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NEAREST SOUTHEAST SUBMATRIX THAT MAKES MULTIPLE
AN EIGENVALUE OF THE NORMAL NORTHWEST SUBMATRIX

JUAN-MIGUEL GRACIA AND FRANCISCO E. VELASCO

(Communicated by Z. Drmac)

Abstract. Let A,B,C,D be four complex matrices, where D € C"*"™ and A € C"*" is a normal
matrix. Let zo be an fixed eigenvalue of A. We find the distance (with respect to the 2-norm)
from D to the set of matrices X € C"*” such that z( is a multiple eigenvalue of the matrix

(¢x)

We also give an expression for one of the closest matrices.

1. Introduction

This paper is highly inspired by Malyshev [12] and Wei [14]. The Malyshev’s
paper is concerning to the distance from a matrix to the nearest matrix with a multiple
eigenvalue (Wilkinson’s problem). Wei solved the problem of finding the nearest matrix
D' to D which reduces the rank of (2 5) to a specific integer.

We denote by || || the matrix spectral norm or 2-norm. The spectrum of a square
complex matrix M is denoted by A(M). An important problem that has been studied
for some decades is the description of the possible eigenvalues and Jordan canonical
forms of square complex matrices partitioned in the shape

A B

CcD
when some of the blocks A,B,C,D are fixed and the remaining blocks vary. Relevant
results are due to Oliveira, S4, Silva, Thompson, Wimmer and Zaballa, among others;
see the survey paper by Cravo [4]. In [1], Beitia et al. studied the problem of analyzing

the possible Jordan forms of the matrix ( g, g,) when A and B are fixed and C’ and D/
are close to C and D, respectively.
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The problem of the description of the possible eigenvalues and Jordan forms of
the matrices of the form
AB
cX)’

where A € C"" B € C"" C € C™" are fixed and X varies in C"™*™ has been
particularly difficult. There are few results about it; see Cravo [4], problem (P;) in
pages 2520 and 2527. Moreover, we know no results on the Jordan forms of matri-
ces (’é g,) when D’ is close to D € C™*™. When all the eigenvalues of the matrix
G:= (‘é g) are simple, the problem of finding the distance, d(G), from D to the set of
matrices X € C™™ such that (2 £) has a multiple eigenvalue, is a kind of structured

Wilkinson’s problem. This problem has been addressed by means of the structured

€ -pseudospectrum, defined as
AB
U ex)

Xemxm
IX-Dl|<e

see Du and Wei [5], where a characterization of the structured € -pseudospectrum is
given. Other characterizations can be seen in Hinrichsen and Kelb [9] and [6].
For zy € C, if we could know the minimum, f(z), of the set

{lIX =D||: X € C™™ and zy is a multiple eigenvalue of (2 £)},

we would have
min f(z0) = d(G).
720€C

In [8] the authors found an expression for f(zp) in terms of a singular value maxi-
mization, when zo ¢ A(A), A being any matrix of C"*". In the current paper we
address this problem when A is a normal matrix and zo € A(A). The solution obtained
can be easily extended to the case when zg is a semisimple (or nondefective) eigenvalue
of A (normal or not). When z is not an eigenvalue of A the solution of the problem
involves matrices of polynomials in a real variable ¢ and the inverse of square nonsin-
gular matrices; the case when zy is an eigenvalue of A requires matrices of rational
functions in ¢ with a pole at + = 0 and the Moore-Penrose inverse instead.

If Ao € A(M), the algebraic multiplicity of Ay is denoted by m(Ag,M). For a
matrix N € CP*9 we denote by 1(N) > 062(N) > --- its singular values, and by N its
Moore-Penrose inverse. For a matrix X, we denote by Im(X) and Ker(X) its image
and kernel subspaces. By O we denote the zero matrix of adequate size.

Moreover, as in [8], we can assume without loss of generality that zo = 0. Thus
the problem we are going to solve, can be set as follows: Find the minimum

min |IX —D]J|. (1)

where A € C"™" is a singular normal matrix B € C"™" C € C™" and D € C™*"™,
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If for all X € C"™*™ it happens that m (0, (4 £)) < 1, we agree to say that the minimum
distance (1) is infinite. Note that this case is possible considering A = O € C"*"* and
B = C =1, for example, since for each X € C"*" the matrix

01,
I, X

is nonsingular. In Section 4, the cases in which this distance is infinite will be deter-
mined.

To simplify we denote by L, ,, the Cartesian product C"*"* x C"™" x C"™*". For
a triple of matrices ¢ := (4,B,C) € Ly, and for X € C"™*™ we denote

M(a,X) = (‘é g) .

A lower bound of the minimum (1) was given in [8]. We will remember the nota-
tions that appear in [8, (11) and (12)] to recall this bound, and for their use in this paper:
Given a triple o := (A,B,C) € Ly, and a matrix D € C"™*", we define for ¢ € R,

A tl,
A tl,|B O 0O A A tl,
pa(t).—rank<0A OB>+rank o —rank<0A>,
pa(t) :=2n+2m—2 — pq(t), (2)

(m A” A” ) 3
1= (o >@f@”f(”ﬂ @

S%(,D) := (Im— Na(t)Ne (1))

(EIRINE)
X (b — M (t) My (1)) . (5)

We agree to write sup,~ f(t) = o if the function f: [0,e0) — R is not bounded above.
Then the announced lower bound of (1) is given below.

PROPOSITION 1. ([8], Proposition 23)

XGCVUXm
m(0,M(e.,X))>2

suga,,a(,)+1(sg‘(t,D)) <  min  |X-D|. (6)

=
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where
o if j <1,
o;(S2 (D) = {0 i > 2m

The aim of this paper is to prove that when A is normal and singular, the inequality (6)
becomes an equality. Specifically, we prove the following result.

THEOREM 2. Let ot :=(A,B,C) € Ly, be atriple of matrices, where A is normal
and singular. Let D € C"™ ™ With the preceding notations, we have
PGy, (SE(,D)) = min X —D. )
>0 Xe(cmxm
m(0,M(ct,X))>2
REMARK 1. Let us note that in this theorem we put # > 0O instead of > 0. In
fact, once (7) is proved then by (6) we have

Opa(0)+1 (85 (0,D)) < SUP Gy 1)1 (S5 (1,D))-
>

Hence,
Supo—pa(t)Jrl (Sg(t7D)) = sup O-pa(t)+1 (Sg(taD)) .

>0 >0

This work is organized as follows. In Section 2, we give a simplified expression for
S%(t,D), and we reformulate Theorem 2 in Theorem 5. In Section 3, we introduce the
auxiliary results we are going to use in this work. We analyze the asymptotic behavior
of the singular values of S$(¢,D), both for t — 0" and # — oo, and we establish the
existence of the limits
lim 0, (1)+1 (8%(t,D)) and lim 0y, )1 (83(t,D)),
in Section 4. We prove Theorem 5 in the following sections until the end of Section 8.
Namely, in Section 5, we calculate the minimum (1) when the supremum

SUp Op,, (1)+1 (Sg(taD))
>0

is attained at a point 7o such that 0 < #y < o= and we prove equality (7). In Section 6,
we study the case when

SUp 0y, )41 (53 (1,0) = lim 0, 41 (53 (1.D)).

and, in Sections 7 and 8, we consider the case when
SUP O, (1141 (85 (2, D)) = lim 0,41 (85 (2,D)),
>0 t—0t

finishing the proof of Theorem 5. In Section 9, we give a more general result that falls
within the scope of this article. This is the case in which zg is a semisimple eigenvalue
of a not necessarily normal matrix A.
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2. Reformulation of the main result

We denote by M* the conjugate transpose of each complex matrix M. In this
section we are going to reformulate Theorem 2, simplifying the expression of S5 (¢,D)
for + > 0 when the triple ¢ undergoes a transformation of unitary similarity given by
the unitary matrix U that diagonalizes A. For this purpose we need some properties of
the Moore-Penrose inverse, which can be seen in [2, Proposition 6.1.6, p. 225].

LEMMA 3. Given a matrix A € CP*1, then we have
I, —AA" and I — ATA are orthogonal projectors.
Q) If Sy € CP*P and S, € C9*9 are unitary, then (S1AS,)" = S;ATS’f.

LEMMA 4. Let U € C"" be a unitary matrix and D € C"*™, Then for the triple
of matrices B := (U*AU,U*B,CU) € L, », and each t >0 we have S§(t,D) = Sg (¢,D).

Proof. To simplify this demonstration, we introduce the following notations:

L) = (g tg) V= (g 8) F(t) = (‘3 ti”) R =VF()V,

_(BO s _(CoO .
6= (29). a-ve u-(59). m-m

First, as the matrix V is unitary, by Lemma 3, we deduce that (V*F(1)V)" =
V*F(t)'V . Hence, from (3) and (4), we obtain

Mg (t) = (by — Fi(t)F1(t)")G1 = (L = V*F(t)VV*F (1) V)V*G = V*"Mq (1),
Ng(t) = Hy (L — F(1)"Fi (1)) = HV (L, — V*F(1)TVV*F (t)V) = Nu (1)V.

Similarly, as the matrix V is unitary, we see that (V*M¢(1))" =My (1)TV and (Ng(1)V)'
= V*Ny(t)". Therefore,

L — Ng(t)Ng (1)" = Ly — No(1)Ne (1)
I2m _Mﬁ (I)TM[] (t) = I2m _ZWOC(I‘)Jr

Finally, from H;F,(t)G, = HF (t)G, by (5), we infer that

S2 z, D (I2m (t)T) (L(t) _HF(t)G) (I2m _Ma(t)TMOt(t))
=S¥ (t7D). D

REMARK 2. Letus note thatif o = (A,B,C) and 8 = (U*AU,U*B,CU) are two
triples of matrices of L, ,, with U unitary, then O is a multiple eigenvalue of M (o, X)
if and only if it is a multiple eigenvalue of M(f,X). Hence, by the previous lemma, in
the proof of Theorem 2 there is no loss of generality if we consider the triple of matrices

B.
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Now, we are going to apply Lemma 4 to compute S5 (¢,D). As the matrix A is
normal, let U € C"*" be a unitary matrix such that

... (00
UAU—<02>,

where X € C"2*"2 1 < ny < n, is a invertible diagonal matrix. So, it is understood that
A # O; the case when A = O will be considered later in Remark 4. Let us consider the
partition n = ny + ny in block matrices:

0 0|B
* *
(UCgU UDB> | ozxlg|. B ecrmc ecmm, )
C, G|D

By Lemma 4, S§(t,D) = SQ(LD), where f := (U*AU,U*B,CU). We will compute
Sg(t,D) fort > 0.
First, let us call

00t O
_loz o0 u,|.
Fil=1000 0 |’
00 0 %
therefore,
O 00 O
o X1o—x2
T
FO'= -1, 00 o |
O o0 o0 x!
and
I,, 00O 00 0O
01, 00 ol, O O
F(I)F(I)T: 0 82 00 ) F(I>TF(t): o0 82 In 10)
1
0 0 O0l, 00 01,
Hence, from (3) and (4),
0 0
|oo (o000
Mg = o, | Nﬁ(z)‘(o 000)
0 0

Consequently,

In—CiCH O ! 0
Izm—NB(I)NB(I)T: (m 01 11 ); I2m_MB(t)TMB(t): (gl _BTBl> :
m m 1

Last,
By O
(Cl G, 0 O)F(Z)T B, O] (szle —tC22232>
0 0 C G O By t~'ciBy GX7'By )
O B
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From the three last equalities and (5) we deduce that for # > 0,
s$0.0) = ((1,,, —CiC))(D = GE7'Ba) 1l — CiC)) (I + C2E72Bs) (I — BIBQ)
2 —171'C1B, (D — G2 'By) (I, — BIB))

Thus, by Lemma 4, it follows that for # > 0

PcLy tPCLzPB) 9)

o —
$2(6,D) = (—t‘1C131 LiPs

where Pc:=1,,—CiC], Pg:=1,,— BBy, Li :=D—Cy2"'B; and Ly := I, + ;X 2B,
However, from this point on, in order to simplify the demonstration, we only consider
the expression of SS‘ (¢,D) given in (9). Moreover, by Remark 2, we can assume the
triple o = (A,B,C) is in the form (U*AU,U*B,CU) that was given in (8). From the
definition of pg(#) given in (2) we infer that

Pa(t) =2m+n; — 2 —rank(B) — rank(C)

for 0 <1 <eo.
From now on, we will abbreviate S§ (¢,D) by S(r). With these considerations,
when A #£ O, Theorem 2 can be reformulated in the following way.

THEOREM 5. Let oo = (A,B,C) € Ly, be a triple of matrices

(00 — (B —
A= (0 2) , B:= <32> , C:= (C17C2)7

with By € C"*" Cp € C"™" and X € C"*"2 an invertible diagonal matrix, ny > 1.
Let us define

h:=2m+n; — 1 —rank(B;) — rank(C}). (10)

Given D € C"™, For t > 0 let us also define

L PCL1 lPCszB
SH(t) == <—t1CIBl L.Ps ) 1y
where
Pc:=1l,—CiC], Pg:=1,— BB, (12)
and
L :=D—CX"'By), L,:=1I,+CX’B,. (13)
Then
supoy, (S2(1)) = min X —D|.
[>0 Xecmxm

m(0,M(0,X))>2
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REMARK 3. Suppose there exists a #; > 0 such that o,(S>(#1)) =0, equivalently
rank (S2(1)) <h— 1. By Section 4 of [8] we see that

But, as
h—1=pa(tr) =2m+2n—2— pa(n1),
we infer that
A B\nl, O

CD| O ul,

rank <2m+2n-2.

As it can be seen in [12, pages 444—-445], this inequality implies that O is a multiple
eigenvalue of M(a, D). Thus, by Proposition 1, Theorem 5 is already proved in this
case. Therefore, from now on we will assume that o, (S>(t)) > 0 for t > 0.

REMARK 4. When the normal matrix A is the n X n zero matrix, the statement of
Theorem 5 is reduced to

PcD tPCpB - . _
fggo-k (—l_ICB DPB ) - Xglcl"g(”’ HX D||7 (14)
m(0,M(e,X))>2

where k :=2m+n— 1 —rank(B) —rank(C). The proof of (14) might be done following
similar reasoning to the A # O case, replacing By by B, C; by C, Ly by D, L, by I,
and removing 2, B, and C;.

3. Auxiliary results

In this section, we are going to introduce some results that will be used in this
work. In the first one, we give some properties of the Moore-Penrose inverse, which
can be seen in [2, Proposition 6.1.6, page 225; Fact 6.4.8, page 235] and [3].

LEMMA 6. Let A € CP*9 be a matrix. Then
(1) Ker(I, — AAT) = Im(A), Im(I, — AAT) = Ker(A*) = Ker(AT).
(2) Ker(l, —ATA) = Im(A*) = Im(A"), Im(I, — ATA) = Ker(A).
(3) x € Im(A) if and only if x = AATx; x € Im(A*) if and only if x* = x*ATA.
(4) If rank(A) = p, then AAT =1,,; if rank(A) = q, then ATA=1,.
(5) Let F € C?*". If rank(A) = rank(F) = q, then (AF)" = FTA".

With this lemma and Lemma 3, we get the following properties for the matrices
Pc = (I, — C,C}) and Py = (I,, — B|B)), defined in (12).
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LEMMA 7. (1) Pc and Pg are orthogonal projectors.
(2) Ker(Pc) =Im(Cy), Im(Pc)=Ker(C})= Ker(CI).
(3) Ker(Pg) = Im(B}) = Im(B]), Im(Ps) = Ker(B)).
(4) If rank(Cy ) = rank(By) = n,, then (C\B,)" = B[C].

We will need in Sections 6 and 8 the following lemma.

LEMMA 8. ([8], Lemma 33) Ler {1}y, be a sequence of real numbers which
tends to oo when k — oo. Let G € CP*P be a matrix and let xy,yy € CP*' k=1,2,...
be vector sequences such that

(i) limy .o G)’k = Oa
(ii) supy_yo. ||tx(xk)*G|| < T < oo, where T is a positive constant.

Then
k]im tk(xk)*Gyk =0.

With respect to the asymptotic behavior of the eigenvalues of matrix functions, we
have the following result.

LEMMA 9. ([11], Lemma 5) Let F(t) = G(t) +t 'H € CP*P where G(t) is a
Hermitian matrix function analytic on an open interval J C R around 0, and H is
a constant Hermitian matrix such that rank(H) = r. Assume that H has a spectral
decomposition

A, O .
=)y 0) ey

with unitary V = (V1,V») and A, € R™" is a diagonal matrix with nonzero diagonal
entries. Then as t approaches 0, r eigenvalues of F(t) tend in absolute value to o,
and the rest to the eigenvalues of V5 G(0)Va.

Hence we will deduce the following result for singular values, which will be used
in Section 4.

LEMMA 10. Let K(t) = L(t) +t~'M € CP*P, where L(t) is an analytic matrix
Sfunction on an open interval J C R around 0 and rank(M) = s. Consider the singular
value decomposition of M

M= (P17P2) <% g) (Q17Q2)*7

with unitary (Py,P,) and (Q1,Q>) and X, € R*S. Then as t approaches 0, s singular
values of K(t) tend to o=, and the rest to the singular values of the matrix P5L(0)Q;.
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Proof. Observe that in the matrix function, valued in C27*27

N(t) = (K*O(t) Kg)> = (L*O(t) Lg)> 417! (13* ]g) =R(1)+17'S,

the matrices R(¢) and S are Hermitian, R(¢) is analytic around O and rank(S) = 2s.
Let us note that, by the Jordan-Wielandt lemma [13, Theorem 4.2], the eigenvalues of
N(t) are

+01(K(1)),...,£0,(K(1)).

Consider the unitary matrix (V1,V5) € C?*?P | with

1 P P1> ) 1<P2 PZ) 2px2(p—s)
Vi=— eCP* s, Vp=— € CPraP=s),
! \/§<Q1—Q1 T 2 \0: -0

Then

S=V1,V) (Vi,Va)",

QoM

0]
-3,
)

S Q

is a spectral decomposition of S§. Hence, by Lemma 9 as ¢+ — 0 we deduce that 2s
eigenvalues of N(z) tend in absolute value to eo; and the rest to the eigenvalues of the
matrix

VRO, = & (2L (O +PL0)Q; - 0L (0)P = PL(0)Q:
2T QL (0P + BL(0)Q2 —Q3L7 (0)P — PL(0)Q2 )

=)

we deduce that the eigenvalues of V;R(0)V, are the eigenvalues of

o 0 PL0)Q
X V2R(O)V2X:<(P§L(O)Q2)* 2O 2),

that is, +61(P;L(0)Qs),.... %0, 4(P;L(0)Q,). O

Taking the unitary matrix

To conclude this section, we give some results about the singular values of matrix
functions of a real variable. The first one can be seen in [10, Theorem 4.3.17, page 442
and Corollary 4.3.20, page 443].

LEMMA 11. Let F(t) € C?9 be an analytic matrix function on an open set Q C
R. Then, there exist unitary matrix functions U (t),V (t) and a diagonal matrix function
2(t) = diag(61(1), 62(t),...,6,(t)) € R1*4, all of which are analytic on Q, such that
forteQ,

Moreover
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Another result, which will be used in Section 5, is the following one [10, Proposi-
tion 4.3.21, page 443].

LEMMA 12. Let Q be an open subset of R and F : Q — C™*" be an analytic
matrix function on Q. If the function o; (F (t)) has a positive local maximum (or mini-
mum) at ty € Q, then there exist a pair of singular vectors u € C™1 v € C"™! of F(tg)
corresponding to o;(F (o)) such that

Re (u*F'(tg)v) =0.

4. Asymptotic behavior of the singular values

In this section, we analyze the asymptotic behavior of the singular values of the
matrix function S,(¢) defined in (11), both when t — 0" and ¢ — oo. We start with the
t— 07" case.

LEMMA 13. Let S)(t) be the matrix function in (11), and assume that
s =rank(CBy). Then as t — 0T, the first s singular values of S (t) tend to = and the
remaining 2m — s ones satisfy

. ~_ (PcLi(In— (C1By)"C1By) 0
tl—IgEF Os+k (Sz(t)) = Ok ( 0] (Im —C1B; (ClBl)T)LlpB '

fork=1,....2m—s. If rank(B,) =rank(Cy) =ny, thenas t — OV, the first n| singular
values of Sy(t) tend to oo, and the remaining 2m — ny ones satisfy

. _ _(PcLiPs O _
t1—1>%1+ Ony+k (S2(2)) = 0'k< 0 PCL1PB) fork=1,...,2m—ny.

REMARK 5. Note that the block PcL;Pp in the last matrix is repeated.

Proof. First, by (11), we have

N PcLy tPclyPp ~1 0] (0] o -1
Sz(t)—< O LiPs >+t (—ClBIO =L(t)+1t M,

with L(z) analytic in a neighborhood of 0 and rank(M) =rank(C;B;) =s. Let (U;,Ua),
(V1,V2) be unitary matrices of C"*", with U,,V, € Cm*(m=s) such that

) -CEmv = (5 ) (s)

with X, € R¥** gives us the singular value decomposition of —C;Bj. Therefore, con-
sidering the unitary matrices

_ (0 01 _(viv.0
P'_<U1U20>’ Q'_<0 01m>’
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« (%0
puo-(39).
(O Iy N AZNY
P2~_ <U2 O)v Q2'_ <Olm>7

by Lemma 10 we see that when ¢ — 07, the first s singular values of S»(¢) tend to oo,
and the rest to the singular values of

we deduce that

Calling

; 0  U;L(P
P;L(0)0> = (PcLle 25 B).

Hence, for k=1,2,...,2m—s,

. o PcL\ V> (0]
tim o (520 = (5% ). 16)

By (15), —C1B1Vy = U X and —(C1B;)*U; = V1%, from Lemma 6(1)(2) we get
first

Uy = —CB1V12;! = Im(U;) C Im(C1B;) = Ker(I,, — C1B{ (CBy)"),
Vi = —(C1B))*U 2, = Im(V;) € Im((C1By)*) = Ker(I,, — (C1B1)'C1By).

But, given that I, — C;B;(CiB;)" and I,, — (C;B;)"C|B; are orthogonal projectors in
virtue of Lemma 3(1), we infer that

U (I, —CB\(C1B))" ) =0, (I,—(CB;)'C{B;)V; = 0. (17)

Similarly, from (15) and Lemma 6(1)(2), we see that

(C1B1)*Uy = 0 = Im(U,) C Ker ((CBy)*) = Im(1,, — C1B,(C1By)"),
C1B1V> = 0 = Im(V3) C Ker(C{B;) = Im(I,, — (C1B,)TC,By).

Thus
U; (ILy—CBy(C1B))") =U;, (In—(C1B1)'C1B))Va = V5.

Consequently, with (17) and these two last equations, we deduce that
(0, PcLiVa) = PeLi (I — (C1B1)'C1B1) (V1,V2),

(0] Uy

Substituting these equations in (16) we prove the lemma in the first case.

To prove the lemma in the rank(B;) = rank(C;) = n; case, as s = rank(C|B)) =
ny, it is sufficient to see that I,, — CyB{(C1B,)" = P¢, I,, — (C1B;)'C1B| = Pg. In fact,
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given that rank(B;) = rank(C) = n;, then CICl = BlBJlr =1,, by Lemma 6(4). And
(C1B1)" = BiC] by Lemma 7(4). Hence

Iy —C1B1(C1By)" = 1,,— C1B,B{C] = I, — C\C] = Fe,
In—(C\B))'C1By =1, — BiC[C\Bi =1, — BB =Ps. O
For the t — oo case, we have the following result.

LEMMA 14. Let Sy(t) be the matrix function in (11). Let us call L := PcL,Pg,
and assume that { = rank(PcLyPg). Then as t — oo, the first { singular values of S»(t)
tend to o, and the remaining 2m — { ones satisfy

) Pe(l, — LLT)L, 0]
timores (520 = o (U HR O ).

fork=1,....2m—¢.

REMARK 6. Let us note that the matrix in the right hand side is 2m x 2m.

Proof. Let (Uy,Us),(V1, V) be unitary matrices of C"*™ , with U, V, € Cmx(m=t)
that perform the singular value decomposition of L

(U1, U2) L(Vi, Vi) = (ZO‘ 3) 7 as)

with £, € R™‘. Applying a similar reasoning to the one of the previous lemma for the

matrix function .
& - PcLy t7'L
Sz(t) o (—l‘ClBl L1PB> ’

we find that as 7 — oo, the first ¢ singular values of S,(¢) tend to o, and the remaining
2m — £ ones satisfy

. . UsPcLy O .
}LIIoloGg+k (82(¢)) = o ( 0 LIPsz) fork=1,....2m—{. (19)

Let us note that as Pc and Py are orthogonal projectors, then PcL =L and PgL* =
L*. Hence, from (18) and by Lemma 6(1)(2), we obtain first

PeU %y = PeLV, = LV, = Im(PeUy) € ImL = Ker(I,, — LLY),
PsVi3y = PgL*U; = L*U; = Im(PgV}) C ImL* = Ker(I,, — L'L).

Therefore by Lemma 3(1) I,, — LL" and I,, — LTL are orthogonal projectors, then
UiPe(ly—LL"Y =0, (I, —L'L)PgVy = O. (20)
Similarly, from (18) and Lemma 6(1)(2), we have

0= U;L: U2*PcL and O :LV2 :LPBV2.
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Thus
UsPe(Ly—LLYY = UsPe,  (Ln—L'L)PgVy = PV,

Substituting these two last equalities and (20) in (19) we have proved the lemma. [
REMARK 7. Taking into account the expression for / given in (10), Lemmas 13
and 14, and Proposition 1, we conclude that if
2m+n; — 1 —rank(B) ) — rank(C; ) < max{rank(C,Bj),rank(PcLyPp)}, (21)

then sup,. 0y (S2(f)) = oo; that is, there is no matrix X € C™™ such that 0 is a
multiple eigenvalue of M(o,X). Consequently, Theorem 5 is proved in this case. It
can be demonstrated that inequality (21) is equivalent to

rank(B;) =rank(Cy) =mand (m=n; orm=n; —1).
Therefore, from here on we will assume that

2m+n; — 1 —rank(B;) —rank(C;) > max{rank(C; B, ),rank(PcL,Pg)}.

REMARK 8. Given Theorem 5, we can assert that

min |X —D|| =<
X€(Cm><n1
m(0,M(0.X))>2

if and only if inequality (21) is satisfied.

In the next section the proof of Theorem 5 starts and continues until the end of
Section 8.

5. When the supremum is a maximum
Given fy # 0, in agreement with the notations (10) and (11), let us call
09 := 03 ($2(10)) ,

where we assume oy > 0. Let

ui= (Z;) yi= (X;) (22)

be a pair of singular vectors of S;(#y) associated with oy, where uy,u,vq,vs € cmxl,
Using [12, Section 4] and [7, Section 4] we will establish some properties of u,v.
First, as S»(t9)v = opu and Sy (fo)*u = opv, from (11) and (22) we get

PcLyvy +toPclaPgvy, = opuy, and toPglsPouy + PpLiuy = Ggva.
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Hence, as oy > 0, from the two previous equalities we deduce that u; € Im(P¢) and
vo € Im(Pg). Thus, by Lemma 7(2)(3) we have Cju; = 0,Pcu; = u; and Byvy =
0, Pgv, = v,. Theses equalities jointly with S»(79)v = cpu and Sy (fo)*u = opyv, imply
the following equations.

PcLvy +tyPcLyvy = opuy, (23)
—t5 'C1Bv1 + Lyva = Ooua, (24)
Liuy — 15 'B{Ciuz = opv1, (25)
tOPBLzul +PBL’fu2 = OyVvy, (26)
Ciuy = Clu; =0, (27)

Biv, =0, (28)

Peuy = uy, (29)

Pgvy = vs. (30)

Substituting (29) in (23) we see that Pc(Livy + toLavy — opu;) = 0. Therefore
from Lemma 7(2) we have Ljv| +#yL,v, — opu; € Im(Cy). Consequently by Lemma 6(3),

C1CI(L1V1 +tolpvy — 0'()u1) = Livy +1t9Lrvo — Opuy. 31)

Multiplying to the right equations (23)-(26) by uj,u3,v],v; respectively, conju-
gating (29) and (30), i.e., ujPc = u}, v3Pg = v5, we conclude that

uTlel +t0u’1‘L2v2 = O'()uTub
—to_lujclBlvl +uzLivy = oousuz,
viLiu —to_lv’l‘B’{Cfuz = OpV}V1,
tovsLiuy +viLius = ooviva.

Subtracting the conjugate of the third equation from the first one and the conjugate
of the fourth equation from the second one, we conclude that

oo (ujuy —vivy) = touiLyvy +t61u§C131v1 = —op(usup — viva). (32)

Multiplying (24) and (25) by u] and v; from the right-hand side, respectively and
using #;C; =0 (27) and Byv, =0 (28), we obtain

* * * 7ok *
uiLivy = ooujua, vsLjuyp = Opvsyvy.

Hence, subtracting the conjugate of the second equation from the first one, we see that
oo (ujus —viva) =0. As op # 0, we infer that

ujuy = vivy. (33)

REMARK 9. Note that equations (23)—(33) remain valid for each pair of singular
vectors associated with a nonzero singular value of S,(z) for ¢ # 0. This remark will
be important in Sections 6 and 8.
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Now assume that oy (S2(¢)) attains a relative extremum oy := oy, (S2(f0)) > 0
at #p # 0. Then, by Lemma 12, there exists a pair of singular vectors u,v of S, (tg)
corresponding to oy, (S2(fp)) such that

0] Pcl,Pg
* ol _ * _
Re (u*Sy(19)v) =Re (u (to_zclBl P ) v) =0.
Partitioning the vectors u,v according (22), we have
Re(to_zuEClBlvl + uTPcLzPsz) =0.

Since fy # 0 and ujPcLyPgv, = ujLyvo (by (29) and (30)), we deduce that
Re(tO’IMEClBlvl +tou{Lrv2) = 0. Hence, from (32), we see that

ujuy =vivy, usup =vivy. (34)
Now let us define the matrices
Vi=[v,m] €C™2 U = [ug,uy] € C™2,
By (33) and (34), we have V*V = U*U . Hence, the matrix
Dy:=D—cUVT,
satisfies ||D — Dy|| = op and
DoV =DV — 6oU, U*Dy=U*D— cyV*. (35)

(see [8], page 1208, (35)) Consequently, to prove Theorem 5 in this case, it suffices to
prove that 0 is a multiple eigenvalue of the matrix M(c,Dy).

Since rank(V*V) > 1, we have two possibilities: rankV =1 or rankV =2. In the
rankV = 1 case, we will analyze the subcases when v, % 0 and when v, = 0.

5.1. rankV =2

Note that rankV = 2 implies that v; and v, are linearly independent. Hence, to
prove that 0 is a multiple eigenvalue of M(ct,Dy) it suffices to see that

0 O By 2 2 22 2 0 —i
0 X B2 Wy Wi = Wy Wi (0 00> 5
C1 G Dy Vo V1 V2 V1
with . +
2=ty Bvi, z1=—C|(Lvi+tolyvy — Oouy),

Wy = —Z_IBQVQ, wy = toZ‘szvQ —Z_levl.

By Byv, =0 (28) and Dgv; = Dv; — opu; for i = 1,2 (35), the problem reduces to
verifying the equalities

—ty 'C1B1vi — G2 ' Byvy + Dvy = ous,

—CICI (Livi +1toLyvy — oputy) +IQC22_2BQ\12 — C22_1B2V1 + Dv| — opuy = —tgva.
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By (13) we have L, = D — G2 'B; and L, = I,, + C;X72B;, the two previous
equalities are reduced to

—t(;lClBlvl + Lyvy = opuy,

—C1CI(L1V1 +tolpvy — 0'()bt1) + Livy +toLlrvy — opup =0,

which are true by (24) and (31), respectively.

5.2. rankV =1 and v, # 0

Observe that in this case vi = Av, and u; = Auy, for some A € C. Hence, as
vy # 0, to prove that 0 is a multiple eigenvalue of M(o,Dy) it suffices to find a vector
w € C"*! such that

O O B 0 w 0 w 01
0O X B —27132\)2 —27232\)2 = —27132\22 —27232\22 (O O) , (36)
C1 Gy Dy 1) 0 Vo 0
because this means that the columns of the matrix
0 w
—>"1Bow, —27232\22
1% 0
form a Jordan chain of 0 as eigenvalue of M(a,Dy).
Multiplying the matrices in (36), we have
Bl\)2 0 0 0
—Bova + Bovy —>"1Byw, =(0-2"1Byw |. 37)
—sz_lB2V2 + Dgvy Ciw — sz_sz\Q 0 %3

By (28) Bjv, =0, so the (1,1)-entries in (37) are equal. By (35) Dgv, = Dv, —
opuy , hence, by the definition of L,

—C227132V2 + Dgvy = Dvy — C227132V2 — ogur = L1vy) — Opus.

As vy = Av; and Byvy =0, then Byvy = 0. From (24), Liv, = Opuy, thus the (3,1)-
entries in (37) are equal. Equating the (3,2)-entries, and by the definition of L,, we
have

Ciw— C227232V2 =v, Ciw=wn —|—C2272Bgv2, Ciw=Lyv,.

Thus the vector w must satisfy Cyw = Lpv,. This vector exists if and only if Lyv, €
ImC; = KerPc by Lemma 7(2).
As Bivi =0, uy = Auyp, vi = Avy, from (23) and (29) we have

APcLivy +toPclyva = A oGguy;

since Ljvy = opuy, we obtain toPclyvy; = 0. But 7y # 0, so PcLyv, = 0. Therefore,
Lrvy, € KerPe.
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5.3. rankV=1and v, =0

As v, =0, then up =0, v # 0 and u; # 0. Hence, to prove that 0 is a multiple
eigenvalue of M(ct,Dy) it suffices to find a vector w € C"*! such that

(0 e u’{) g g gl (0 0) (0 —u{GE! u’{) 38)
* ok -2 2 = * ok -2 .
w* —ujGE 0 Ci G Dy 10/ \w* —ujGX™= 0
This means that the vectors
w 0
=272Cu |, | - 'CGu
0 ui

form a Jordan chain on the left of O as an eigenvalue of M(a,Dy). Multiplying the
matrices in (38), we will have to prove the following equality.

uiCr —uiG +ujCG —MTCQSleQ-l-uTDO _ 0 0 0
0 —uwlGEI ! wB —ujGE B, 0 —u;GE ! ug

The (1,1)-entries are equal, because u;C; = 0 by (27). Let us see the reasons of the
equality of the (1,3)-entries. By (35), u{Do = ujD — opv}. So,

—u;CE By +uiDy = 0 <= —u{ X" 'By + uiD = opvi}.

By the definition of L, the last equality is equivalent to ujL; = opv}. As up =0, (25)
implies Lju; = opv] . Finally to prove the equality of the (2,3)-entries, we construct a
vector w such that

w*By — uTsz_sz =uj.

By the definition of L, the vector w must satisfy w*B; = ujL,; thatis Bjw = Lju;.
Such a w exists if and only if Lju; € Im B} = Ker Pg, by Lemma 7(3). Since u = v, =
0, 1o # 0, and (26), PgLyu; =0.

REMARK 10. We have proved Theorem 5 when the function ¢ — o}, (S»(¢)) has
a positive local extremum at a point fy # 0. Note that if for a positive integer ¢ we
have 0,44 (S2(t)) # 0, for t # 0, we can apply the same reasoning to the function
t +— Optq(S2()). Therefore, as in [8, Corollary 30], we deduce the following result.

THEOREM 15. The function t — o} (S2(t)) has no relative minimum in (0,00).
Moreover for each positive integer q, either O 4(S2(t)) =0 for t #0, or the function
1+ Optq (S2(t)) has no relative minimum in (0, ).
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6. When the supremum is the limit at -

In this section, we suppose that the limit

lim oy, (S2 (t))

f—o0

is finite and positive, let us call it op.

Observe first that Lemma 14 requires i > rank(PcL,Pg) because the limit above
is finite. Consider now a sequence of real numbers {#;}; ; which tends to > when
k — oo, and let & := 0y, (S2(t)) . Then

lim 6_k = 0yp.

f—o0

For each k, let

k u} k v 1
b= (T1), =), kel i=1,2,
Uy V2

be pairs of singular vectors of S(#), associated with 6;. As the vectors u* and V¥
are unitary, the sequence {(u*,v)}7_, has a convergent subsequence, say to (u,v). In
order to simplify we will denote the terms of this subsequence with the same index k.

Then
. u . v
limuk=u=: (" , limvV =v=:(1).
k—oo un k—oo V2

For each sufficiently large k, the equalities (23)—(30), (32), and (33) are satisfied
for t,u*,v* and 6 instead of #o,u,v and . Hence, taking limits, we infer that

]{IEIJOPCLQVIE = PcLyvy =0, (39)

Lyvy = opuy, (40)

LTul = OpV1, (41)

klimtkPBLZL/f = oyvy — PgLjus, (42)

kliir;PBL;u’; = PgLiu; =0, (43)

Byv, =0, (45)

klimtk(ulf)*Lgvé = op(uju; —vivy) = —op(uzur — viva), (46)
uiuy =viva. 47)

We are going to apply Lemma 8 to t(uk)* Lok = 1. (u})* PcLoPpv%, for each k,

because (uk)* = (uk)*Pc and & = Pp, by (29) and (30), respectively. Let x; := u},

V= vé and G := PCL2PB. Then by (39) we have

lim Gyk = llmch2P3V2 = hm PcL2V2 0.

k—oo
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On the other hand, ||tx;G|| = ||tx(u¥)*PcLoPg|| = ||txPsLiuf| is bounded in virtue
of (42). Thus, applying Lemma 8, we see that

]}Egtk(u’f)*Lgvé = ]{lgigotk(ulf)*PcLzPBvé =0.
Substituting this equality in (46), we conclude that uju; = vivi and uiur = vivo.
Hence, if we consider the matrices V := [v{,v;], U := [uj,uz], from the two preced-
ing equalities and (47), we have U*U = V*V . Therefore, as in Section 5, the matrix

Dy:=D— UV,

satisfies ||D — Dy|| = op and

Dgvy = Dvy — Ogup, ujDo =uiD — opv].
By the definition of L;, given in (13), from (40) and (41), we see that

Dovy = G 'Bovy,  uiDy = uC,27'B,. (48)

Hence, to prove Theorem 5 in this case, it suffices to prove that 0 is a multiple
eigenvalue of the matrix M(a,Dp). Once here, we are going to consider two cases:
V27é0 and V2:O.

6.1. 2 75 0

As v; is nonzero, to prove that 0 is a multiple eigenvalue of the matrix M(ct,Dy),
it suffices to find a vector w € C™"*! such that

O O By 0 w 0 w 01
0O X B —27132\)2 —27232\12 = —27132\12 —27232\12 (0 O) .
C1 G2 Dy ) 0 V2 0

Multiplying these matrices, as Bjv, = 0 by (45), and Dyv, = G2 'Byvy by (48), the
problem is reduced to find a vector w that satisfies C;w — C>> 2By, = vy. That is,
using the definition of L, given in (13), it suffices to find w such that

C1W=L2v2.

Hence, there exists w if and only if L,v, € ImCy, or which is equivalent by Lemma 7(2),
if and only if L,v, € Ker Pc, which is true by (39).

6.2. v, =0

In this case u, = 0 and u; # 0. Thus, it suffices to find a vector w € C"*! such

that
(0 UG u’{) o9h (o 0) ( 0 —uCz! u’{)
%% -2 2| = ok -2 :
w' —ujGE7 0 ¢, G Dy 10/ \w" —ujGx™~ 0
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Multiplying these matrices, as u;Cy = 0 by (44) and u;Dy = u{C,Z ' B, by (48),
it suffices to find a vector w such that

WiB1 —u;Co27?By = u} & Biw = Lyuy,

having used the definition of L,, given in (13). Consequently, there exists w if and only
if Lyu; € ImBy, or which is equivalent by Lemma 7(3), if and only if Lju; € KerP;
which is true by (43).

Two final remarks on Section 6

REMARK 11. Let us observe that in the part of the proof of Theorem 5, given in
this section, we have not used the equality

sup 0y, (S2(¢)) = lim 6 (S2(1)).- (49)

t>0

Actually, all we have used is the fact that

lim oy, (S2 (t))

[—o0

is finite and positive. This assumption implies (49), since by Proposition 1 and Lemma 14,
we have the following result.

PROPOSITION 16. Let L:= PcLyPg. If h > rank(L) and

o Pc(l, — LLY)L, 0
00 = Op—rank(L) 0 L (Im _ LTL)PB
is positive, then
min |X — D|| = ov.
XECITle
m(0.M(ct,X))>2

Moreover,

sup oy, (S2(1)) = lim o}, (S2(7)) -

>0 f=ee

REMARK 12. Let p > rank(PcLyPg). By Lemma 14 the limit

lim 0, (5:1(1))

is finite. Let us assume it is positive. Following again all the reasoning of this section,
we can prove that there exists a matrix ¥ € C"™*™ such that

|Y —D| = lim 0, (S2(t)), and m (0,M(c,Y)) > 2.

Besides, by Proposition 1 and Lemma 14, we have the following result.
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PROPOSITION 17.

(1) Let L:= PcLyPg. Assume p > rank(L). Then

. Pe(l, — LLT)L, 0]
—D| <
min X D\%rankw( 0 Lilln—L'L)Ps)
m(0,M(a,X))>2

if this singular value is positive.

(2) For each positive integer q the limit
lim 0 (8:1(1))

is equal to oy or to 0, where oy is defined in Proposition 16.

7. When the supremum is the limit at 0, and rank(B;) < n; or rank(C}) < n;

In this section, we assume that rank(B;) < n; or rank(C;) < ny, and we suppose
that the limit

lim o, (Sz (I))

—0+

is finite and positive, let us call it oy .

To shorten notation, we write s instead of rank(C;By). First, let us observe that
Lemma 13 warrants the existence of the limit. Moreover, by the same lemma and
denoting

Ty :=1,—(CiB))'C\By, T»:=1,—CBi(CiB)),

as h > s, we have

. _ PcLili O '\ _
zli%}r Oy, (Sz(t)) = Op—g < 0 T2L1PB) =0y > 0.

We are going to prove some properties of the singular vectors of PcL;7; and
T,L Pg. Assume that oy is a singular value of PcL;Ty and let (u,v) be a pair of
singular vectors corresponding to it. As PcL;Tiv = opu, by Lemma 7(2), we have
u € Im(Pc) = Ker(Cy), that is Pcu = u, u*Cy = 0. On the other hand, as T1L;Pcu =
TiLiu = ogv,

Tu — OgV = (CIBI)TQBlLTu € II]TI(ClBl)Jr = Im(ClBl)* C Im(BT).

Hence, by Lemma 6(3), we see that u*L; — ogv* = (u*L; — Gov*)B'{Bl . Thus, as (u,v)
is a pair singular vectors of PcL;T; associated with oy, we infer that

PcLl Tlv = Opu, (50)
TiLiu = oyv, (51)
Pou=u,u*C; =0, (52)

M*Ll — O'()V* = (M*Ll — O'()V*)BIBl. (53)
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Similarly, using Lemmas 7(3) and 6(3), if (x,y) is a pair of singular vectors of T>L; P
associated with oy, we conclude that

L1y = opx, (54)

PsLiTox = Oypy, (55)

Pgy =y, B1y =0, (56)

Liy — 6px = CiC] (L1y — 0px). (57)

To conclude the proof of Theorem 5 in this case, we are going to consider two cases:
(1) op is a singular value of PcL T ; (2) o9 is a singular value of T,L;Pp.

7.1. oy is a singular value of PcL| T}

Let (u,v) be a pair of singular vectors of PcL;T; associated with op. For the
entire subsection let

Dy := D — ocouv*.
It is clear that ||D — Dy|| = 0y . Besides, by (53), we have

0 0 B
(—(u*Ly — opv*)Bl, —w' G L u*) | 0 T By | =0. (58)
C G Dy

At this point, we consider two subcases: (1) rank(B;) < n; and (2) rank(C}) <
ny =rank(B;).

7.1.1. rank(By) < n;

In this case, there exists a nonzero vector z € C"*! such that z*B; = 0. Thus,

O O B;
(z,0,0) | O £ B, | =0.
Cy G Dy

This, together with (58), proves that 0 is a multiple eigenvalue of M(c,Dy).

7.1.2. rank(C;) < n; =rank(B;)

As rank(Cy) < n; there exists a nonzero vector z € C"*! such that Cyz = 0.
Therefore
O 0 Bl Z
02X B 0] =0.
C1 G Dy \0O



24 J.-M. GRACIA AND F. E. VELASCO

Thus, by (58), to prove that 0 is a multiple eigenvalue of M(ct,Dy) it suffices to see
that

(—(u*Ll - O'()V*)BJ{, —u*Czi‘fl,u*) =—(u'L;— O'ov*)BIz =0.

S O N

Since rank(B;) =ny, (51) implies Lju — cgv = (ClBl)TCIBlL’{u and BlBI =1,,. Thus
(u*Ly — O'()V*)BIZ =u"L (ClBl)TCIBlBIz =u'l (ClBl)Tclz =0,

because C1z=0.

7.2. oy is a singular value of 7L Pg

Let (x,y) be a pair of singular vectors of T»LPg associated with op. In this
subsection we define
Dy := D — opxy*.

Again we have ||D — Dy|| = 0p. From (57), we see that

O O B —CI(Lly—O'ox)
0 = B —3"'Byy =0. (59)
C1 G Do y

Now we will consider two subcases: (1) rank(C;) < n; and (2) rank(B;) < nj =
rank(Cy).

7.2.1. rank(Cy) < ny

In this case there exists a nonzero vector z € C"1*! such that C;z = 0. Hence,

0031 Z
OB 0] =0.
C1 G Dy 0

This, together with (59) proves that 0 is a multiple eigenvalue of M(a,Dy).

7.2.2. rank(B;) < nj = rank(C))

As rank(B1) < n there is a nonzero vector z € C"*! such that z*B; = 0. So

0 0 B
(0,00 0 = B, | =0.
C1 G, Dy
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Therefore, to demonstrate that 0 is a multiple eigenvalue of M(ct,Dy), it suffices to see
that :
—C} (L1y — 0px)
(z",0,0) —> By = —Z*CI (L1y — opx) = 0.
y
Since rank(Cy) = ny, (54) implies Ly — 6ox = C{B(C;B;)"L;y and CICl =1, . Con-
sequently
Z*CIr (L1y - O'())C) = Z*CfclBl (CIBI)TLly = Z*Bl (C]B])TLly =0,

because z*B; =0.

Two final remarks on Section 7

REMARK 13. Let us observe that in the part of the proof of Theorem 5, given in
this section, we have not used the equality

sup oy (Sz(l‘)) = lim oy, (SQ(Z)). (60)
>0 =07
Actually, all we have used is the fact that
lim o}, (S2 (l))

—0t

is finite and positive. This assumption implies (60), since by Proposition 1 and Lemma 13,
we have the following result.

PROPOSITION 18. Let M :=C)Bj. Assume that rank(B) < nj or rank(C}) < ny.
If h > rank(C1By) and

o PeLi(ly —M™M) 0
00 ‘= Op—rank(M) 0 (Im — MMT)LlpB
is positive, then
min |X —D|| = op.
Xe(cmxm
m(0,M(0,X))>2

Moreover,
supoy, (S2(7)) = lim oy, (S2(2)) .
>0 =0
REMARK 14. Let p > rank(C;B;). By Lemma 13 the limit
Jim, 0y (S2(4)

is finite. Let us assume it is positive. Following again all the reasoning of this section,
we can prove that there exists a matrix ¥ € C"™*™ such that

|Y —D| = ﬂ%l 0p(S2(1)), and m(0,M(ct,Y)) > 2.

Besides, by Proposition 1 and Lemma 13, we have the following result.
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PROPOSITION 19. Assume that rank(B;) < nj or rank(Cy) < n;.
(1) Let M := C1B,. Suppose that p > rank(CB;). Then

. PcLy (L, —M™M) o
— < .
Xél(l;nnxm HX DH S Op—rank(M) < 0 (Im _MMk)LIPB )
m(0,M(a,X))>2

if this singular value is positive.
(2) For each positive integer q it follows that the limit

ILH(% Oh+q (SZ (t))

is equal to oy or to 0, where oy is defined in Proposition 18.

8. When the supremum is the limit at 0, and rank(B;) = rank(C;) = n;

In this section, we assume that rank(B;) = rank(C;) = n;, and we consider the
case when

sup 0 (S2(1)) = lim 0y, (S2(1)).
>0 =0

As rank(By) = rank(C) = ny, by Lemma 6(5), we have ClTCl = BlBJlr = I, ; this fact
will be used frequently along the section. Besides from (10) it follows that & = 2m —
n; — 1. Since rank(CB;) = n;, by Lemma 13 we have

tli%}r Oy, (Sz(l‘)) = tli%}r Opt1 (Sz(l‘)) = Om—n, (PCL1PB) =:0p > 0.

Thus there exists an € > 0 such that the functions ¢ — o, (S2(7)) and ¢ — oy (S2(2))
are nonincreasing on the interval (0,¢).

Let us suppose that oy is a multiple singular value of PcL1Pg. Then there are
pairs of singular vectors (uy,vy), (u2,v2) of PcLiPg associated with oy so that U*U =
I, =V*V,where U := [uj,u;] and V := [v],v;]. Define now the matrix

Dy :=D— opUV™.

Since |[UV*|| =1, it follows that ||D — Dy|| = 0p and U*Dy = U*D — opV*. Given
that Ly = D — C>27'B,, by (52) and (53) we have

0 0 B
(—(uLy — opv})Bl, —;CE" L) | 0 = By | =0, i=1,2;
C1 G2 Dy

that is, O is a multiple eigenvalue of M(c,Dy).

From now let us assume that oy is a simple singular value of PcLiPg. We will
consider the matrix function 7 — £S,(¢), which is analytic on R. Then, by Lemma 11,
there must be some 2m X 2m unitary matrix functions

Ut):= (U (1),Us(t),...,Um(2)),V(t) := (Vi(2),Va(2),- .., Vam(t))
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and a diagonal matrix function 2(¢) = diag (&1 (¢), 62(t), ..., G2 (t)) € R?™*2" all ana-
lytic on R, so that for each 7 # 0 we have

U)'1$2(0)V (1) = 2(t) < U(1)"S2(1)V (1) = diag(6;(t) /1).

Observe that for some interval (0,a), with @ > 0, we can assume without loss of gen-
erality that all the functions 6;(¢) are nonnegative on it. Let j,k be now the unique

subscripts such that
. Gj(t . Op(t
lim —j( ) = lim —k( ) =
t—0t 1 t—0+ 1

Thus, it is correct to assume that for each positive ¢ sufficiently close to 0 we have
6(t) > 6y(t). Define the functions

Then, we see that
lim (1) = lim g(r) = o0,

t—0t t—0t

and there exists a b > 0 such that f(¢),g(¢) are analytic on (0,b), and for 7 € (0,b) we
have the inequality f(¢) > g(¢).
Let us denote

= () =i, o= (1) =vio

0= (30 =i 0= (1) ~we

where Uj(t),Ui(t) and Vj(t),Vi(t) are the j-th and k-th columns of U(r) and V (1),
respectively. Since they are analytic functions, we infer that the following limits exist

lim u(t) =u:= <u1> ,  limv(r)=v:= (vl) ,
t—0t up t—0+ %3

: y1
1 =X li = .
Jim x(¢) ( ) Jim y(r) =y <y2)

Moreover, (u(t),v(t)) and (x(z),y(¢)) are pairs of singular vectors of S,(¢) associated

with the singular values f(¢) and g(z), respectively. Therefore, for each ¢ € (0,b) the

equalities (23)—(33) but for (u(r),v(¢)) (instead of u,v) and f(¢) (instead of o), and

for (x(z),y(¢)) (instead of u,v) and g(z) (instead of oy ), respectively, are satisfied.
First note that from (24) we deduce that

and

and

lim ClBlvl(t) =CByv; =0.
t—0t
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Thus, as rank(C;) = n;, we have Bjv; = 0, which is equivalent to Pgv; = v; by
Lemma 7(3). Similarly, as rank(B;) = n;, being aware of Remark 9 and taking limits
in (25) when 1 — 0", we conclude that Cju, = 0, which is equivalent to Pouy = uy by
Lemma 7(2).

Now, being aware of Remark 9 and considering equations (23)—(30), changing ¢
by ¢ in them and as Im(C;) = Ker(P¢), Im(B}) = Ker(Pg), by Lemma 7(2)(3), when
t — 0T we infer that

PcLyvy = opuy, (61)
IEI(I)ll_lclBlvl(t) = Lyvy — Opua, (62)
Lyvy — Opus € Im(Cy) = Ker(Pc), (63)
,E%leTCTW(l) = Ljuy — opvy, (64)
Liuy — ogvy € Im(B7) = Ker(Pp), (65)

PgLiuy = ogva, (66)

Ciuy =Cluy =0, (67)
Bivi =Bv, =0, (68)
Peuy = uy, Peuy = uy, (69)
Pgvi = vy, Pgvy = vs. (70)

Remark that all the above properties are true also for (x,y).

Now, let (z,w) be a pair of singular vectors of PcL;Pg associated with the simple
singular value op. Let us see that there exist vectors a := (aj,a3) and b := (b1, b;) of
C'*2 such that

(ur,u2) = za, (vi,v2) = wa, (x1,x2) = zb, (y1,y2) = wb, (71)

where ab* =0 and [|a|> = ||b]|* = 1.
First note that, as Ppv; = v; and Peu; = u;,i = 1,2, by (61) and (66) equation (71)
is equivalent to

FPcLyvy = ogPcus,
PBLTMI = O'()PBvl.

These last equalities are true by (63) and (65), respectively.
Hence, if we consider the matrices V := [v{,v2],U := [uy,u] € C™2, from (71)
we find that
Uu =v*w. (72)

Thus, as in Section 5, the matrix
Dy:=D—cyUVT,

satisfy ||D — Do|| = op and DyV = DV — opU . Remark that all the above properties
are true also for X := [x1,x2], Y := [y1,)2].

So, to prove Theorem 5 in this case, it suffices to prove that 0 is a multiple eigen-
value of the matrix M(c,Dy), where Dy := D — coUV" or Dy := D — 6pXYT, respec-
tively. The following lemma allows us to reduce the possible cases.
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LEMMA 20. With the preceding notations, we have
(1) rank(U) = rank(V') = rank(X) = rank(Y) =1,
2)if vi =0 then y, =0,
3)if vo =0 then y; =0.

Proof. (1) is immediate by (71). For demonstrating (2), let us assume now that
v =0, hence v, # 0. Since u,y are orthogonal, we have vy, =0, i.e. by (71)
azby =0. Then by =0, consequently y, = 0. In a similar way (3) is proved. [

At this moment, by the preceding lemma, the possible cases to analyze are two:
(1) vi=0o0rvy; =0; (2) uy = aup, vi = avo, x; = Pxp and y; = By, with scalar
nonzero o, f3.

81. vi=0orv, =0

First let us suppose that v = 0 and let Dy := D — ooUVT. Note that u; = 0.
Hence v, and u, are nonzero vectors. To prove Theorem 5 in this case, we will search
a pair of eigenvectors of M(a,Dy) associated with the eigenvalue 0, one on the left
and other on the right, so that they are orthogonal.

We are going to prove that

O O B —CI(LIVQ— Ooplip)
0B —>7 B, =0.
C1 C2 D() V2

Since Byvy; = 0 by property (68) and Dyv, = Dv, — oguz, we just need to check
—C1C (L1va — 6puz) — C2E~ ' Byvy 4 Dvy — Goup = 0.
Or which is the same,
CiC (L1va — Gouz) = Livs — Goua,

because by (13), L1 =D — G2 'B,. That is, by Lemma 6(3), it suffices to prove that
Livy — opuy € ImC; . Which is true by (63).

On the other hand, since Pgv, = v», from (66) we conclude that Ljuy — ogv2 €
Ker(Pg) = Im(B'D. Hence, reasoning in a similar manner and using u;Dg = u;D —
opv5 , it follows that

0 0 B
(—(sLy — 09v3)B], 32~ us) | 0 = By | =0.
C1 G2 Dy

By the definition (13), L, = I, + C;X 2B, . Moreover v;B| = 0, by (68). Let us
denote by ¢ the following scalar:
~CJ(Lyvy — oouz)
¢ = (—(uELl — O'()VE)BI, —MEC2271,143) —27132\22
V2
= I/LELIB{CI (L1V2 — G()uz) + u;Lz\)z.
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In order to prove Theorem 5 in this case we are going to see that ¢ =0.
From (62),

Livy) — Opup = tEI(gFIClBlvl(t) = CI(lez — opup) = tgr(gflCIClBlvl(t).
But, since CfCl =1, , we have
Cl(Ly1vy — opua) = lim 1~ By (1).
Thus
¢ = uleB'{tE%y”Blvl(t) +u3Lovs = lim u2(t)*LlBItE%1+ﬂBlvl(z) +u3Lyva;

that is,

6= lim u(1)*L1B{Byvi (1)

+uilyvs.
t—0+ t 2

By (26) we find that
tul(t)LaPp+u5(t) L1 Pg = f(t)va(t)* = tui(¢)LoPp+u5(t)L; —uz(t)LlB'{Bl = f(t)va(1)*.

Therefore
w3 (1)Ly BBy =t} (1) LoPy +u3(1)Ly — f(t)va(2)*.

Consequently

tuf(t)LoPgvy (2 S(OLivi(t) — f(e)va () vi (2

o tim PAOLEO HEOLAO —fOreOn @)
t—0t t
and, as Pgv; = 0 by (70),
* L _ *
(p_ hI(])f}r u2(t) 1V1(t) tf(t)v2(t) Vl(t) +M§L2V2.
11—

By (23), PcLyv1(t)+tPcLyvy(t) = f(¢t)u1(¢). Hence we know that Lyvy (¢) = f(2)u () —
tPclovy(t) + C1C1TL1V1 (1). Since u3Pc = uj, it follows that

FOua(t) ur () +ua(t)* CrC Lyvi (£) — f(t)va(r) 1 (1) .

pr— 1.
o=l ,
But, by (33), we have uz(t)*ul(t) - V2(l)*v1 (t) Therefore
i t ot
¢ = lim ur(1)"C1Cy Livi (1) = lim uz(t)*clBlBlclL1v1(l)7
0% ! =0+ t

because BlBJlr = I,, . Finally, we will apply Lemma 8. Taking x(¢) := ua(t), y(t) :=
B'{CIlel () and G = C| B, we obtain

lim Gy(t) = lim C;B;BICiLiv,(t) =0,
o0+ y() t—»O*llllll()

1)*G t)*CiB
lim )L — lim M
t—0t 1 t—0+ t

using (64) and that u;(¢),v;(#) — 0. Thus, by Lemma 8 we have ¢ = 0.

= Liu; — opv; =0,
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If v, =0, since by Lemma 20(3), y; = 0, it suffices to repeat the preceding rea-
soning for the pair (x,y), with the matrix Dy := D — cpXY .

8.2. u; = auy, vi = avy, x; = Bxy,and y; = By, with aff #0.

From (71) we infer that there exist two nonzero complex numbers 8,7 such that

_(doaz\  [(Saw _(nBz\ __ (nBw
u_<52>’v_<5w)’ x_<nz Y=\ nw )
Since v,y are orthogonal, 51 (@p + 1)w*w = 0. Consequently

ap+1=0. (73)

On the other hand, applying Lemma 11, for ¢ € (0,¢€), one has

() = Re (u* (1)Sh(1)v(1)) = Re ((ul(t)* (1)) (;—221 5 feah B) (5;8 D) .
Since u (¢)*PcLyPpva(t) = uy(t)*Lova (1), we get
f(t) =Re (1 2un(t)*C1B1v1 (t) +ur (1) Lova (1)) =1 2un(t)*C1Byv1 (t) +ur (1) *Lova (1),

because of (32). As C;B; = C;B(C1B,)'C;B; and (C,B,)" = B{C], by Lemma 7-4,
we obtain

uz(t)*ClBl TClBlvl(t)
1 .

1 2uy(1)*C1Bvy (1) = BiC

Thus, from (64) and (62), we see that

lim #~%us(1)"CBv1 (1) = (ujL1 — 00v})BICl (Lyva — oouy).
t—0

Therefore, as v’l‘BJlr =0 and Cfuz =0, we infer that

lim f'(1) = uj(LiBICI Ly + Ly)va. (74)

t—0t

Similarly, for g(#) we obtain

lim g'(r) = x{(LiB[C] L +Ly)ys. (75)

t—0t

Now, since the functions f(¢),g(t) are strictly nonincreasing and f’,g’ are continuous
functions, we see that f”(r), g’ (1) are nonpositive. As there exist the limits of f(z),g'(z)
when ¢t — 07, given in (74) and (75), we deduce that

wj(LiBICILy + Ly)vy < 0 and x (L1 BIC] Ly + Ly)y2 < 0. (76)
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Using the expressions obtained at the beginning of this subsection for u,v,x,y, we
get
W (LiBIC| Ly + Lo)vs = |8 >z (LiB{C Ly + Lo)w,
XH(LiBICTLy + La)ys = [n|*Bz* (LiBC] Ly + Lo)w.

Thus, from (76) we obtain
7" (L1 BIC]Ly + Ly)w < 0 and Bz* (L1 BIC] Ly + Ly)w < 0.

Denote in a short while y := z* (LIBJ{CITLl +L)we C. Hence,as af+1=0
by (73), from the preceding inequalities, we find that

—B~'x <0and By <0.

Consequently, since 8 # 0, these two inequalities are only possible if ¥ = 0. That is,
we have proved that if (z,w) is a pair of singular vectors of PcL;Pp associated with the
singular value oy, then z* (LIBICILl + Ly)w =0. Therefore, for the pair (u,v) one has

w5 (L BICTLy + Ly)va = 0. (77)

Next, defining the matrix Dy := D — 6oUV" we are going to prove that 0 is a
multiple eigenvalue of M(c,Dy). In a similar way to that of Subsection 8.1, given that

0 0 Bl —CI(Ll\)Q—O-()Mz)
0O X B —>7 B, =0,
Cy G Dy V2
and
O O B
(—(u3Ly — oov3)Bl, —5C2 L) [ O = By | =0,
C1 G Do

to prove that 0 is a multiple eigenvalue of M(ct,Dy), it suffices to see that
¢ = (usL1 — 0v3)B{C] (L1v2 — 0012) + u3Lavy = 0.
That is as vaJ{ =0 and Cirug =0, it suffices to see that
w3(LiB{C{Ly + Ly)vy =0,
which is true by (77). This completes the proof of Theorem 5.

Final remark on Section 8

REMARK 15. In Section 7, Proposition 18, we have proved that if rank(B;) < n;
or rank(C}) < np, then

sup oy, (S2(7)) = lim oy, (S2(2))
>0 1—=07"
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whenever this limit is > 0. Let us assume that rank(B;) = rank(C;) = n; . If the limit

lim o3, (S(1))

t—0t

is finite and positive, the following question arises: does the equality

sup oy, (S2(7)) = lim oy, (S2(2))
>0 t—0F

always hold? The answer is negative, as it can be seen in the following example. Let us
consider the matrix of C3*3

010

0B
(CD) = (1)8? =50 = | =770/00
0 001
Then, h =2 and
P21Vl 44
o (8:) =4 5 i1V,
1/t if 1 € [1/3/2,00).
A
Jal 02(92(t))
1
| >
1/4/2
We have

[1*13’(?* 02 (S2(t)) =1> Oa

but the supremum is attained at o = 1/+/2 and its value is /2.
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9. Scope of the results

Let o :=(A,B,C) € L,,,. Let T € C™" an invertible matrix and consider the
triple o7 := (TAT~!,TB,CT~"). It is easy to see that M(c,X) has a double 0 eigen-
value if and only if M (o ,X) has a double 0 eigenvalue, for X € C"*". Hence

min |IX — Dl = min |IX — D]
Xecmxm Xe(cmxm
m(0.M(a.X))>2 m(0.M(ar X))>2

Moreover, it is clear that py(t) = pe, (7).
Finally, we wish to note that applying the same reasoning of this work, we can
obtain the following result, more general than Theorem 2.

THEOREM 21. Let o := (A,B,C) € Ly be any triple of matrices, where 0 is a
semisimple eigenvalue of A. Let D € C"*™ . Let Q be an invertible matrix such that

4 _ (oo
QAQ _<0A1>7

where A1 is an invertible matrix. Let B := (QAQ',0B,CQ~"). Then,

i B
min X —D| =supo S5 (t,D)).

XeCmxm H || Zgg pﬁ([)+l ( 2 ( ? ))
m(0,M(a,X))>2
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