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SAMUEL MULTIPLICITIES AND BROWDER

SPECTRUM OF OPERATOR MATRICES

SHIFANG ZHANG AND JUNDE WU

Abstract. In this paper, we first point out that the necessity of Theorem 4 in [8] does not hold
under the given condition and present a revised version with a little modification. Then we show
that the definitions of some classes of semi-Fredholm operators, which use the language of al-
gebra and first introduced by X. Fang in [8], are equivalent to that of some well-known operator
classes. For example, the concept of shift-like semi-Fredholm operator on Hilbert space coincide
with that of upper semi-Browder operator. For applications of Samuel multiplicities we charac-
terize the sets of

⋂
C∈B(K,H)σab(MC),

⋂
C∈B(K,H)σsb(MC) and

⋂
C∈B(K,H)σb(MC), respectively,

where MC =
(

A C
0 B

)
denotes a 2-by-2 upper triangular operator matrix acting on the Hilbert

space H ⊕K .
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