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THE FLOW APPROACH FOR WAVES IN NETWORKS

BERND KLÖSS

Abstract. We present a “non-standard method” to treat wave equations on networks, leading to
a transport process on the doubled directed graph. From the node conditions, we derive a flow
governed by a certain adjacency matrix which, in particular, builds the bridge to the theory of
difference operators. This approach provides the fundament for a powerful method to examine
(boundary-)controllability and to prove stability results for damped and delay-damped networks
of wave equations.
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[17] B. KLÖSS, Difference semigroups for vibrating networks, published by Dr.Hut-Verlag, München,

2010.

c© � � , Zagreb
Paper OaM-06-08



108 B. KLÖSS
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