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DIRICHLET FORMS FOR SINGULAR DIFFUSION ON GRAPHS

CHRISTIAN SEIFERT AND JÜRGEN VOIGT

Abstract. We describe operators driving the time evolution of singular diffusion on finite graphs
whose vertices are allowed to carry masses. The operators are defined by the method of quadratic
forms on suitable Hilbert spaces. The model also covers quantum graphs and discrete Laplace
operators.

Introduction

The present paper is a continuation and extension of [2]. We present suitable
boundary or glueing conditions on graphs (quantum graphs) with singular second order
differential operators on the edges. In particular, we describe those boundary conditions
leading to positive and submarkovian C0 -semigroups.

The graph consists of finitely many bounded intervals, the edges, whose end points
are connected with the vertices of the graph. On each of the edges e a finite Borel
measure μe is given, determining where particles may be located. The particles move
according to “Brownian motion” but are slowed down or accelerated by the “speed
measure” μe . Further, each of the vertices v is provided with a weight μv � 0, and
particles may also be located at those vertices v with μv > 0.

The motivations for the treatment in [2] were twofold. The first issue was to treat
singular diffusion, including gap diffusion, on the edges of the graph, in the framework
of Dirichlet forms. The second aim was to describe glueing conditions on the vertices,
in the spirit of [4], and investigate conditions under which the associated self-adjoint
operator gives rise to a positive or submarkovian C0 -semigroup.

In the present paper, the extension with respect to [2] consists in two issues. On the
one hand, the boundary conditions we describe are more general than glueing condi-
tions. By glueing conditions or “local boundary conditions”, we understand conditions
where, for a given vertex, only the values of a function on adjacent edges and on the
vertex itself can interact. In our treatment in Sections 2 and 3, however, the graph
structure does not intervene at all, and we only specify later the case of local boundary
conditions, in Section 5. On the other hand, we include the general case of vertices with
masses, whereas in [2, Section 4] only a special case was treated. These results have
been obtained in [7].
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The ultimate objective of the treatment is to obtain a semi-bounded (below) self-
adjoint operator H on a Hilbert space HΓ over the graph Γ which can then be used in
the initial value problem for the diffusion equation or heat equation

u′ = −Hu, (0.1)

thus governing the time evolution of a process, i.e., giving rise to a C0 -semigroup on
HΓ . For this equation it is of interest to obtain H in such a way that the associated
C0 -semigroup is positive or submarkovian. The self-adjointness of H is also of interest
for the initial value problem for the Schrödinger equation

u′ = −iHu.

The part of the operator H acting on an edge e is of the form (H f )e = −∂μe∂ fe ,
where ∂μe is the derivative with respect to μe ; cf. Section 1. The domain of H is
restricted by conditions on the boundary values of the functions on the edges and the
values at the vertices.

The Hilbert space HΓ is given by

HΓ =
⊕
e∈E

L2([ae,be],μe)⊕K
V ,

where E is the set of edges, the interval [ae,be] corresponds to the edge e , and V is
the set of vertices; cf. Section 2 for more details. The operator H is obtained by the
method of forms. Avoiding all technicalities (which will be given in Section 2), the
form τ giving rise to H is of the form

τ( f ,g) = ∑
e∈E

∫ be

ae

f ′e(x)g′e(x)dx+(L tr f | trg),

with domain
D(τ) =

{
f ∈ . . . ; tr f ∈ X

}
.

Here, tr f denotes the boundary values of f on the edges and the values of f on the
vertices, X is a subspace of the set of possible boundary values and values on the
vertices, and L is a self-adjoint operator (matrix) on X . The boundary conditions for
functions in the domain of H are encoded in the space X as well as in the operator L ;
cf. Theorem 3.1. Our treatment includes the case that some of the edges or vertices
may have weight zero.

For the discussion of positivity and the submarkovian property in connection with
equation (0.1) we use the Beurling-Deny criteria for τ . These yield the result that the
subspace X should satisfy lattice properties and L should satisfy positivity properties;
cf. Theorem 4.1.

The investigations mentioned so far did not take into account the graph structure of
Γ . In the description of glueing conditions, allowing only interactions between vertices
and adjacent edges, the space X and the operator L decompose into parts corresponding
to single vertices; cf. Corollaries 5.1 and 5.2.
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In Section 1 we recall some notation and facts from the one-dimensional case on
an interval. In Section 2 we define the form in the Hilbert space HΓ on the graph which
then defines the operator driving the evolution. We show that the defined form τ con-
stitutes a form that is bounded below and closed. Let us point out that our definition of
the form looks somewhat different from the one given in [2, Section 3]. In fact, looking
at the definition of τ in [2, Section 3], one realises that there is some interpretation
needed in order to understand D(τ) as a subset of the Hilbert space HΓ . This inter-
preation is made explicit in the present paper by the use of the mapping ι introduced
in Sections 1 and 2. In Section 3 we describe the operator H associated with the form
τ (Theorem 3.1). In Section 4 we indicate conditions for the C0 -semigroup (e−tH)t�0

to be positive and submarkovian. In Section 5 we describe the case of local boundary
conditions.

1. One-dimensional prerequisites

In order to define the classical Dirichlet form we have to recall some notation and
facts for a single interval [a,b] ⊆ R , where a,b ∈ R , a < b . Let μ be a finite Borel
measure on [a,b] , a,b ∈ sptμ , μ({a,b}) = 0. Our function spaces will consist of
K -valued functions, where K ∈ {R,C} . We define

Cμ [a,b] :=
{

f ∈C[a,b]; f affine linear on the components of [a,b]\ sptμ
}
,

W 1
2,μ(a,b) := W 1

2 (a,b)∩Cμ [a,b].

For later use we recall the following inequalities. There exists a constant C > 0 such
that

‖ f‖∞ � C
(‖ f ′‖2

L2(a,b) +‖ f‖2
L2([a,b],μ)

)1/2
(1.1)

for all f ∈W 1
2 (a,b)∩C[a,b] , and for all r ∈ (0,b−a] one has

| f (a)| � r1/2‖ f ′‖L2(a,a+r) +‖ f‖L2([a,a+r],μ) μ([a,a+ r])−1/2, (1.2)

and correspondingly for b ; cf. [2, Lemma 1.4 and Remark 3.2(b)].
Let κ : W 1

2 (a,b)∩C[a,b] → L2([a,b],μ) be defined by κ f := f . Then it can be
shown that R(κ) = R(κ W 1

2,μ (a,b)) (cf. [2, Lemma 1.2]), and that κ W 1
2,μ (a,b) is injective

(cf. [2, lower part of p. 639]). We define ι :=
(
κ W 1

2,μ (a,b)
)−1 . Thus, ι is an operator

from L2([a,b],μ) to W 1
2,μ(a,b) ,

D(ι) =
{

f ∈ L2([a,b],μ); there exists g ∈W 1
2 (a,b)∩C[a,b] such that g = f μ-a.e.

}
,

and ι f is the unique element g ∈W 1
2,μ(a,b) such that g = f μ -a.e.

In order to describe the operator associated with the form defined in the following
section we need some additional notions and facts concerning derivatives with respect
to μ .
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If f ∈ L1,loc(a,b) , g∈ L1([a,b],μ) are such that f ′ = gμ (where f ′ = ∂ f denotes
the distributional derivative of f ), then we call g distributional derivative of f with
respect to μ , and we write

∂μ f := g.

Note that then necessarily f ′ = 0 on [a,b] \ sptμ , i.e., f is constant on each of the
components of [a,b]\ sptμ . It is easy to see that this definition is equivalent to

f (x) = c+
∫
(a,x)

g(y)dμ(y) a.e., (1.3)

with some c ∈ K . Thus, the function f has representatives of bounded variation and
these have one-sided limits (not depending on the representative) at all points of [a,b] .

2. The form on the graph

Let Γ = (V,E,γ) be a finite directed graph. This means that V and E are finite
sets, V ∩E = ∅ , V is the set of vertices (or nodes) of Γ , E the set of edges, and
γ = (γ0,γ1) : E →V ×V associates with each edge e a “starting vertex” γ0(e) , and an
“end vertex” γ1(e) .

We assume that each edge e ∈ E corresponds to an interval [ae,be] ⊆ R (where
ae,be ∈ R , ae < be ), and we assume that μe is a finite Borel measure on [ae,be] satis-
fying either μe = 0 or else ae,be ∈ sptμe , μe({ae,be}) = 0. We denote

E0 := {e ∈ E; μe = 0}, E1 := E \E0.

We further assume that, for each v ∈ V , we are given a weight μv � 0, and we
define

V0 :=
{
v ∈V ; μv = 0

}
, V1 := V \V0.

REMARK 2.1. The sets E1 and V1 encode the parts of the graph Γ , where a
particle driven by the diffusion can be localised. In the present section we describe
general glueing conditions which do not take into account the correspondence of the
edges to the vertices. In the case E1 = E , V1 = ∅ and μe the Lebesgue measure on
[ae,be] , the model will describe quantum graphs; cf. [3], [4], [5]. In the case E1 = ∅

we obtain (weighted) discrete diffusion on the vertices; cf. [1].

We are going to describe the self-adjoint operator driving the evolution in the
Hilbert space

HΓ := HE ⊕K
V1,

where on
HE :=

⊕
e∈E1

L2([ae,be],μe)

we use the scalar product

(( fe)e∈E1 |(ge)e∈E1)HΓ
:= ∑

e∈E1

( fe |ge)L2([ae,be],μe),
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and on KV1 we use the scalar product

(( fv)v∈V1 |(gv)v∈V1)HΓ
:= ∑

v∈V1

fvgv μv

(for f =
(
( fe)e∈E1 ,( fv)v∈V1

)
,g =

(
(ge)e∈E1 ,(gv)v∈V1

) ∈ HΓ ).
In the following, the mapping ι defined in Section 1 will be applied in the situation

of the edges e∈ E1 , and will then be denoted by ιe . We then define the operator ι from
HΓ to ∏e∈E1

W 1
2,μe

(ae,be)×KV1, by

D(ι) :=
{

f ∈ HΓ; fe ∈ D(ιe) (e ∈ E1)
}
,

(ι f )e := ιe fe (e ∈ E1),
(ι f )v := fv (v ∈V1).

We define the trace mapping (or boundary value mapping) tr : ∏e∈E1
C[ae,be]×

KV1 → KE ′
1∪V1 , where E ′

1 := E1×{0,1} , by

tr f (e, j) :=

{
fe(ae) if e ∈ E1, j = 0,

fe(be) if e ∈ E1, j = 1,

tr f (v) := fv (v ∈V1).

The space KE ′
1∪V1 will be provided with the scalar product

(ξ |η) := ∑
(e, j)∈E ′

1

ξ (e, j)η(e, j)+ ∑
v∈V1

ξ (v)η(v)μv.

For the definition of the form we assume that X is a subspace of KE ′
1∪V1 and that

L is a self-adjoint operator in X . Then we define the form τ by

D(τ) :=
{

f ∈ D(ι); tr(ι f ) ∈ X
}
,

τ( f ,g) := ∑
e∈E1

∫ be

ae

(ιe fe)′(x)(ιege)′(x)dx+
(
L tr(ι f )

∣∣ tr(ιg)
)
.

REMARK 2.2. The subspace X encodes boundary conditions for the elements of
D(τ) . One would expect boundary conditions to be in the form of some equation for
tr(ι f ) . Of course, if P denotes the orthogonal projection from KE ′

1∪V1 onto X⊥ , then
D(τ) =

{
f ∈ D(ι); P tr(ι f ) = 0

}
.

Further boundary conditions for the elements of the associated operator H are
encoded in the operator L ; we refer to the description of H in Theorem 3.1.

LEMMA 2.3. The form τ defined above is symmetric. D(τ) is dense if and only
if

prV1
(X) = K

V1 , (2.1)

where prV1
denotes the canonical projection prV1

: K
E ′

1∪V1 → K
V1 .
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Proof. The symmetry of τ is obvious.
Assume that D(τ) is dense. The image of the dense set D(τ) under the orthogonal

projection
pr2 : HΓ → K

V1

is dense in KV1 , and therefore is equal to KV1 . From the definition of D(τ) it follows
that pr2(D(τ)) is contained in prV1

(X) , and therefore prV1
(X) = KV1 .

Now assume that (2.1) holds. For v ∈ V1 let ξ v ∈ X be such that ξ v(v) = 1 and
ξ v(w) = 0 for all w ∈V1\{v} . Let gv ∈D(ι) be defined by tr(ιgv) = ξ v , and gv affine
linear on the edges. The affine linear interpolation of the prescribed boundary values
evidently yields an element of gv ∈ D(τ) .

Let f ∈ HΓ , and define
f̃ := f − ∑

v∈V1

fvg
v.

Then f̃v = 0 for all v ∈ V1 . Because C1
c (ae,be) is dense in L2([ae,be],μe) (e ∈ E1 ),

the function f̃ can be approximated by functions in

Dc :=
{

f ∈ D(τ); fe ∈C1
c (ae,be) (e ∈ E1), fv = 0 (v ∈V1)

}
.

Therefore f can be approximated by functions in

Dc + ∑
v∈V1

fvg
v ⊆ D(τ). �

REMARKS 2.4. (a) For the special case that X = KE ′
1∪V1 and L = 0 we denote

the corresponding form by τN (the index N indicating Neumann boundary conditions).
The form τN decomposes as the sum of the Neumann forms on each of the edges and
the null form on KV1 . Therefore the closedness of τN follows from the closedness in
the one-dimensional cases; cf. [2, Section 1 and Remark 3.2].

(b) Condition (2.1) did not occur in the previous treatment [2]. The reason is
that it is obviously satisfied if the vertices do not have masses, i.e. V1 = ∅ . Also, in
the case of vertices with masses, but with local boundary conditions of continuity (see
Example 5.3), condition (2.1) is automatically satisfied.

THEOREM 2.5. The form τ defined above is bounded below and closed.

Proof. For f ∈ D(τ) we obtain the estimate

τ( f ) = τN( f )+
(
L tr(ι f )

∣∣ tr(ι f )
)

� τN( f )−‖L‖| tr(ι f )|2

(with τN defined in Remark 2.4(a)). From inequality (1.2) we obtain that the mapping
f �→ tr(ι f ) E ′

1
is infinitesimally form small with respect to τN . The remaining part

of the trace, f �→ tr(ι f ) V1
, is bounded. These observations imply that τ is bounded

below and the that the embedding DτN � f �→ ι f ∈ (∏e∈E1
C[ae,be]×K

V1 ,‖ · ‖∞) is
continuous. (Here, DτN denotes D(τN) , provided with the form norm.)

In order to obtain that τ is closed it is sufficient to show that D(τ) is a closed
subset of DτN . This, however, is immediate from the continuity of the mapping DτN �
f �→ tr(ι f ) ∈ K

E ′
1∪V1 (and the fact that X is a closed subspace of K

E ′
1∪V1 ). �
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3. The operator H associated with the form τ

We assume that the notation and the hypotheses are as in the previous section, and
that (2.1) holds.

Besides the trace mapping defined in the previous section we also need the signed
trace (or signed boundary values)

str : ∏
e∈E1

BV (ae,be) → K
E ′

1 ⊆ K
E ′

1∪V1

(where BV (ae,be) denotes the set of functions of bounded variation, with equivalence
of functions coinciding a.e.), defined by

str f (e, j) :=

{
fe(ae+) if e ∈ E1, j = 0,

− fe(be−) if e ∈ E1, j = 1.

The inclusion KE ′
1 ⊆ KE ′

1∪V1 is to be understood in the canonical sense; we want to be
able to use str f also as an element of KE ′

1∪V1 .
For the description of the self-adjoint operator H associated with the form τ we

use a maximal operator Ĥ for the differential part of the form. With the notation de-
scribed in Section 1, we define

D(Ĥ) :=
{

f ∈ ∏
e∈E1

D(ιe); (ιe fe)′ ∈ L1(ae,be), ∂μe(ιe fe)′ exists,

∂μe(ιe fe)′ ∈ L2([ae,be],μe) (e ∈ E1)
}
,

Ĥ f := (−∂μe(ιe fe)′)e∈E1 ( f ∈ D(Ĥ)).

Thus, for f ∈ D(Ĥ) , the signed trace str((ιe fe)′)e∈E1 exists, and it describes the “in-
going derivatives” from the endpoints of the intervals. It is to be understood that for
(ιe fe)′ we choose representatives of bounded variation (which exist by the explanation
given at the end of Section 1), in order to be able to apply the signed trace mapping.

Let
X0 :=

{
x ∈ X ; prV1

x = 0
}
,

which could also be expressed as X0 := X ∩KE ′
1 (with our understanding of KE ′

1 as a
subspace of KE ′

1∪V1 ), and let Q0 be the orthogonal projection from KE ′
1∪V1 onto X0 .

Also, for v ∈V1 , let ξ v ∈ X be such that ξ v
V1

= 1{v} (see the proof of Lemma 2.3). In
the following, for f ∈ D(ι) we will use the shorthand notation (ι f )′ :=

(
(ιe fe)′

)
e∈E1

.

THEOREM 3.1. The operator H associated with the form τ is given by

D(H) =
{

f ∈ HΓ; ( fe)e∈E1 ∈ D(Ĥ), tr(ι f ) ∈ X ,

Q0 str(ι f )′ = Q0L tr(ι f )
}
,

((H f )e)e∈E1 = Ĥ( fe)e∈E1 ,

(H f )v =
1
μv

(
L tr(ι f )− str(ι f )′

∣∣ξ v) (v ∈V1).
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Proof. (i) A preliminary step: Let f ∈ D(Ĥ) , g ∈ D(τ) . For all e ∈ E1 one has∫ be

ae

(ιe fe)′(x)(ιege)′(x)dx =−
∫

(ae,be)
∂μe(ιe fe)′(x)ge(x)dμe(x)

+ (ιe fe)′(be−)ιege(be)− (ιe fe)′(ae+)ιege(ae);

cf. [2, equ. (1.2)]. Summing this equation over all the edges in E1 we obtain

∑
e∈E1

∫ be

ae

(ιe fe)′(x)(ιege)′(x)dx = (Ĥ f |g)HE
− (

str((ιe fe)′)e∈E1

∣∣ tr(ιg)
)

K
E′1 .

(ii) Let f ∈ D(H) , g ∈ D(τ) . From D(H) ⊆ D(τ) we conclude that tr(ι f ) ∈
X . As in [2, proof of Theorem 1.9] one obtains that ( fe)e∈E1 ∈ D(Ĥ) , Ĥ( fe)e∈E1 =(
(H f )e

)
e∈E1

. Using part (i) above we obtain

(H f |g)HΓ

= − ∑
e∈E1

∫
(ae,be)

∂μe(ιe fe)′(x)ge(x)dμe(x)+ ∑
v∈V1

(H f )vgv μv

= ∑
e∈E1

∫ be

ae

(ιe fe)′(x)(ιege)′(x)dx+
(
str(ι f )′

∣∣ tr(ιg)
)

K
E′1 + ∑

v∈V1

(H f )vgv μv.

Because of

(H f |g)HΓ
= ∑

e∈E1

∫ be

ae

(ιe fe)′(x)(ιege)′(x)dx+
(
L tr(ι f )

∣∣ tr(ιg)
)

we therefore obtain

∑
v∈V1

(H f )vgv μv =
(
L tr(ι f )− str(ι f )′

∣∣ tr(ιg)
)
. (3.1)

For ξ ∈ X0 choose g ∈ D(τ) satisfying tr(ιg) = ξ , and g affine linear on the
edges e ∈ E1 . Then equation (3.1) implies

0 =
(
L tr(ι f )− str(ι f )′

∣∣ξ)
.

This shows that Q0L tr(ι f ) = Q0 str(ι f )′ .
Let v∈V1 , and choose g∈D(τ) satisfying tr(ιg) = ξ v , and g affine linear on the

edges e ∈ E1 . Then equation (3.1) yields

(H f )v μv = ∑
w∈V1

(H f )wξ v(w)μw =
(
L tr(ι f )− str(ι f )′

∣∣ξ v).
This shows the second part of the formula for H f .

(iii) Now let H̃ denote the operator indicated on the right hand side of the asser-
tion, and let f ∈D(H̃) . Then f ∈D(τ) . Let g∈D(τ) . Then ξ := tr(ιg)−∑v∈V1

gvξ v ∈
X0 , and therefore(

L tr(ι f )− str(ι f )′
∣∣ξ)

=
(
Q0(L tr(ι f )− str(ι f )′)

∣∣ξ)
= 0.
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Using part (i) as well as the previous equality we obtain

(H̃ f |g)HΓ
=

(
Ĥ( fe)e∈E1

∣∣(ge)e∈E1

)
HE

+ ∑
v∈V1

1
μv

(L tr(ι f )− str(ι f )′ |ξ v)gv μv

= ∑
e∈E1

∫ be

ae

(ιe fe)′(x)(ιege)′(x)dx+
(
str(ι f )′

∣∣ tr(ιg)
)

+(L tr(ι f )− str(ι f )′ | tr(ιg))

= τ( f ,g).

The definition of H then yields that f ∈ D(H) and H f = H̃ f . �

REMARKS 3.2. (a) For f ∈ D(H) and v ∈ V1 , the expression given for (H f )v

given in Theorem 3.1 does not depend on the choice of ξ v .
(b) The case of a weight μv > 0 at a vertex leads to a case of Wentzell boundary

condition at v . The expression of (H f )v in Theorem 3.1 generalises the expression
obtained at a boundary point in the case of a single interval; cf. [8, Poposition 4.3].

4. Positivity and contractivity

In this section we indicate conditions for the C0 -semigroup (e−tH)t�0 to be posi-
tive or submarkovian. We assume that the hypotheses are as in Section 2 and that (2.1)
holds.

In the following we need the notion of a (Stonean) sublattice of Kn . We con-
sider Kn as the function space C({1, . . . ,n}) , and accordingly use the notation |x| =
(|x1|, . . . , |xn|) , for x ∈Kn , and x∧y = (x1∧y1, . . . ,xn∧yn) , for x,y ∈Rn . A sublattice
X of Kn is a subspace for which x ∈ X implies that |x| ∈ X . A sublattice X is called
Stonean if additionally x∧1 ∈ X for all real x ∈ X .

We refer to [2, Appendix] for the description of (Stonean) sublattices of Kn and
of generators for positive (submarkovian) C0 -semigroups on these sublattices.

THEOREM 4.1. (a) Assume that X is a sublattice of K
E ′

1∪V1 and that the semi-
group (e−tL)t�0 is positivity preserving. Then (e−tH)t�0 is positivity preserving.

(b) Assume that X is a Stonean sublattice of KE ′
1∪V1 and that the semigroup

(e−tL)t�0 is a submarkovian semigroup. Then (e−tH)t�0 is submarkovian.

This result was proved for the case of local boundary conditions (cf. Section 5)
and no vertex masses in [2, Theorem 3.5], and for the case of vertices with masses
and local boundary conditions of continuity (cf. Example 5.3) in [2, Theorem 4.2]. Its
proof is completely analogous to [2, proof of Theorem 3.5]; so we refrain from giving
a complete proof but rather only mention the main ingredients. The proof consists in an
application of the Beurling-Deny criteria (cf. [6, Corollary 2.18]; see also [2, Remarks
1.6]). So, in order to prove part (a), it is equivalent to prove that the normal contraction
f �→ | f | acts on D(τ) , and that τ(| f |) � τ( f ) for all f ∈ D(τ) . That the inequality
works on the differential part is a one-dimensional issue which is taken care of in [2,
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Theorem 1.7]. For the trace part, the main observation is the equation tr ι| f | = | tr ι f | .
This is less obvious than it might appear at the first glance since, in general, one does
not have ι| f | = |ι f | . However, this equality holds on sptμe , and therefore at the end
points of the intervals [ae,be] , for all e ∈ E1 . The reasoning for part (b) is analogous.

5. Local boundary conditions

So far, the structure of the graph did not enter the considerations; in fact the func-
tion γ linking the edges to the vertices was not used at all. In order to explain what we
understand by local boundary conditions, we need the following definitions.

For v ∈V , the sets

E1,v, j :=
{
e ∈ E1; γ j(e) = v

}
( j = 0,1)

describe the sets of all edges having mass and starting or ending at v , respectively, and
the set

E1,v :=
(
E1,v,0×{0})∪ (

E1,v,1 ×{1})
is the set of all edges having mass connected with v (and where loops starting and
ending at v yield two contributions). Note that then E ′

1 =
⋃

v∈V E1,v .
Recall that the boundary conditions are specified by the choice of a subspace X ⊆

KE ′
1∪V1 and a self-adjoint operator L in X . The boundary conditions will be called

local if for each v ∈V there exists a subspace

Xv ⊆ K
E1,v if v ∈V0, Xv ⊆ K

E1,v∪{v} if v ∈V1,

and a selfadjoint operator Lv in Xv , such that

X =
⊕
v∈V

Xv, L =
⊕
v∈V

Lv.

For v ∈V , we define the “local trace mapping”

trv : ∏
e∈E1

C[ae,be]×K
V1 →

{
K

E1,v if v ∈V0,

K
E1,v∪{v} if v ∈V1

by

trv f :=

{
tr f E1,v

if v ∈V0,

tr f E1,v∪{v} if v ∈V1.

Then for the form τ we obtain

D(τ) =
{

f ∈ D(ι); trv(ι f ) ∈ Xv (v ∈V )
}
,

τ( f ,g) = ∑
e∈E1

∫ be

ae

(ιe fe)′(x)(ιege)′(x)dx+ ∑
v∈V

(
Lv trv(ι f )

∣∣ trv(ιg)
)
.
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With

Xv,0 :=

{
Xv if v ∈V0,

{ξ ∈ Xv; ξ (v) = 0} if v ∈V1,

the condition (2.1) for D(τ) to be dense then decomposes into

Xv,0 �= Xv (v ∈V1),

or expressed differently, for all v ∈V1 there exists ξ v ∈ Xv such that ξ v(v) = 1.
It is an easy task to translate the description of the associated operator H , given in

Theorem 3.1, to the present case of local boundary conditions, as follows.

COROLLARY 5.1. The operator H associated with τ is given by

D(H) =
{

f ∈ HΓ; ( fe)e∈E1 ∈ D(Ĥ), trv(ι f ) ∈ Xv,

Qv,0 strv(ι f )′ = Qv,0Lv trv(ι f ) (v ∈V )
}
,

((H f )e)e∈E1 = Ĥ( fe)e∈E1 ,

(H f )v =
1
μv

(
Lv trv(ι f )− strv(ι f )′

∣∣ξ v) (v ∈V1).

Here, for v∈V the mapping strv : ∏e∈E1
BV(ae,be)→K

E1,v is defined by strv f :=
(str f ) E1,v

, and Qv,0 is the orthogonal projection onto Xv,0 in K
E1,v , for v ∈ V0 , or in

K
E1,v∪{v} , for v ∈ V1 . We will not put down further details here. Similarly, the condi-

tions for (e−tH)t�0 to be positive and submarkovian, Theorem 4.1, can be spelled out
in terms of the spaces Xv and the operators Lv . The statements are then analogous to
[2, Theorem 3.5], where the case that E = E1 and V = V0 is treated.

COROLLARY 5.2. (a) Assume that Xv is a sublattice of K
E1,v (v∈V0 ) or K

E1,v∪{v}
(v ∈ V1 ) and that (e−tLv)t�0 positivity preserving, for all v ∈ V . Then (e−tH)t�0 is a
positivitiy preserving C0 -semigroup on HΓ .

(b) Assume that Xv is a Stonean sublattice of KE1,v (v ∈ V0 ) or KE1,v∪{v} (v ∈
V1 ) and that (e−tLv)t�0 is a submarkovian C0 -semigroup on Xv , for all v ∈ V . Then
(e−tH)t�0 is a submarkovian C0 -semigroup on HΓ .

EXAMPLE 5.3. (local boundary conditions of continuity) This special case of lo-
cal boundary conditions was studied in [2, Section 4]. In our framework, this example
reads as follows. Let Xv = lin{1} , Lv ∈ R , lv := (Lv1 |1) for v ∈V . Then Xv,0 = {0}
for v ∈V1 (which makes it clear that condition (2.1) is satisfied) and hence

Qv,0 =

{
(· |1)1 if v ∈V0,

0 if v ∈V1.

Functions f ∈ D(τ) are continuous on Γ , i.e., for v ∈V1 we have fv = (trv f )(e, j) for
all (e, j) ∈ E1,v , and for v ∈ V0 there exists av( f ) ∈ K such that av( f ) = (trv f )(e, j)
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for all (e, j) ∈ E1,v (note that we cannot write fv in this case since f is not defined on
V0 ). The second part of the boundary conditions for f ∈ D(H) translates to

∑
e∈E1,v,0

f ′e(ae +)− ∑
e∈E1,v,1

f ′e(be−) = lvav( f ) (v ∈V0);

see also [2, Theorem 4.3]. In the setup considered in [4], these boundary conditions are
called δ -type conditions; cf. [4, Section 3.2.1].
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