Kreı̆n space case see also [4]. Many
of the basic definitions and facts from the Hilbert space case remain the same in the
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indefinite setting due to one of the key observations in [8]: boundary triplets and re-
lations are unitary relations in a Kreı̆n space sense. However, in the Pontryagin (and
Kreı̆n) space case certain new difficulties arise: it may happen that the so-called main
transform of the boundary relation leads to a selfadjoint relation which has an empty
resolvent set, see Example 3.7. As becomes clear from the considerations below, the
Pontryagin space setting, when compared with the Hilbert space case, yields a some-
what more delicate interplay between the geometric properties of boundary relations
and the analytic properties of their Weyl families. The treatments needed here are im-
portant in establishing the connection to the class of generalized Nevanlinna families.

In an earlier paper [9] the coupling method was introduced to deal with the selfad-
joint extensions in an exit space (being a Hilbert space) of a given symmetric operator
or relation in a Hilbert space. The present results make it possible to also consider self-
adjoint extensions in an exit space which is allowed to be a Pontryagin space. Hence
this paper gives a possibility to extend the scope of the applications of the theory of
boundary relations to abstract boundary value problems with eigenparameter depen-
dent boundary conditions.

Here is a short overview over the contents of the paper. In Section 2 some defi-
nitions and preparatory facts on linear operators and relations on Kreı̆n and Pontryagin
spaces are given. In Section 3 boundary relations in Pontryagin and Kreı̆n spaces are
considered involving a study of their main transforms with empty resolvent sets. In
Section 4 the main results of the paper are established: it will be shown that every Weyl
family associated to a boundary relation of a symmetric operator or relation in a Pon-
tryagin space is a generalized Nevanlinna family (Theorem 4.8), and that, conversely,
every generalized Nevanlinna family can be realized as the Weyl family of a boundary
relation in a Pontryagin space (Theorem 4.10). For this converse statement a Pontrya-
gin space variant of the functional model from [2, 3, 7] is established. A partial case
of Theorem 4.10 for normalized generalized Nevanlinna pairs was formulated in other
terms and proved in [21].

2. Preliminaries

2.1. Linear relations in Banach spaces

Let H and K be linear spaces. A linear relation (multivalued operator) S from
H to K is a linear subspace of the product space H×K . For the usual definitions
concerning operations with relations, see for instance [15]. The domain, kernel, range,
and multivalued part of a linear relation S from a linear space H to a linear space K
will be denoted by domS , kerS , ranS , and mul S , respectively. The elements in a
linear relation S will usually be written in the form

{ f , f ′} or

(
f
f ′

)
, where f ∈ domS, f ′ ∈ ranS.

Linear operators from H into K are viewed as linear relations via their graphs.
Now consider the case where H and K are Banach spaces. A linear relation S

from H to K is said to be closed if S is closed as a subspace of the product space
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H×K . The linear space of bounded linear operators defined on H with values in K is
denoted by B(H,K) and by B(H) when K = H . Let S be a closed linear relation in H .
The set of points of regular type ρ̂(S) of S is the set of all λ ∈ C such that (S−λ )−1

is a bounded linear operator (defined on ran(S− λ )) . The resolvent set ρ(S) of S
is the set of all λ ∈ C such that (S− λ )−1 ∈ B(H) ; the spectrum σ(S) of S is the
complement of ρ(S) in C . A point λ ∈ C is an eigenvalue of S if ker(S−λ ) �= {0} .
The set of all eigenvalues of S is denoted by σp(S) . When λ ∈ C is an eigenvalue of
S the corresponding linear space of eigenelements is denoted by Nλ (S) := ker(S−λ )
and, furthermore,

N̂λ (S) =
{{ fλ ,λ fλ} : fλ ∈ Nλ (S)

}
.

The following situation occurs frequently.

LEMMA 2.1. Let H be a Banach space and let A,B ∈ B(H) . Define the linear
relation S in H by

S = {{Ah,Bh} : h ∈ H}.
If B− λA is boundedly invertible for some λ ∈ C , then the relation S is closed and
λ ∈ ρ(S) . Moreover, (S−λ )−1 = A(B−λA)−1 .

In what follows a linear operator A will be identified with its graph, in particular,
the linear relation S in Lemma 2.1 will be identified with the operator B , if A = I . The
notation S +̂R stands for the linear span of the graphs of the linear relations S and R .

2.2. Linear relations and operators in Kreı̆n spaces

Let (H, [·, ·]) be a Kreı̆n space and let JH be a corresponding fundamental sym-
metry. Then

(·, ·) := [JH·, ·]
defines a scalar product on H such that [·, ·] is continuous with respect to the norm in-
duced by (·, ·) and (H,(·, ·)) is a Hilbert space; see [1]. In the following all topological
notions are understood with respect to the norm ‖ · ‖ induced by (·, ·) .

Let U ⊂ H×K be a linear relation from the Kreı̆n space (H, [·, ·]H) to the Kreı̆n
space (K, [·, ·]K) . The adjoint U+ is defined by

U+ :=
{{ k̃, h̃} ∈ K×H : [k, k̃]K = [h, h̃]H for all {h,k} ∈U

}
.

It is a closed linear relation from K to H , i.e., a closed subspace of K×H when
considered as the direct sum of the corresponding Hilbert spaces. A linear relation
U ⊂ H×K is said to be isometric if U−1 ⊂U+ and unitary if U−1 = U+ . Recall that
a unitary relation U from H to K satisfies

kerU = (domU)[⊥]H and mulU = (ranU)[⊥]K .

Furthermore, recall that domU is closed if and only if ranU is closed (see [23]).
Unitary relations may be multivalued; and single-valued unitary relations may be un-
bounded. A unitary relation from H to K is said to be a standard unitary operator if
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it is (the graph of) an operator belonging to B(H,K) . The inverse of a standard unitary
operator is automatically also a standard unitary operator.

Finally, a linear relation A ⊂ H×H in a Kreı̆n space (H, [·, ·]) is said to be sym-
metric if A ⊂ A+ and selfadjoint if A = A+ . A selfadjoint relation in a Kreı̆n space (or
in a Pontryagin space) may have an empty resolvent set; cf. Example 3.7.

2.3. Linear relations and operators in Pontryagin spaces

Symmetric and selfadjoint relations in Pontryagin spaces have some useful prop-
erties. If S is a symmetric operator in a Pontryagin space H with κ negative squares,
then automatically the set of points of regular type is nonempty: ρ̂(S) �= /0 ; in fact, then
#(C± \ ρ̂(S)) � κ . If A is a selfadjoint operator in a Pontryagin space with κ negative
squares, then the upper and lower half planes consist of points of the resolvent set with
the exception of at most κ eigenvalues in each of the half planes; see [1], [16]. The
situation is different for selfadjoint relations in a Pontryagin space; see [14].

LEMMA 2.2. Let A be a selfadjoint linear relation in a Pontryagin space H with
κ negative squares. Then σ(A) = C if and only if σp(A) contains at least κ+1 points
in C+ or in C− . In this case

span {ker(A−λ ) : λ ∈ C+ } and span {ker(A−λ ) : λ ∈ C−}

are neutral subspaces of H , which contain at least one nontrivial vector from mulA.

Proof. For the first statement, see [14]. Now let λ1 , λ2 , . . . , λκ+1 be different
eigenvalues of A in C+ and let

{u j,λ ju j} ∈ A, u j �= 0, j = 1,2, . . . ,κ +1. (2.1)

Then [u j,uk] = 0 for all j,k = 1,2, . . . ,κ +1 and thus, the subspace

L = span {u j : j = 1,2, . . . ,κ +1}

is neutral. Since H is a Pontryagin space with negative index κ the dimension d
of the neutral subspace L is less or equal to κ , and hence the vectors u j are linearly
dependent. Enumerate u j such that u1, . . . ,ud form a basis in L . Then there are α j ∈C

such that ud+1 = ∑d
j=1α ju j and{

ud+1,
d

∑
j=1

α jλ ju j

}
∈ A. (2.2)

It follows from (2.1) and (2.2) that{
0 ,

d

∑
j=1

α j(λ j −λd+1)u j

}
∈ A,
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and, hence,

u∞ :=
d

∑
j=1

α j(λ j −λd+1)u j ∈ mulA.

If u∞ = 0, then α j = 0 for all j = 1, . . . ,d and hence ud+1 = 0, a contradiction. Thus
u∞ is not trivial. �

COROLLARY 2.3. If A is a selfadjoint linear relation in a Pontryagin space H
such that σ(A) = C , then mulA contains at least one nontrivial neutral vector. In
particular, if mulA is either a positive subspace or a negative subspace of H , then
ρ(A) �= /0 .

LEMMA 2.4. Let K be a closed densely defined linear operator acting from a
Hilbert space (L ,(·, ·)) to a Pontryagin space (H, [·, ·]) of negative index κ . Then the
operator K+K is selfadjoint in L and the form [K·,K·] is semibounded from below
on domK .

Proof. It follows from (K+Kx,y) = [Kx,Ky] = (x,K+Ky) , x,y∈ dom(K+K) , that
K+K is a symmetric operator in L . Since K+K has at most κ negative eigenvalues,
one can assume that −1 �∈ σp(K+K) . Then the subspace

K = {{Ku,u} : u ∈ domK}

is a closed nondegenerate subspace of H⊕L and its orthogonal complement in H⊕L
takes the form

K [⊥] =
{{ f ,−K+ f} : f ∈ domK+} .

Since H⊕L is a Pontryagin space it follows that H⊕L = K [+]K [⊥] holds; cf. [1,
Theorem 9.9], [16, Theorem 3.2]. Hence there exist u ∈ domK and f ∈ domK+ such
that

{0,h} = {Ku,u}+{ f ,−K+ f}
This implies u ∈ dom(K+K) , h = (I +K+K)u and hence ran(I +K+K) = L . Thus
−1∈ ρ(K+K) and it follows that K+K is a selfadjoint operator in L . Furthermore, as
H is a Pontryagin space with negative index κ it follows that the spectral subspace of
K+K corresponding to the negative spectrum has at most dimension κ and therefore
K+K is semibounded from below.

To see that also the form [K·,K·] is semibounded from below on domK it suffices
to prove that

K0 :=
{{Ku,u} : u ∈ dom(K+K)

}
is dense in K . Indeed, if {Kv,v} is orthogonal to K0 for some v ∈ domK then

(v,(I +K+K)u) = (v,u)+ [Kv,Ku] = 0

for all u ∈ dom(K+K) and hence v = 0. �
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3. Boundary relations and Weyl families

In this section boundary relations and their Weyl families in Kreı̆n spaces will be
studied. It will be shown that on an algebraic level there is a close connection between
the Kreı̆n space and the Hilbert space situations.

3.1. Boundary relations in Kreı̆n spaces

Let (H, [·, ·]) be a Kreı̆n space and let JH be a corresponding fundamental symme-
try. The product space H2 = H×H will be equipped with the indefinite inner product[[

f̂ , ĝ
]]

H2 = i
(
[ f ,g′]− [ f ′,g]

)
, f̂ = { f , f ′}, ĝ = {g,g′} ∈ H2. (3.1)

Then (H2, [[·, ·]]H2) is also a Kreı̆n space and(
0 −iJH

iJH 0

)
∈ B(H2)

is a corresponding fundamental symmetry. In the following (H ,(·, ·)) will be a Hilbert
space. By replacing the inner product [·, ·] on the right hand side of (3.1) with (·, ·) the
product space H 2 equipped with the corresponding indefinite inner product [[·, ·]]H 2

is also a Krein space with the fundamental symmetry

JH 2 =
(

0 −iIH
iIH 0

)
∈ B(H 2). (3.2)

Let Γ ⊂ H2 ×H 2 be a linear relation from the Kreı̆n space (H2, [[·, ·]]H2) to the
Kreı̆n space (H 2, [[·, ·]]H 2) and denote the adjoint of Γ by Γ[[+]] . Then Γ is [[·, ·]]-
isometric or [[·, ·]]-unitary if Γ is an isometric or unitary relation from (H2, [[·, ·]]H2) to
(H 2, [[·, ·]]H 2) ; i.e., if Γ−1 ⊂ Γ[[+]] or Γ−1 = Γ[[+]] , respectively.

DEFINITION 3.1. Let S be a closed symmetric relation in a Kreı̆n space H . A
linear relation Γ ⊂ H2 ×H 2 is called a boundary relation for S+ if H is a Hilbert
space, T := domΓ is dense in S+ w.r.t. the graph topology on S+ (induced by the
Hilbert space inner product on H2 = H×H), and Γ is [[·, ·]]-unitary.

One can restate this definition also in the following form: a [[·, ·]]-unitary relation
Γ ⊂ H2 ×H 2 is a boundary relation for S+ if and only if kerΓ = S ; see [8, Propo-
sition 2.3]. The space H in Definition 3.1 is the parameter space of the boundary
relation Γ ; it plays the role of the boundary space in applications to ODE’s and PDE’s.

The product space H2 can be provided with another indefinite inner product

	 f̂ , ĝ 
H2 = i
(
( f ,g′)− ( f ′,g)

)
= i
(
[JH f ,g′]− [JH f ′,g]

)
, f̂ = { f , f ′}, ĝ = {g,g′} ∈ H2,

where (·, ·) = [JH·, ·] is the Hilbert space inner product on H . The fundamental sym-
metry JH can be used to give a connection between different classes of linear relations
in Kreı̆n spaces and Hilbert spaces. This is formulated in the next lemma, whose proof
is straightforward.
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LEMMA 3.2. The linear operator UJH from the Kreı̆n space (H2, [[·, ·]]H2) to the
Kreı̆n space (H2,	 ·, · 
H2) defined by

UJH{ f , f ′} = { f ,JH f ′}, { f , f ′} ∈ H2, (3.3)

is a standard unitary operator. Furthermore, for every linear relation A in H2 ,

UJH(A+) = (UJH(A))∗, (3.4)

where ∗ denotes the adjoint in H with respect to the Hilbert space inner product (·, ·) .
In particular, UJH establishes a bijective correspondence between the symmetric and
selfadjoint relations in the Kreı̆n space (H, [·, ·]) and the symmetric and selfadjoint
relations in the Hilbert space (H,(·, ·)) , respectively.

Using this connection one can conclude the existence and give a description of
all boundary relations Γ⊂ H2 ×H 2 for an arbitrary closed symmetric relation S in a
Kreı̆n space setting.

PROPOSITION 3.3. Let the relation S be closed and symmetric in the Kreı̆n space
(H, [·, ·]) with the fundamental symmetry JH . Then the mapping UJH in (3.3) estab-
lishes a bijective correspondence between the boundary relations Γ ⊂ H2 ×H 2 for
S+ and the boundary relations Γ̃ ⊂ H2 ×H 2 for S̃∗ , where S̃ = UJH(S) is a closed
symmetric relation in the Hilbert space (H,(·, ·)) , via

Γ= Γ̃◦UJH .

Proof. Let S̃ = UJH(S) and let Γ̃ ⊂ H2 ×H 2 be a boundary relation for S̃∗ .

Then Γ̃ is a unitary relation from the Kreı̆n space (H2,	 ·, · 
H2) to the Kreı̆n space
(H 2, [[·, ·]]H 2) with ker Γ̃= S̃ . Since UJH is a standard unitary operator by Lemma 3.2,
it follows from [9, Theorem 2.10 (iv)] that the composition

Γ = Γ̃◦UJH

is unitary from the Kreı̆n space (H2, [[·, ·]]H2) to the Kreı̆n space (H 2, [[·, ·]]H 2) . Clearly,
kerΓ = S and thus Γ defines a boundary relation for S+ .

The inverse U−1
JH

is also a standard unitary operator. Therefore, if Γ ⊂ H2 ×H 2

is a boundary relation for S+ , then the same argument shows that the composition

Γ̃= Γ◦U−1
JH

is a boundary relation for S̃∗ . This yields the one-to-one correspondence between the
boundary relations of S+ and S̃∗ . �

The existence of boundary relations for closed symmetric operators or relations
in the Hilbert space setting was proved in [8, Proposition 3.7], which together with
Proposition 3.3 gives the corresponding fact for symmetric relations in a Kreı̆n space.

A boundary relation Γ is said to be an ordinary boundary triplet for S+ if, in ad-
dition, ranΓ = H ×H ; see [8, Proposition 5.3]. The existence of ordinary boundary
triplets for symmetric relations in a Kreı̆n space can now be described as follows.
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PROPOSITION 3.4. Let the relation S be closed and symmetric in the Kreı̆n space
(H, [·, ·]) with the fundamental symmetry JH . Then there exists an ordinary boundary
triplet for S+ if and only if S admits a selfadjoint extension in (H, [·, ·]) . In this case
the mapping UJH in (3.3) establishes a bijective correspondence between all ordinary

boundary triplets {H ,Γ0,Γ1} for S+ and all ordinary boundary triplets {H , Γ̃0, Γ̃1}
for S̃∗ , where S̃ =UJH(S) is a closed symmetric relation in the Hilbert space (H,(·, ·)) ,
via

{Γ0,Γ1} = {Γ̃0 ◦UJH , Γ̃1 ◦UJH} = Γ̃◦UJH .

Moreover, A0 := kerΓ0 and A1 := kerΓ1 are selfadjoint extensions of S in the Kreı̆n
space (H, [·, ·]) which are transversal, i.e., A0 +̂ A1 = S+ .

Proof. It follows from (3.4) that S admits a selfadjoint extension in the Kreı̆n
space (H, [·, ·]) if and only if S̃ admits a selfadjoint extension in the Hilbert space
(H,(·, ·)) , or equivalently, S̃ has equal defect numbers in (H,(·, ·)) . This is a necessary
and sufficient condition for the existence of an ordinary boundary triplet {H , Γ̃0, Γ̃1}
for S̃∗ ; cf. [11], [8, Section 5.1]. On the other hand, it is clear that Γ̃ = {Γ̃0, Γ̃1} is an
ordinary boundary triplet for S̃∗ if and only if Γ̃ ◦UJH is an ordinary boundary triplet

for S+ , since UJH is a standard unitary operator and UJH(S+) = S̃∗ . This yields the bi-

jective correspondence between the ordinary boundary triplets for S+ and S̃∗ . Clearly,
UJH(Aj) = ker Γ̃ j and hence (3.4) implies that A0 and A1 are transversal selfadjoint
extensions of S in (K, [·, ·]) . �

The existence of an ordinary boundary triplet for a closed symmetric relation S in
a Kreı̆n space which admits a selfadjoint extension A0 with a nonempty resolvent set
was shown in [5]. Proposition 3.4 implies that all ordinary boundary triplets of S+ in
a fixed parameter space H can be described in the same way as in the Hilbert space
setting; cf., e.g., [11, Proposition 1.7].

LEMMA 3.5. Let Γ be a boundary relation for the adjoint S+ and let W be a
standard unitary operator in the Kreı̆n space (H 2, [[·, ·]]H 2) . Then W ◦Γ is also a
boundary relation for S+ . Moreover, if Γ is an ordinary boundary triplet for S+ , then
the same is true for W ◦Γ and all ordinary boundary triplets for S+ can be obtained
in this way.

The connection between the boundary relations of S+ of a symmetric relation S in
a Kreı̆n space (H, [·, ·]) and the boundary relations of S̃∗ in the Hilbert space (H,(·, ·))
given in Proposition 3.3 makes it possible to extend or easily translate several facts for
(different types of) boundary relations as well as various results on their composition
and coupling which were proved in the Hilbert space setting in [8, 9] for boundary re-
lations of symmetric relations in Kreı̆n spaces. The reason is that many of the results
involving the construction of boundary triplets and relations (e.g. for various intermedi-
ate extensions of orthogonal sums of symmetric relations as in [9, Sections 3–5]) have
been proved by using composition of two unitary operators or relations (cf. [9, Theo-
rem 2.10]), i.e., they are of algebraic nature: when such a result on boundary relations
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is established for symmetric relations in a Hilbert space it also holds for symmetric
relations in a Kreı̆n space due to the connection of boundary relations and triplets in
Propositions 3.3, 3.4 via the standard unitary mapping UJH in (3.3). In this way one
gets also various transformation results for Weyl families (see Definition 3.6 below)
of boundary relations in the Kreı̆n space setting, proved in the Hilbert space setting in
[8, 9]; as a simple example see, e.g., Lemma 3.8. It is emphasized that these results
give the ”algebraic part” involving, e.g., various transformations of Weyl families of
symmetric operators in a Kreı̆n space; they do not make it possible to derive specific an-
alytic properties of a given Weyl family of some symmetric operator S in a Kreı̆n space
from the analytic properties of a Weyl family of a symmetric operator S̃ = UJH(S) in a

Hilbert space. The reason is that the defect subspaces of S and S̃ are not connected by
the mapping UJH and therefore there is no direct connection between the Weyl families

of the boundary relations of S+ and S̃∗ .

3.2. Weyl families for boundary relations in Kreı̆n spaces

The introduction of Weyl families and γ -fields for the present situation follows the
same pattern as in the Hilbert space case; see [8, 9].

DEFINITION 3.6. Let S be a closed symmetric relation in the Kreı̆n space H and
let Γ ⊂ H2 ×H 2 be a boundary relation for S+ with T = domΓ . The γ -field γ and
the Weyl family M of the boundary relation Γ are defined by

γ(λ ) :=
{{

h, f
}

:
{

f̂ , ĥ
} ∈ Γ and f̂ = { f , f ′} ∈ N̂λ (T )

}
, λ ∈ C,

and
M(λ ) := Γ

(
N̂λ (T )

)
=
{

ĥ : { f̂ , ĥ} ∈ Γ and f̂ ∈ N̂λ (T )
}
, λ ∈ C.

Let S be a closed symmetric relation in the Kreı̆n space H and let Γ⊂ H2 ×H 2

be a boundary relation for S+ . Then Γ induces a selfadjoint extension A of S in the
Kreı̆n space H×H defined by

A :=
{{(

f
h

)
,

(
f ′
h′

)}
:

{(
f
f ′

)
,

(
h

−h′

)}
∈ Γ

}
, (3.5)

which is called the main transform of Γ in [8]. As was shown in [8, Theorem 3.9]
the Weyl family M of the boundary relation Γ and the selfadjoint extension A in (3.5)
associated to Γ are connected via

PH (A−λ )−1�H = −(M(λ )+λ )−1, λ ∈ ρ(A), (3.6)

and that therefore in this case

−(M(λ )+λ )−1 ∈ B(H ), λ ∈ ρ(A). (3.7)

However, in general, the selfadjoint relation A in (3.5) has an empty resolvent set and
(3.7) will not hold in general. In fact, the righthand side of (3.6) suggests that ρ(A)
will be empty if the Weyl family of Γ is M(λ ) = −λ . In the following example this
situation is considered.
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EXAMPLE 3.7. Let H be the one-dimensional Pontryagin space (C, [·, ·]) , where
the inner product is defined by [ f ,g] := − f g , f ,g ∈ C . Then

Γ :=
{{(

f
f ′

)
,

(
f

− f ′

)}
: f , f ′ ∈ C

}
⊂ H2 ×C

2

is a boundary relation for T = S+ = {{ f , f ′} : f , f ′ ∈ H} when the closed symmetric
operator S is defined by S = {0} . In fact,

Γ[[+]] :=
{{(

h
h′

)
,

(
g
g′

)}
: −(h, f ′)− (h′, f ) = [g, f ′]− [g′, f ] for all f , f ′ ∈ C

}
,

and simple observations show Γ−1 =Γ[[+]] . The Weyl family associated with Γ , defined
by

M(λ ) =
{(

f
−λ f

)
: f ∈ C

}
= −λ ,

is a scalar generalized Nevanlinna function with one negative square. The selfadjoint
relation A in H×C associated with the boundary relation Γ is given by

A =
{{(

f
f

)
,

(
f ′
f ′

)}
: f , f ′ ∈ C

}
.

Clearly every λ ∈ C is an eigenvalue of A and hence ρ(A) = /0 . Note that also H =
Nλ (T ) , λ ∈ C , and H = mulA .

Recall that standard unitary operators in (H 2, [[·, ·]]H 2) transform boundary rela-
tions by interpreting the standard unitary operator W in H as a transformer (of linear
relations) in the sense of Shmuljan [24]; see Lemma 3.5. The corresponding Weyl
families transform accordingly, cf. [9, Proposition 3.11].

LEMMA 3.8. Let S be a closed symmetric relation in the Kreı̆n space H and let
Γ⊂ H2 ×H 2 be a boundary relation for S+ with corresponding Weyl family M . Let
W be a standard unitary operator in the Kreı̆n space (H 2, [[·, ·]]H 2) decomposed as

W =
(

W00 W01

W10 W11

)
,

and let ΓW = W ◦ Γ be the transformed boundary relation with corresponding Weyl
family MW . Then domΓW = domΓ and

MW (λ ) =
{{W00 f +W01 f ′,W10 f +W11 f ′} : { f , f ′} ∈ M(λ )

}
. (3.8)

In the following lemma a particularly useful transform of a boundary relation is
described with some further details; the first part (in the Hilbert space setting) is con-
tained in [9, Proposition 3.18] and the second part is obtained by applying (3.5) to ΓW .
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LEMMA 3.9. Let S be a closed symmetric relation in the Kreı̆n space H and let
Γ⊂ H2 ×H 2 be a boundary relation for S+ with corresponding Weyl family M . Let
X ,X−1,Y = Y ∗ ∈ B(H ) and define

W =
(

X−1 0
YX−1 X∗

)
. (3.9)

Then W is a standard unitary operator in (H 2, [[·, ·]]H 2) and the Weyl family MW

related to the boundary relation ΓW = W ◦Γ is given by

MW (λ ) = X∗M(λ )X +Y. (3.10)

If the selfadjoint relations A and AW correspond to the boundary relations Γ and ΓW

via (3.5), then

AW =
{{(

f
X−1h

)
,

(
f ′

X∗h′ −YX−1h

)}
:

{(
f
h

)
,

(
f ′
h′

)}
∈ A

}
,

and the subspace mulAW admits the representation

mulAW =
{(

f ′
X∗h′

)
:

(
f ′
h′

)
∈ mulA

}
. (3.11)

Proof. A direct computation shows

W [[+]] =
(

X 0
−X−∗Y X−∗

)
= W−1,

so that W is a standard unitary operator in (H 2, [[·, ·]]H 2) . The identity (3.10) follows
from (3.8), which in the present circumstances (3.8) reads as

MW (λ ) =
{{X−1 f ,YX−1 f +X∗ f ′} : { f , f ′} ∈ M(λ )

}
.

The remaining statements follow from ΓW =W ◦Γ and (3.5). �

LEMMA 3.10. Let S be a closed symmetric relation in the Kreı̆n space H , let
Γ ⊂ H2 ×H 2 be a boundary relation for S+ , and let A be the selfadjoint relation
associated with Γ via (3.5). Assume that

mulA∩H = {0}. (3.12)

Then there exists a closed linear operator K : domK ⊂ H → H such that

mulA =
{(

Ku
u

)
: u ∈ domK ⊂ H

}
. (3.13)

The condition (3.12) is satisfied, if S is an operator.
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Proof. Observe that mulA is a closed subspace of H⊕H given by

mulA =
{(

f ′
h′

)
:

{(
0
0

)
,

(
f ′
h′

)}
∈ A

}
.

Hence, the condition (3.12) is necessary and sufficient for mulA to be the graph of a
linear operator K : domK ⊂ H → H . Clearly, the operator K is closed, since mulA is
a closed subspace of H⊕H .

To prove the last statement assume that f ′ ∈ mulA∩H . Then(
f ′
0

)
∈ mulA and

{(
0
0

)
,

(
f ′
0

)}
∈ A,

and therefore {(
0
f ′

)
,

(
0
0

)}
∈ Γ and

(
0
f ′

)
∈ kerΓ.

Hence, f ′ ∈ mul S and if S is an operator this yields f ′ = 0. �

3.3. Boundary relations in Pontryagin spaces

In this subsection somewhat more specific results for boundary relations in Pon-
tryagin spaces are given. It is clear from (3.6) that a nonempty resolvent set ρ(A) �= /0 of
the selfadjoint relation A in (3.5) simplifies the investigation of the analytic properties
of the Weyl families and γ -fields associated with boundary relations for S+ . Another
helpful condition in this connection is the notion of minimality of boundary relations;
the definition given here is a slight adaption of [8, Definition 3.4] in the case of Hilbert
spaces.

DEFINITION 3.11. Let S be a closed symmetric relation in the Pontryagin space
H and let Γ⊂H2×H 2 be a boundary relation for S+ with domΓ= T . The boundary
relation Γ is called minimal if ρ̂(S) �= /0 and

H = span {Nλ (T ) : λ ∈ ρ̂(S)} . (3.14)

Recall that if S is a closed symmetric operator in the Pontryagin space H , then
ρ̂(S) �= /0 .

PROPOSITION 3.12. Let S be a closed symmetric operator in the Pontryagin
space H and let Γ ⊂ H2 ×H 2 be a boundary relation for S+ with domΓ = T . Then
there exists a boundary relation ΓW for S+ with the same domain domΓW = T , such
that the selfadjoint relation AW associated with ΓW via (3.5) satisfies

ρ(AW ) �= /0.

Proof. Assume that ρ(A) = /0 for the main transform A of Γ ; otherwise the state-
ment is clear. Since S is an operator it follows from Lemma 3.10 that there exists a
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closed linear operator K : domK ⊂ H →H such that (3.13) holds. Due to Lemma 2.4
the form [K·,K·] on domK is semibounded from below, that is there is a > 0 such that

[Ku,Ku] � −a2‖u‖2, u ∈ domK.

Consider a standard unitary operator W in (H 2, [[·, ·]]H 2) of the form (3.9). The self-
adjoint relation A is transformed into the selfadjoint relation AW whose multivalued
part is given by (3.11). The inner product on mulAW is obtained from (3.13) and
(3.11): [(

Ku
X∗u

)
,

(
Ku
X∗u

)]
= (XX∗u,u)+ [Ku,Ku], u ∈ domK. (3.15)

By choosing W such that the inner product in (3.15) is positive (for instance X =
(a+ ib)I with some b > 0 and Y = 0), it follows from Corollary 2.3 that ρ(AW ) �= /0 .
By construction, domΓW = domΓ and this completes the proof. �

Clearly, the above result need not hold if S is not an operator: consider S⊕A ,
where S is symmetric and A a selfadjoint relation with ρ(A) = /0 . Proposition 3.12
gives a couple of useful corollaries; it will be also used in establishing the characteristic
properties of the Weyl families in the next section.

COROLLARY 3.13. Let S be a closed symmetric operator in the Pontryagin space
H and let Γ ⊂ H2 ×H 2 be a boundary relation for S+ with domΓ = T . Then the
selfadjoint relation AW in Proposition 3.12 satisfies

Nλ (T ) = ranPH(AW −λ )−1|H , λ ∈ ρ(AW ). (3.16)

Proof. Due to domΓW = T and ρ(AW ) �= /0 the result is obtained by using the
arguments appearing in [8, Lemma 2.14]. �

The next corollary is valid for arbitrary boundary relations in Pontryagin spaces.

COROLLARY 3.14. Let S be a closed symmetric operator in the Pontryagin space
H , let Γ⊂ H2×H 2 be a boundary relation for S+ with domΓ = T and let AW be a
selfadjoint relation as in Proposition 3.12. Then the following statements hold:

(i) Nλ (T ) is dense in Nλ (S+) , λ ∈ ρ(AW );

(ii) Γ is minimal if and only if S is simple, i.e.,

H = span
{

Nλ (S+) : λ ∈ ρ̂(S)
}

;
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(iii) for λ ∈C± except for at most κ points the linear spaces Nλ (T ) in (3.16) satisfy

‖PH(AW −λ )−1−PH(AW −λ0)−1‖→ 0, λ → λ0, λ ,λ0 ∈ ρ(AW ).

Proof. The statements (i) and (ii) are obtained from Corollary 3.13 combined with
[8, Lemma 2.14]. To prove (iii) it suffices to apply the resolvent identity for AW . �

As to part (iii) of Corollary 3.14 note that the linear spaces of eigenelements
Nλ (T ) are in general nonclosed and that S = kerΓ need not have equal defect num-
bers, cf. [8], in which case there are no selfadjoint extensions in H connecting e.g. the
defect subspaces of S as in the case of ordinary boundary triplets where one may use
the resolvent of A0 := kerΓ0 . Note that Corollary 3.14 makes it also possible to replace
ρ̂(S) in the definition of minimality in (3.14) by much smaller subsets in C± .

To this end the following result is given for completeness; it is well-known at least
for simple symmetric operators with equal defect numbers.

LEMMA 3.15. Let S be a closed symmetric relation in the Pontryagin space H
and let Γ ⊂ H2 ×H 2 be a minimal boundary relation for S+ . Then S = kerΓ is an
operator without eigenvalues.

Proof. To see that S is an operator, assume that {0,g} ∈ S . Then for all fλ ∈
Nλ (T ) , λ ∈ C ,

0 = [g, fλ ]− [0,λ fλ ] = [g, fλ ],

and hence it follows from (3.14) that g = 0. Next assume that {h,ζh} ∈ S for some
ζ ∈ C . Then

0 = [ζh, fλ ]− [h,λ fλ ] = (ζ −λ)[h, fλ ],

and hence again using (3.14) one easily concludes that h = 0. �

4. Generalized Nevanlinna families and Weyl families of boundary relations in
Pontryagin spaces

In this section boundary relations and their Weyl families are considered when
the space H is a Pontryagin space. The corresponding Weyl family turns out to be
a generalized Nevanlinna family and it is also shown that, conversely, every general-
ized Nevanlinna family is the Weyl family corresponding to a boundary relation in a
Pontryagin space.

4.1. Generalized Nevanlinna pairs and families

The next definition generalizes the notion of Nevanlinna pairs which was first in-
troduced apparently in [22], but its prototype can be found in other places, in particular,
in the theory of the Bezoutiant, see [20]. The notions of Nevanlinna pairs and fam-
ilies has been used for the description of generalized resolvents in, e.g., [17], and in
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the theory of boundary value problems with spectral parameter depending boundary
conditions, see, e.g., [12], [13].

For a subset O in C the notation

O∗ := {λ ∈ C : λ ∈ O}

will be used in the following.

DEFINITION 4.1. Let H be a Hilbert space and let κ ∈ N0 . A pair {Φ,Ψ} of
B(H )-valued functions Φ,Ψ holomorphic on a symmetric open set O∪O∗ , O ⊂C+ ,
is said to be a generalized Nevanlinna pair with κ negative squares, if

(P1) for all λ ∈ O :
Ψ(λ )∗Φ(λ )−Φ(λ )∗Ψ(λ ) = 0;

(P2) for some μ ∈ C+ and some λ ∈ O :

0 ∈ ρ(Ψ(λ )+ μΦ(λ )), 0 ∈ ρ(Ψ(λ )+ μΦ(λ ));

(P3) the kernel

KΦ,Ψ(λ ,μ) :=
Ψ(λ )∗Φ(μ)−Φ(λ)∗Ψ(μ)

λ − μ
(4.1)

has κ negative squares on O ∪O∗ .

A generalized Nevanlinna pair with κ = 0 negative squares is said to be a Nevanlinna
pair.

Observe that if the condition (P2) is satisfied, then it also holds for all points in
some neighborhood of λ by continuity of the functions Ψ and Φ . Hence, by making
O smaller (if necessary) one can equivalently assume that (P2) actually holds for all
λ ∈ O . Recall also that (P3) means that for all n ∈ N and every choice of λi ∈ O ∪O∗
and xi ∈ H , i = 1, . . . ,n , the matrix (KΦ,Ψ(λi,λ j)x j,xi)n

i, j=1 has at most κ negative
eigenvalues and that the number κ with this property is minimal.

Two Nevanlinna pairs {Φ,Ψ} and {Φ1,Ψ1} are said to be equivalent, if for some
holomorphic and boundedly invertible operator function χ(·) ∈ B(H ) on O ∪O∗

Φ1(λ ) = Φ(λ )χ(λ ) and Ψ1(λ ) = Ψ(λ )χ(λ )

holds for all λ ∈ O ∪O∗ . Note that{{Φ(λ )h,Ψ(λ )h} : h∈K
}

=
{{Φ(λ )χ(λ )k,Ψ(λ )χ(λ )k} : k∈K

}
, λ ∈O∪O∗,

and that the kernel

KΦχ ,Ψχ(λ ,μ) = χ(λ )∗KΦ,Ψ(λ ,μ)χ(μ)

also has κ negative squares on O ∪O∗ .
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DEFINITION 4.2. Let κ ∈ N0 . A family of linear relations τ in a Hilbert space
H defined on O∪O∗ where O ⊂C+ is an open set, is called a generalizedNevanlinna
family with κ negative squares if

(Q1) τ(λ )∗ = τ(λ ) for all λ ∈ O ∪O∗ ;

(Q2) for some μ ∈ C+ the operator family (τ(λ )+ μ)−1 has values in B(H ) and is
holomorphic on O ⊂ C+ ;

(Q3) the kernel KΦ̃,Ψ̃(λ ,μ) associated with the pair

Φ̃(λ ) :=

{
(τ(λ )+ μ)−1, λ ∈ O,

(τ(λ )+ μ)−1, λ ∈ O,

Ψ̃(λ ) :=

{
I− μ(τ(λ )+ μ)−1, λ ∈ O,

I− μ(τ(λ )+ μ)−1, λ ∈ O,

(4.2)

has κ negative squares on O ∪O∗ .

A generalized Nevanlinna family with κ = 0 negative squares is said to be a Nevanlinna
family.

The following proposition shows how generalized Nevanlinna pairs and general-
ized Nevanlinna families are connected to each other and how they can be extended
onto C\R with the possible exception of at most κ pairs of points in C\R .

PROPOSITION 4.3. Let {Φ,Ψ} be a generalized Nevanlinna pair with κ negative
squares on O ∪O∗ and let τ be defined by

λ �→ τ(λ ) =
{{Φ(λ )h,Ψ(λ )h} : h ∈ H

}
, λ ∈ O ∪O∗. (4.3)

Then τ is a generalized Nevanlinna family with κ negative squares and τ can be
uniquely extended to a generalized Nevanlinna family with κ negative squares on a
domain

D+∪D∗
+, where D+ ⊂ C+ and #(C+ \D+) � κ . (4.4)

Moreover, for every ζ ∈C+ the condition 0∈ ρ(τ(λ )+ζ ) holds for all λ ∈D+ except
at most κ points.

Conversely, if τ is a generalized Nevanlinna family with κ negative squares, then
the pair {Φ̃,Ψ̃} defined by (4.2) is a generalized Nevanlinna pair with κ negative
squares and admits a unique extension to a generalized Nevanlinna pair with κ nega-
tive squares on a domain as in (4.4).

Proof. Let {Φ,Ψ} be a generalized Nevanlinna pair and let τ be defined by (4.3).
Then it follows from (P1) that τ(λ ) ⊂ τ(λ )∗ . The definition (4.3) implies that

τ(λ )+ μ = {{Φ(λ )h,Ψ(λ )h+ μΦ(λ )h} : h ∈ H } , (4.5)
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and, hence (P2) shows that 0 ∈ ρ(τ(λ ) + μ) for all λ ∈ O(⊂ C+) . Similarly, one

shows that 0 ∈ ρ(τ(λ )+ μ) for all λ ∈ O . This implies that τ(λ )∗ = τ(λ ) and also
proves (Q1) and (Q2). The property (Q3) follows immediately from (P3) since the pair
{Φ̃,Ψ̃} is equivalent to {Φ,Ψ} :

Φ̃(λ ) =

{
Φ(λ )(Ψ(λ )+ μΦ(λ ))−1, λ ∈ O,

Φ(λ )(Ψ(λ )+ μΦ(λ ))−1, λ ∈ O∗,

Ψ̃(λ ) =

{
Ψ(λ )(Ψ(λ )+ μΦ(λ ))−1, λ ∈ O,

Ψ(λ )(Ψ(λ )+ μΦ(λ ))−1, λ ∈ O∗.

Therefore τ defined in (4.3) is a generalizedNevanlinna family with κ negative squares.
Associate with the Nevanlinna pair {Φ̃,Ψ̃} the operator valued function

Θ(λ ) =

{
Ψ̃(λ )+ μΦ̃(λ ), λ ∈ O,

Ψ̃(λ )+ μΦ̃(λ ), λ ∈ O∗.
(4.6)

Note that the condition (P1) is equivalent to the condition Θ(λ )∗ =Θ(λ ) . In particular,
(P1) implies that

Φ̃(λ ) = Φ̃(λ )∗, Ψ̃(λ ) = Ψ̃(λ )∗, λ ∈ O. (4.7)

Associate with Θ the Schur kernel SΘ(λ ,ω) in O by the formula

SΘ(λ ,ω) :=
I−Θ(λ )Θ(ω)∗

−2i(λ −ω)
, λ ,ω ∈ O.

It follows from (4.6), (4.7) and the equalities

Ψ̃(λ )+ μΦ̃(λ ) = I Ψ̃(λ )+ μΦ̃(λ ) = I, λ ∈ O,

that the Schur kernel SΘ(λ ,ω) is connected to the Nevanlinna kernel KΦ̃,Ψ̃(λ ,ω) on
O via

SΘ(λ ,ω) = ImμKΦ̃,Ψ̃(λ ,ω). (4.8)

Hence, in the terminology of [18] Θ belongs to the generalized Schur class Sκ(H ) and
according to [18, Satz 3.2, Folgerung 3.3] Θ admits a unique holomorphic continuation
Θ̃(λ ) to a set D+ in the open upper half plane C+ with #(C+ \D+) � κ . Let Θ̃ be
extended to the lower half plane C− by Θ̃(λ ) :=Θ(λ )∗ , λ ∈D∗

+ and let the family of
linear relations τ̃ be defined by

τ̃(λ ) =

{
{{(I− Θ̃(λ )) f ,(μΘ̃(λ )− μ) f} : f ∈ H }, λ ∈ D+,

{{(I− Θ̃(λ )) f ,(μΘ̃(λ )− μ) f} : f ∈ H }, λ ∈ D∗
+.

(4.9)

Then the family of linear relations τ̃ is a continuation of τ to the domain Dτ := D+ ∪
D∗

+ and the property (Q1) is easily verified on Dτ .
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Introduce the kernel DΘ̃(λ ,ω) on (D+ ∪D∗
+)× (D+∪D∗

+) by

DΘ̃(λ ,ω) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

I−Θ̃(λ )Θ̃(ω)∗
−2i(λ−ω) , ω ∈ D+, λ ∈ D+,

Θ̃(λ )−Θ̃(ω)∗
−2i(λ−ω) , ω ∈ D+, λ ∈ D∗

+,

Θ̃(λ )−Θ̃(ω)∗
2i(λ−ω) , ω ∈ D∗

+, λ ∈ D+,

I−Θ̃(λ )Θ̃(ω)∗
2i(λ−ω) , ω ∈ D∗

+, λ ∈ D∗
+.

Due to [12] (see also [6] in the present notation) the kernel DΘ̃(λ ,ω) has κ negative
squares on (D+∪D∗

+)× (D+∪D∗
+) . Similar calculations as in (4.8) show that

DΘ̃(λ ,ω) = ImμKΦ̃,Ψ̃(λ ,ω),

where Φ̃ , Ψ̃ are determined by (4.2) with τ̃ instead of τ . Therefore, the property (Q3)
for τ̃ is satisfied.

It follows from (4.9) that for ζ ∈ C+ and λ ∈ C+∩Dτ ,

τ̃(λ )+ ζ = {{(I− Θ̃(λ )) f ,((μ − ζ )Θ̃(λ )− (μ− ζ )) f} : f ∈ H }.
Let ν = (μ − ζ )/(μ− ζ ) . Then by [18, Satz 3.2, Lemma 3.5] 0 ∈ ρ(I− νΘ̃(λ )) or,
equivalently, 0 ∈ ρ(τ̃(λ )+ ζ ) for all λ ∈ D+ except at most κ points. In particular,
also (Q2) is satisfied.

Conversely, assume that τ(·) is a generalized Nevanlinna family with κ negative
squares and let the pair {Φ̃,Ψ̃} be defined by (4.2) on O ∪O∗ . The first part of the
proof implies that τ can be extended to a generalized Nevanlinna family with κ nega-
tive squares on the domain Dτ = D∗

τ , #(C+ \Dτ) � κ ; compare [19, Satz 3.4]. Now
clearly (P1) is implied by (Q1). In view of (4.5) and (Q2), 0 ∈ ρ(Ψ̃(λ )+ μΦ̃(λ )) for

all λ ∈ Dτ ∩C+ . Similarly, (Q1) and (Q2) imply that 0 ∈ ρ(τ(λ )+ μ) and, hence,

0 ∈ ρ(Ψ̃(λ )+ μΦ̃(λ )) for all λ ∈ Dτ ∩C− . This proves (P2). Finally, (P3) is clear
from (Q3). �

REMARK 4.4. Proposition 4.3 contains the continuation property for generalized
Nevanlinna families and generalized Nevanlinna pairs with κ negative squares on O ∪
O∗ . A similar fact for generalized Schur functions with κ negative squares on some
open set in the unit disk was proved by M.G. Kreı̆n and H. Langer in [18], and the
present result is obtained from their result by applying Caley transforms. The continua-
tion property in the case of bounded operator functions τ whose Nevanlinna kernel has
κ negative squares on a set D0 ⊂ C+ , which contains at least one accumulation point
was proved earlier in [12, Section 2].

By replacing the generalized Nevanlinna pair {Φ,Ψ} by the extended generalized
Nevanlinna pair {Φ̃,Ψ̃} in Proposition 4.3 one can consider generalized Nevanlinna
pairs being defined in the maximal domain of holomorphy D+ ∪D∗

+ of a given gener-
alized Nevanlinna family τ . In what follows such a pair is often still denoted by {Φ,Ψ}
with the indication that its domain of holomorphy is denoted by DΦ,Ψ := D+∪D∗

+ , in-
stead of being a pair defined on some open subset O ∪O∗ ⊂ C\R .
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4.2. Standard unitary transforms of generalized Nevanlinna pairs and families

Let H be a Hilbert space and let the generalized Nevanlinna pair {Φ,Ψ} and the
generalized Nevanlinna family τ(λ ) be connected by

τ(λ ) =
{{Φ(λ )h,Ψ(λ )h} : h ∈ K

}
, (4.10)

where λ ∈ DΦ,Ψ ; see Proposition 4.3. Let W = (Wij)1
i, j=0 be a standard unitary opera-

tor in the Kreı̆n space (H 2, [[·, ·]]H 2) . Then W transforms the generalized Nevanlinna
pair {Φ,Ψ} as follows: (

ΦW (λ )
ΨW (λ )

)
=
(

W00 W01

W10 W11

)(
Φ(λ )
Ψ(λ )

)
. (4.11)

Moreover, by considering W as a transformer (in the sense of [24]) of the generalized
Nevanlinna family τ one obtains the family

τW (λ ) = {{W00 f +W01 f ′,W10 f +W11 f ′} : { f , f ′} ∈ τ(λ )}. (4.12)

Clearly, the pair {ΦW ,ΨW} and the family τW (λ ) are connected by

τW (λ ) =
{{ΦW (λ )h,ΨW (λ )h} : h ∈ K

}
. (4.13)

The next purpose is to show that for suitable standard unitary operators W the pair
{ΦW ,ΨW} in (4.11) is a generalized Nevanlinna pair with κ negative squares and that
τW in (4.12) is a generalized Nevanlinna family with κ negative squares. Due to the
correspondence in (4.13) it suffices to restrict attention to standard unitary transforms
of generalized Nevanlinna pairs. Corresponding results for standard unitary transforms
of generalized Nevanlinna families follow accordingly.

PROPOSITION 4.5. Let H be a Hilbert space, let {Φ,Ψ} be a generalized Nevan-
linna pair with κ negative squares, and let W be a standard unitary operator in
(H 2, [[·, ·]]H 2) . Then the pair {ΦW ,ΨW} defined in (4.11) satisfies the properties
(P1) and (P3) of Definition 4.1. Moreover, for every ζ ∈ C+ the operator functions

(W ∗
00− ζW∗

01)ΨW (λ )− (W∗
10− ζW∗

11)ΦW (λ ),

(W ∗
00− ζW ∗

01)ΨW (λ )− (W∗
10− ζW ∗

11)ΦW (λ ),
(4.14)

are boundedly invertible for all λ ∈ DΦ,Ψ∩C+ except at most κ points.

Proof. Let {Φ,Ψ} be a generalized Nevanlinna pair with κ negative squares on
DΦ,Ψ . Note that the condition (P1) can be rewritten as(

Φ(λ )
Ψ(λ )

)∗(
0 −I
I 0

)(
Φ(λ )
Ψ(λ )

)
= 0 (4.15)
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and that the kernel in (P3) can be written as

KΦ,Ψ(λ ,μ) =
1

λ − μ

(
Φ(λ )
Ψ(λ )

)∗(
0 −I
I 0

)(
Φ(μ)
Ψ(μ)

)
. (4.16)

Since W is a standard unitary operator

W ∗JH 2W = WJH 2W ∗ = JH 2 (4.17)

holds, where JH 2 is as in (3.2). Hence, it follows from (4.15) and (4.16) that the pair
{ΦW ,ΨW} also satisfies the conditions (P1) and (P3). Furthermore, by means of (4.17)
the following identities are easily checked

(W ∗
00 − ζW∗

01)ΨW (λ )− (W∗
10− ζW∗

11)ΦW (λ ) = Ψ(λ )+ ζΦ(λ ),

(W ∗
00 − ζW ∗

01)ΨW (λ )− (W∗
10− ζW ∗

11)ΦW (λ ) = Ψ(λ )+ ζΦ(λ ).

Hence, these identities and the condition (P2) of Definition 4.1 yield (4.14). �

REMARK 4.6. Assume that the standard unitary operator W is of the form (3.9),
so that the pair {ΦW ,ΨW} in (4.11) is given by

ΦW (λ ) = X−1Φ(λ ), ΨW (λ ) = YX−1Φ(λ )+X∗Ψ(λ ),

and the family τW (λ ) in (4.12) is given by

τW (λ ) = X∗τ(λ )X +Y. (4.18)

Then the condition (4.14) is equivalent to

ΨW (λ )+ (ζX∗X −Y)ΦW (λ ) and ΨW (λ )∗ +ΦW (λ )∗(ζX∗X −Y) (4.19)

to be boundedly invertible for all λ ∈ DΦ,Ψ∩C+ except at most κ points.
Moreover, if the operator ζX∗X −Y in (4.19) is of the form μI with μ ∈ C+ ,

then (4.19) is equivalent to (P2) of Definition 4.1. Hence, in this case {ΦW ,ΨW} in
(4.11) is a generalized Nevanlinna pair with κ negative squares and τW (λ ) in (4.12) is
a generalized Nevanlinna family with κ negative squares.

The previous situation occurs in the particular case that W is of the form (3.9)
with

X = xIH , Y = yIH , x ∈ C, y ∈ R. (4.20)

Then
ζX∗X −Y = (ζ |x|2 − y)I and ζ |x|2 − y ∈ C+. (4.21)

Therefore, under these circumstances, {ΦW ,ΨW} in (4.11) is a generalized Nevanlinna
pair with κ negative squares.

Proposition 4.5 and its special cases as discussed in Remark 4.6 now lead to the
following corollary (see (4.20) and (4.21)).
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COROLLARY 4.7. Assume that the generalized Nevanlinna pair {Φ,Ψ} satisfies

0 ∈ ρ(Ψ(λ0)+ ζΦ(λ0)) and 0 ∈ ρ(Ψ(λ 0)+ ζΦ(λ 0)),

with λ0 = a+ ib , a ∈ R , b > 0 , and ζ = c+ id , c ∈ R , d > 0 . Let W be the standard
unitary operator of the form (3.9), where X and Y are given by (4.20) with

x =

√
b
d

, y =
cb−ad

d
.

Then the pair {ΦW ,ΨW} in (4.11) is a generalized Nevanlinna pair with κ negative
squares which satisfies the additional properties

0 ∈ ρ(ΨW (λ0)+λ0ΦW (λ0)) and 0 ∈ ρ(ΨW (λ 0)+λ 0ΦW (λ 0)).

It will be a consequence of the main realization result, Theorem 4.10 below, that
the result stated in Corollary 4.7 holds actually for every standard unitary operator W in
(H 2, [[·, ·]]H 2) , that is, {ΦW ,ΨW} in Proposition 4.5 is a generalized Nevanlinna pair,
i.e. it satisfies also the invertibility conditions (P2) in Definition 4.1; see Corollary 4.12.

4.3. Weyl families as generalized Nevanlinna families

In this subsection it will be shown that every Weyl family corresponding to a
boundary relation for the adjoint of a symmetric relation in a Pontryagin space is a
generalized Nevanlinna family.

THEOREM 4.8. Let S be a closed symmetric relation in a Pontryagin space H
with negative index κ and let Γ ⊂ H2 ×H 2 be a minimal boundary relation for S+

with the corresponding Weyl family M . Then M is a generalized Nevanlinna family
with κ negative squares.

Proof. Let A be the selfadjoint relation in H×H defined by the boundary rela-
tion Γ as in (3.5). Since H×H is a Pontryagin space there is an alternative for A :
either ρ(A) �= /0 , in which case the nonreal spectrum of A consists of at most finitely
many eigenvalues, or ρ(A) = /0 ; cf. Lemma 2.2. The proof will be given in two steps
corresponding to these cases.

Step 1. Assume that ρ(A) �= /0 . Denote the compressed resolvent PH (A−λ )−1|H
by Φ(λ ) , λ ∈ ρ(A) . Then by (3.6) Φ(λ ) = −(M(λ ) +λ )−1 for all λ ∈ ρ(A) and
therefore

M(λ ) =
{{

Φ(λ )h,−(I +λΦ(λ ))h
}

: h ∈ H
}

. (4.22)

Setting Ψ(λ ) = −(I + λΦ(λ )) it is clear that Φ and Ψ are meromorphic on C\R

and it follows from Φ(λ ) = Φ(λ )∗ and Ψ(λ ) = Ψ(λ )∗ that the symmetry condition
(P1) in Definition 4.1 holds. Observe that Ψ(λ ) + λΦ(λ ) = −I , which shows that
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condition (P2) of Definition 4.1 is satisfied. Furthermore, a simple calculation shows
that the kernel KΦ,Ψ takes the form

KΦ,Ψ(λ ,μ) =
Φ(λ )−Φ(μ)

λ − μ
−Φ(λ )Φ(μ)

= PH (A−λ )−1(I−PH )(A− μ)−1|H .

Thus for n ∈ N , λi ∈ C+ , and xi ∈ H , i = 1, . . . ,n , it follows that(
KΦ,Ψ(λi,λ j)xi,x j

)n
i, j=1 =

[
PH

(
A−λ j

)−1
(

0
xi

)
,PH

(
A−λ i

)−1
(

0
x j

)]n

i, j=1
,

where [·, ·] denotes the inner product in H . Hence the number of negative squares of
KΦ,Ψ(·, ·) is less or equal to κ , the negative index κ−(H×H ) = κ−(H) .

If the boundary relation Γ is assumed to be minimal, then the condition

H = span
{

ranPH(A−λ )−1|H : λ ∈ ρ(A)∩ (C\R)
}

is satisfied; see Corollaries 3.13, 3.14. Therefore the numbers of negative squares of
KΦ,Ψ(·, ·) is equal to κ−(H) , and the condition (P3) of Definition 4.2 is satisfied. Thus
{Φ,Ψ} is a generalized Nevanlinna pair with κ negative squares. It follows from (4.22)
that M is a generalized Nevanlinna family with κ negative squares; cf. Proposition 4.3.

Step 2. In the general case the resolvent set ρ(A) may be empty. The minimality
of Γ implies that S is an operator; cf. Lemma 3.13. By Proposition 3.12 there ex-
ists a standard unitary operator W such that the main transform AW corresponding to
the boundary relation ΓW = W ◦Γ satisfies the condition ρ(AW ) �= /0 . Furthermore,
the boundary relation ΓW is automatically minimal, since domΓW = domΓ (see also
Corollary 3.14).

According to Step 1 the Weyl family MW corresponding to ΓW is a generalized
Nevanlinna family with κ negative squares with the property

0 ∈ ρ(MW (λ )+λ ), (4.23)

cf. (3.6). Let {Φ̃,Ψ̃} be a generalized Nevanlinna pair with κ negative squares, in-
duced by MW . Then (4.23) implies that

0 ∈ ρ(Ψ̃(λ )+λΦ̃(λ )). (4.24)

Define the pair {Φ,Ψ} by (
Φ(λ )
Ψ(λ )

)
= W−1

(
Φ̃(λ )
Ψ̃(λ )

)
.

According to Proposition 4.5 (applied with W replaced by W−1 ) it follows that {Φ,Ψ}
has the properties (P1) and (P3). Moreover, the standard unitary operator W can be
chosen of the form (3.9), where

X = (a+ ib)I, Y = 0,
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with a > 0 sufficiently large and b > 0 (see the proof of Proposition 3.12). Then
Remark 4.6 yields

Ψ̃(λ )+λΦ̃(λ ) = (a− ib)
(
Ψ(λ )+

λ
a2 +b2 Φ(λ )

)
. (4.25)

It follows from (4.24) and (4.25) that {Φ,Ψ} also has the property (P2). Hence {Φ,Ψ}
is a generalized Nevanlinna pair with κ negative squares. According to Proposition 4.3
the corresponding Weyl family M is a generalized Nevanlinna family with κ negative
squares. �

Observe that if S is a closed symmetric operator in a Pontryagin space H with
negative index κ and if Γ ⊂ H2 ×H 2 is a boundary relation for S+ which is not
necessarily minimal, then the corresponding Weyl family is a generalized Nevanlinna
family with κ ′ � κ negative squares. The next statement for the Hilbert space case is
known from [8].

COROLLARY 4.9. Let S be a closed symmetric relation in a Hilbert space H and
let Γ⊂ H2 ×H 2 be a boundary relation for S∗ . Then the corresponding Weyl family
is a Nevanlinna family.

4.4. Generalized Nevanlinna families as Weyl families

Let τ be a generalized Nevanlinna family with κ negative squares in a Hilbert
space H . Let τ have the representation

τ(λ ) =
{{Φ(λ )h,Ψ(λ )h : h ∈ H }}=

{{k,k′} : Ψ(λ )∗k =Φ(λ )∗k′
}

(4.26)

with a generalized Nevanlinna pair {Φ,Ψ} with κ negative squares on DΦ,Ψ , see
Proposition 4.3; here the second equality follows from the property (Q1) in Defini-
tion 4.2. The reproducing kernel space H(Φ,Ψ) induced by the pair {Φ,Ψ} is charac-
terized by the properties

(i) the mappings λ �→ KΦ,Ψ(λ ,μ)h ∈ H(Φ,Ψ) for all h ∈ H and all μ in the
domain of holomorphy DΦ,Ψ of Φ and Ψ form a dense set in H(Φ,Ψ) ;

(ii) for every f ∈ H(Φ,Ψ) the following identity holds:

〈 f (·),KΦ,Ψ(·,μ)h〉 = ( f (μ),h), h ∈ H . (4.27)

This function space equipped with (the extension) of the inner product

〈KΦ,Ψ(·,ν)k,KΦ,Ψ(·,μ)h〉 := (KΦ,Ψ(μ ,ν)k,h), ν,μ ∈ DΦ,Ψ, h,k ∈ H ,

is a Pontryagin space with κ negative squares.
Multiplication by the independent variable is a closed symmetric operator in the

reproducing kernel Pontryagin space H(Φ,Ψ) . In the following theorem it will be
shown that every generalized Nevanlinna family can be realized as the Weyl family of a
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boundary relation corresponding to the multiplication operator in H(Φ,Ψ) . The proof
given here is based on the approach which in the Hilbert space setting was used in [7,
Theorem 2.5 and Remark 2.6]; for an other approach which uses Cayley transforms,
see [3, Theorem 6.1].

THEOREM 4.10. Let τ be a generalized Nevanlinna family in the Hilbert space
H with κ negative squares and let τ be represented in the form (4.26) by a generalized
Nevanlinna pair {Φ,Ψ} . Then

S =
{{ f , f ′} ∈ H(Φ,Ψ)2 : f ′(λ ) = λ f (λ )

}
(4.28)

is a closed symmetric operator in the reproducing kernel Pontryagin space H(Φ,Ψ)
and

Γ =
{{(

f
f ′

)
,

(
h
h′

)}
:

f , f ′ ∈ H(Φ,Ψ), h,h′ ∈ H ,

f ′(λ )−λ f (λ ) = Ψ(λ )∗h−Φ(λ)∗h′

}
(4.29)

is a minimal boundary relation for S+ such that the corresponding Weyl family coin-
cides with the generalized Nevanlinna family τ .

Proof. The generalized Nevanlinna pair {Φ,Ψ} with κ negative squares is de-
fined in Definition 4.1. The maximality condition (P2) is weaker than the condition
that

0 ∈ ρ(Ψ(λ0)+λ0Φ(λ0)), 0 ∈ ρ(Ψ(λ 0)+λ 0Φ(λ 0)) (4.30)

hold for some λ0 ∈ C\R in the domain DΦ,Ψ of holomorphy of Φ and Ψ . The proof
of the theorem will be given in two steps, depending on whether (4.30) is satisfied or
not.

Step 1. Assume that {Φ,Ψ} is a generalized Nevanlinna pair with κ negative
squares for which (4.30) is satisfied. In this case one can proceed in a similar way as
in the Hilbert space setting; cf. the proof of [7, Theorem 2.5]. For the convenience of
the reader a short sketch will be given; for some further details see also [21], where the
result is formulated in terms of the main transform. Using (4.30) it will be shown that
the linear relation

A =
{{(

f
h

)
,

(
f ′
−h′

)}
:

f , f ′ ∈ H(Φ,Ψ), h,h′ ∈ H ,

f ′(λ )−λ f (λ ) = Ψ(λ )∗h−Φ(λ)∗h′

}
is selfadjoint in H(Φ,Ψ)⊕H . For this purpose define

B = span

{{(
KΦ,Ψ(·,μ)k
−Φ(μ)k

)
,

(
μKΦ,Ψ(·,μ)k

Ψ(μ)k

)}
: k ∈ H , μ ∈ DΦ,Ψ

}
. (4.31)

By means of (4.1) one can immediately check that B ⊂ A and, moreover, by using
(4.27) it is seen that B is symmetric in H(Φ,Ψ)⊕H . The elements in ran(B−λ0) ,
have the form (

(μ−λ0)KΦ,Ψ(·,μ)k
(Ψ(μ)+λ0Φ(μ))k

)
.
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Therefore, choosing μ = λ0 and taking into account that

ran(Ψ(λ0)+λ0Φ(λ0)) = H ,

it follows that {0}⊕H ⊂ ran(B−λ0) ; hence also the elements of the form(
KΦ,Ψ(·,μ)k

0

)
, k ∈ H , μ ∈ DΦ,Ψ, μ �= λ 0,

belong to ran(B−λ0) . Therefore, ran(B−λ0) is dense in H(Φ,Ψ)⊕H . Similarly,

one shows that ran(B− λ 0) is dense in H(Φ,Ψ)⊕H . Furthermore, by means of
(4.27) it is straightforward to check that the adjoint of B coincides with A . Hence, A is
a closed symmetric relation with ran(A−λ ) dense in H(Φ,Ψ)⊕H for λ = λ0 and

λ = λ 0 . Consequently, A is selfadjoint.
The Weyl family M associated with the boundary relation Γ is defined by

M(λ ) =
{
{h,h′} :

{(
f
λ f

)
,

(
h
h′

)}
∈ Γ
}

.

Therefore,
M(λ ) =

{{h,h′} : Ψ(λ )∗h = Φ(λ )∗h′
}
,

and it follows from (4.26) that M(λ ) = τ(λ ) . Moreover, it is clear from the for-
mula (4.31) and the inclusion B ⊂ A that the boundary relation Γ is minimal; see
(3.14).

Step 2. Now assume that {Φ,Ψ} is a generalized Nevanlinna pair with κ negative
squares for which (4.30) is not necessarily satisfied. By Definition 4.1

0 ∈ ρ(Ψ(λ0)+ ζΦ(λ0)), 0 ∈ ρ(Ψ(λ 0)+ ζΦ(λ 0))

for some λ0 = a+ ib ∈ DΦ,Ψ and some ζ = c+ id with b,d > 0. Then the standard
unitary operator W in Corollary 4.7 provides a generalized Nevanlinna pair of the form(

ΦW (λ )
ΨW (λ )

)
= W

(
Φ(λ )
Ψ(λ )

)
with κ negative squares on DΦ,Ψ which additionally satisfies the condition (4.30) for
λ0 ∈ DΦ,Ψ∩C+ (equivalently, for all λ in a small neighborhood O of λ0 ). Hence it
follows from the first part of the proof that

Γ(W ) :=
{{(

f
f ′

)
,

(
h
h′

)}
:

f , f ′ ∈ H(ΦW ,ΨW ), h,h′ ∈ H ,

f ′(λ )−λ f (λ ) = ΨW (λ )∗h−ΦW (λ )∗h′

}
(4.32)

is a minimal boundary relation for S+ such that the corresponding Weyl family coin-
cides with the generalized Nevanlinna family

τW (λ ) =
{{ΦW (λ )h,ΦW (λ )h} : h ∈ H

}
.
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Due to Lemma 3.9 Γ=W−1◦Γ(W) is a boundary relation for S+ and the corresponding
Weyl family is precisely τ . It remains to note that due to the above choice of W (cf.
(4.18), Corollary 4.7) the equality H(ΦW ,ΨW ) = H(Φ,Ψ) holds. Moreover, using the
formulas for ΦW and ΨW one can rewrite the formula for Γ(W ) in (4.32) equivalently

in the form (4.29) with
(h
h′
)

= W−1
( h̃
h̃′
)
. �

For the special case κ = 0, i.e. τ is a Nevanlinna family, Theorem 4.10 implies
the following result; cf. [2, 3] and [8, Theorem 3.9]

COROLLARY 4.11. Let τ be a Nevanlinna family represented in the form (4.26)
by a Nevanlinna pair {Φ,Ψ} . Then the multiplication operator S in (4.28) is a closed
symmetric operator in the reproducing kernel Hilbert space H(Φ,Ψ) and the relation
Γ in (4.29) is a minimal boundary relation for S∗ such that the corresponding Weyl
family coincides with the Nevanlinna family τ .

The next corollary is an improvement of the statement in Proposition 4.5: the
maximality condition (4.14) can actually be replaced by the maximality condition as in
Definition 4.1; cf. Remark 4.6.

COROLLARY 4.12. Let {Φ,Ψ} be a generalized Nevanlinna pair with κ nega-
tive squares on DΦ,Ψ and let W be a standard unitary operator in (H 2, [[·, ·]]H 2) .
Then the transformed pair {ΦW ,ΨW} in (4.11) is a generalized Nevanlinna pair with
κ negative squares on DΦ,Ψ .

Proof. If {Φ,Ψ} is a generalized Nevanlinna pair with κ negative squares on
DΦ,Ψ , then by Theorem 4.10 it corresponds to a Weyl family of a (minimal) boundary
relation Γ via (4.10); cf. (4.29). By Lemma 3.8 ΓW = W ◦ Γ is also a boundary
relation whose Weyl family MW is given by (3.8). According to Theorem 4.8 MW is
also a generalized Nevanlinna family with κ negative squares. This shows that the
corresponding transformed pair {ΦW ,ΨW} in Proposition 4.5 is actually a generalized
Nevanlinna pair with κ negative squares on DΦ,Ψ ; cf. Proposition 4.3. �

In the following corollary condition (4.30) in the proof of Theorem 4.10 is con-
nected to the resolvent set of the selfadjoint relation A in H(Φ,Ψ)×H associated
with the minimal boundary relation Γ⊂ H(Φ,Ψ)2 ×H 2 in (4.29).

COROLLARY 4.13. Let τ be a generalized Nevanlinna family with κ negative
squares in a Hilbert space H and let τ be represented in the form (4.26) by a gener-
alized Nevanlinna pair {Φ,Ψ} . Let A be the main transform of the boundary relation
Γ in (4.29),

A =
{{(

f
h

)
,

(
f ′
−h′

)}
:

f , f ′ ∈ H(Φ,Ψ), h,h′ ∈ H ,

f ′(λ )−λ f (λ ) = Ψ(λ )∗h−Φ(λ)∗h′

}
,

and let λ0 ∈ C+ . Then λ0 ∈ ρ(A) if and only if

(τ(λ0)+λ0)−1 ∈ B(H ) and (τ(λ 0)+λ0)−1 ∈ B(H ). (4.33)
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Proof. It is clear form (3.6) that λ0 ∈ ρ(A) implies the first condition in (4.33).

Since ρ(A) is symmetric with respect to the real line also λ 0 ∈ ρ(A) and hence the
second condition in (4.33) is satisfied.

Conversely, if (4.33) holds, then the Nevanlinna pair {Φ,Ψ} in (4.26) satisfies
the conditions (4.30) in the proof of Theorem 4.10. It follows as in the proof of Theo-
rem 4.10 that λ0 and λ 0 belong to ρ(A) . �

Observe, that by taking adjoints and using the property (Q1) in Definition 4.2 it
follows that the conditions in (4.33) are actually equivalent to each other:

(τ(λ0)+λ0)−1 ∈ B(H ) ⇔ (τ(λ 0)+λ0)−1 ∈ B(H ).
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