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MAPS PRESERVING PERIPHERAL SPECTRUM OF
JORDAN PRODUCTS OF OPERATORS

JIANLIAN CUI AND CHI-KWONG LI

Abstract. Let o/ and 9 be (not necessarily unital or closed) standard operator algebras on
complex Banach spaces X and Y, respectively. For a bounded linear operator A on X, the
peripheral spectrum 07 (A) of A is defined by 67(A) = {z € (A) : |z] = max,,c(4) W[}, Where
0(A) denotes the spectrum of A. Assume that @ : .7 — % is a map and the range of @ contains
all operators with rank at most two. It is proved that the map @ satisfies the condition that
On(P(A)D(B) + D(B)P(A)) = 0z(AB+ BA) for all A,B € &/ if and only if either there exists
an invertible operator T € %(X,Y) such that ®(A) = eTAT ! for every A € o/; or X and Y
are reflexive and there exists an invertible operator T € %(X*,Y) such that ®(A) = eTA*T~!
forevery A € &7, where ¢ € {1,—1}. Furthermore, the same conclusion holds if .« and & are
replaced by standard real Jordan algebras of self-adjoint operators on complex Hilbert spaces.
If X and Y are complex Hilbert space, we characterize also maps preserving the peripheral
spectrum of the product AB* 4+ B*A, and prove that such maps are of the form A — yUAU™ or
A yUA'U*, where U € #(X,Y) is a unitary operator and y € C with |y| =1, A" denotes the
transpose of A for an arbitrary but fixed orthonormal basis of X .
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