
Operators
and

Matrices
Volume 6, Number 1 (2012), 159–167

ON MINIMAL POTENTIALLY POWER–POSITIVE SIGN PATTERNS

BER-LIN YU AND TING-ZHU HUANG

Abstract. An n -by-n sign pattern A is said to be potentially power-positive if there exists some
A ∈ Q(A ) such that A is power-positive, i.e., Ak > 0 for some positive integer k . Catral, Hog-
ben, Olesky and van den Driessche [Sign patterns that require or allow power-positivity, Elec-
tron. J. Linear Algebra, 19 (2010), 121-128] investigated the sign patterns that require or allow
power-positivity. It has been shown that an n -by-n sign pattern A is potentially power-positive
if and only if either A or −A is potentially eventually positive. But as the identification of suf-
ficient and necessary conditions for potentially eventually positive sign patterns remains open,
the characterization of potentially power-positive sign patterns is still open. In this paper, we
introduce the minimal potentially power-positive sign patterns to classify the potentially power-
positive sign patterns. Some properties of minimal potentially power-positive sign patterns are
presented. It is shown that for an n -by-n sign pattern A with at most n+ 1 negative entries,
A is minimal potentially power-positive if and only if either A or −A is minimal potentially
eventually positive. Finally, we classify the minimal potentially power-positive sign patterns of
order n � 3 .
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