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QUASILINEAR MAPPINGS, M–IDEALS AND POLYHEDRA

DAVID YOST

Abstract. We survey the connection between two results from rather different areas: failure of
the 3-space property for local convexity (and other properties) within the category of quasi-
Banach spaces, and the irreducibility (in the sense of Minkowski difference) of large families of
finite dimensional polytopes.

1. Introduction

We all know that every closed subspace of a Hilbert space is complemented, i.e.
the range of a continuous linear projection. Curiously perhaps, the proof of this is non-
linear. The projection is the closest point mapping, which in most Banach spaces is
non-linear (and often ill-defined). In Hilbert spaces, some work is needed to establish
its linearity, although the nonlinear identity ‖x‖2 = ‖Px‖2+‖x−Px‖2 is fairly obvious.

Our first result, due to Enflo, Lindenstrauss and Pisier [5], was therefore surprising
when it was published in 1975.

THEOREM 1. There is a Banach space X with an uncomplemented subspace H
such that both H and X/H are isomorphic to Hilbert spaces.

Finite dimensional subspaces of Banach spaces are always complemented, so this
example is very much an infinite-dimensional phenomenon. On the other hand, the next
result [22, Theorem 11] is very finite-dimensional.

THEOREM 2. If P is an n-dimensional polytope without a centre of symmetry,
then the difference set P−P has at least 4n vertices, or is a hexagon.

These two results are actually related, and this paper tries to explain their connec-
tion. It gives the history of how some results from the isomorphic theory of Banach and
quasi-Banach spaces led to some new results in convex geometry.
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2. Quasilinear mappings

In 1978, Kalton [10, Theorem 4.6] and Ribe [19] independently published the
following.

THEOREM 3. There is a topological vector space X containing an uncomple-
mented one-dimensional subspace L such that X/L ∼= �1 .

Although X cannot be locally convex, it is completely metrizable, in fact a quasi-
Banach space. Its topology is induced by a quasi-norm, i.e. a positively homogeneous
functional satisfying this weak version of the triangle inequality

‖x+ y‖� K(‖x‖+‖y‖)

where K is a constant. In this example, K can be chosen arbitrarily close to 1.
So, a common property of a subspace and a quotient space need not be shared

by the whole space. In contemporary language, being locally convex is not a 3-space
property in the category of quasi-Banach spaces. Theorem 1 says that being isomorphic
to a Hilbert space is not a 3-space property in the category of Banach spaces. The
study of 3-space problems in functional analysis is now vast; we refer to [4] for a
comprehensive introduction.

We shall see that quasi-Banach spaces turn out to be a more natural category to
work in than Banach spaces, when studying twisted sums. We recall that a twisted
sum of two quasi-Banach spaces Y and Z is any quasi-Banach space X containing
a subspace isomorphic to Y , with X/Y ∼= Z . Functional analysts sometimes call this
an extension of Y by Z , although the longer established convention in homological
algebra [8] would be to call it an extension of Z by Y .

A map Ω : Z → Y between two quasi-Banach spaces is called quasilinear if it is
homogeneous, and satisfies the inequality

‖Ω(x)+ Ω(y)−Ω(x+ y)‖� K(‖x‖+‖y‖)

for some constant K . Such mappings have applications to several areas of mathematics,
in particular partial differential equations and interpolation spaces, but we will only
consider them in relation to twisted sums.

A quasinorm can be defined on the algebraic direct sum Y ⊕Z by

‖(y,z)‖Ω = ‖z‖+‖y−Ω(z)‖.
It is routine to verify that X =Y ⊕Ω Z is a quasi-Banach space, Y ⊕{0} is a closed

subspace isometric to Y , and X/Y ∼= Z . It turns out that Y is complemented if and only
if Ω is “close” to a linear map, i.e. if and only if sup‖z‖�1 ‖Ω(z)−L(z)‖ is finite for
some linear map L : Z → Y . The converse is less obvious, but it is true and useful
to know that any twisted sum of Y and Z is isomorphic to Y ⊕Ω Z for a suitable Ω .
We refer to [2, Chapter 16] for a detailed explanation of these facts, and to [3] for an
interesting discussion about different constructions.
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Such mappings from �2(n) → �2(n2) were in fact the basis of the construction in
[5]. It was shown there that any projection from the resulting twisted sum onto the copy
of �2(n2) has norm at least some constant times

√
logn . Piecing these twisted sums

together gives Theorem 1, whose proof is ultimately finite dimensional.
Quasilinear maps from �1 to IR were also the basis of the proof of Theorem 3.

Kalton and Peck [12] first identified the special role that quasilinear maps were playing
in the development of twisted sums, and elaborated the construction above.

From now on, we only consider the case when Y and Z are Banach spaces. Even
then, X need not be. We have seen that imposing the most stringent conditions on the
subspace does not help us in this regard. However, imposing some conditions on the
quotient space does: X will be locally convex, i.e. isomorphic to a Banach space, if Z
has type (in particular if Z is superreflexive) [11], or if Z ∼= c0 (or more generally any
quotient of a L∞ space) [13].

What about imposing conditions on Ω? Kalton [10] showed that X is locally
convex (i.e. isomorphic to a Banach space) if and only if there is a constant K so that

∥
∥
∥
∥
∥

Ω(
n

∑
i=1

zi)−
n

∑
i=1

Ω(zi)

∥
∥
∥
∥
∥

� K
n

∑
i=1

‖zi‖

for all finite collections (zi)n
i=1 ∈ Z . (We remark that it is possible to define a sequence

of different properties here, one for each value of n . The relationship between these
properties does not seem to have been investigated.)

But why should we have to renorm? It is also reasonable to ask about conditions
under which X is already a Banach space, i.e. ‖ · ‖Ω is already a norm. Following a
strong hint from Kalton, Lima and Yost [16] introduced the following definition.

A map Ω : Z → Y between two Banach spaces is called pseudolinear if it is ho-
mogeneous, and satisfies the inequality

‖Ω(x)+ Ω(y)−Ω(x+ y)‖� ‖x‖+‖y‖−‖x+ y‖

for all x,y ∈ Z .
The motivation for this definition is the straightforward fact that ‖ ·‖Ω is a norm if

and only if Ω is pseudolinear. In this case, we will call X =Y ⊕Ω Z a semi-L -sum of Y
and Z . The reason for this name is the intimate connection with the concept of semi-L -
summands first defined by Lima [14]. Before defining them, we note that twisted sums
and semi-L -sums behave very differently, despite the similarities in their construction.
In particular, we are not aware of any uncomplemented semi-L -sums, although we
see no reason why they should not exist. The following result [16, Proposition 10]
reformulates this as a problem about pseudolinear mappings.

THEOREM 4. Let Ω : Z → Y be pseudolinear, and X the corresponding semi-L-
sum. Then Y is complemented in X if, and only if, Ω can be decomposed in the form
Ω = T +A where T : Z →Y is a linear map and A : Z →Y is continuous. This always
holds if Y is complemented in Y ∗∗ , in particular if Y is reflexive.
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Recall that a Chebyshev subspace of a Banach space is one whose metric projec-
tion is single-valued. This means that for each point x in the larger space, there is a
unique point Px = PY x in the subspace Y which minimizes ‖x− y‖ over all y ∈ Y .
A Chebyshev subspace Y of X is called a semi-L -summand when the metric projec-
tion satisfies the identity ‖x‖ = ‖Px‖+ ‖x−Px‖ . Obviously every L -summand is a
semi-L -summand, and in L1(μ) spaces there are no other examples [14, Theorem 5.5].
However the subspace of constant functions in a real C(K) space is a natural example
of a semi-L -summand whose metric projection is not linear.

The next result [16, Theorem 7] shows that, as with twisted sums, the existence of
a non-trivial semi-L -sum depends only on the quotient space.

THEOREM 5. Given real Banach spaces Z and Y , the following are equivalent.
(i) There is a proper semi-L-sum of IR and Z .
(ii) There is a proper pseudolinear map Ω : Z → IR.
(iii) There is a proper pseudolinear map Ω : Z → Y .
(iv) There is a proper semi-L-sum of Y and Z .
(v) The unit ball of Z∗ is weak* reducible, i.e. there is an asymmetric, weak*

compact, convex set S ⊂ Z∗ such that S−S is the unit ball.

The proofs of (i)⇒(ii)⇒(iii)⇒(iv) are fairly straightforward. To show that (v)⇒(i),
consider the sup-normed space of weak* continuous affine functions on S .

However the proof that (iv)⇒(v) is more complicated, depending on the theory of
M -ideals. We briefly summarize this topic in the next section, cheerfully mentioning
that our original interest in reducibility arose from studying M -ideals in Banach spaces.

3. M -ideals

The theory of M -ideals goes back to Alfsen and Effros [1]. For further details
about them, particularly the following results, see also [14], [7, Chapter 1] or [21].

A subspace Y is said to have the n -ball property in X if, whenever B1, . . . ,Bn are
open balls in X , with

⋂n
i=1 Bi �= /0 , and Y ∩Bi �= /0 for each i , then we also have Y ∩

⋂n
i=1 Bi �= /0 . It is well known now that the 3-ball property implies the n -ball property

for all n , and this happens if and only if Y ◦ is an L -summand in X∗ ; such subspaces
are called M -ideals. Examples of M -ideals include any ideal in a C∗ -algebra; many
ideals in uniform algebras; and the compact operators in B(�p) , for 1 < p < ∞ .

Likewise Y has the 2-ball property in X if and only if Y ◦ is a semi-L -summand
in X∗ ; such subspaces are called semi-M -ideals.

The duality is complete: Y is an L -summand in X if and only if Y ◦ is an M -ideal
in X∗ , and Y is a semi-L -summand in X if and only Y ◦ is a semi-M -ideal in X∗ .

Using intersection properties of balls, Lima [15, Theorems 1.2 and 1.3] showed
that if Y is a semi-M -ideal in a Banach space X , and the unit ball of Y is irreducible,
then Y is actually an M -summand in X . Combined with the duality results, this yields
the implication (iv)⇒(v) in Theorem 5, which was the original motivation for our in-
terest in all the topics discussed here.
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4. Polytopes and polyhedra

By facial cone in a Banach space, we mean as usual the set of all positive multiples
of some proper face of the unit ball. The norm is clearly additive on any facial cone, and
hence so is any pseudolinear function. So on any facial cone, any pseudolinear function
will agree with the restriction of a linear function. This means that the equivalence of
(ii) and (v) in Theorem 5 tells us something interesting about the reducibility of finite
dimensional balls, in particular of polytopes. Let’s think this through.

We smuggled a definition of reducibility into the statement of Theorem 5, and used
the concept again in §3. Due originally to Grünbaum [6], it is useful to repeat it here for
finite dimensional sets (not necessarily polytopes). A compact convex set P , symmetric
about the origin, is reducible, if there is a nonsymmetric closed convex set Q for which
P = Q−Q . The latter term denotes the set of all differences, {x− y : x ∈ Q,y ∈ Q} . If
the identity P = Q−Q is only possible when Q is centrally symmetric, then P is said
to be irreducible.

Suppose we are given a polytope P , with vertex set V and edge set E , sitting in
some ambient vector space X . If P is symmetric about the origin and full dimensional,
we may choose to interpret it as the unit ball of some norm on X . Let us define Cv =
{ f ∈ X∗ : f (v) = ‖ f‖} , for each v ∈ V . It is easy to see that each Cv is a cone in X∗ ,
with nonempty interior.

If P is reducible, Theorem 5 then furnishes a real-valued, homogeneous but non-
linear mapping Ω : X∗ → IR which satisfies the inequality

|Ω( f )+ Ω(g)−Ω( f +g)|� ‖ f‖+‖g‖−‖ f +g‖,
for all f ,g ∈ X∗ . The previous remarks imply that Ω|Cv has a unique linear extension
to the whole vector space X∗ , which we will denote by ρ(v) ∈ X∗∗ = X . So we have a
well defined map ρ :V →X , with some interesting properties, which essentially proves
one direction of the following result.

THEOREM 6. The polytope P is reducible if, and only if, there is a nonconstant
function ρ : V → X such that

(i) ρ(v) = ρ(−v) for all v ∈V , and
(ii) ρ(v)−ρ(w) is a scalar multiple of v−w, whenever [v,w] is an edge of P.

Again, we will only sketch the proof. If P is reducible, property (i) of the function
ρ just constructed follows from the homogeneity of pseudolinearmappings, while (ii) is
essentially a consistency condition. For if [v,w] is an edge of P , then the corresponding
faces in the dual polytope have non-empty intersection, so ρ(v) and ρ(w) must both
agree with Ω on Cv ∩Cw .

For the converse, suppose a nonconstant “reducing function” ρ is given. We define
Ω by Ω( f ) = f (ρ(v)) for each f ∈Cv . The property (ii) of reducing functions ensures
that Ω is well defined and continuous. Homogeneity and nonlinearity are clear. Finally,
note that the two functions on X∗ ×X∗ defined by ( f ,g) �→ Ω( f )+ Ω(g)−Ω( f + g)
and ( f ,g) �→ ‖ f‖+ ‖g‖− ‖ f + g‖ are positive homogeneous, continuous, and that
the former vanishes everywhere the latter does. A routine compactness argument then
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shows that |Ω( f )+Ω(g)−Ω( f +g)|� K(‖ f‖+‖g‖−‖ f +g‖) for all f ,g ∈ X∗ and
a suitable constant K .

Once stated, Theorem 6 can be given a simple geometric proof [22, Theorem 1],
but its inadvertent discovery required a lot of functional analysis. It is most unlikely
that we would even have formulated this result without going through the convoluted
process just presented.

The condition in Theorem 6 may be expressed in the form: does a certain finite
family of linear equations have a nontrivial solution? Thus, to determine the reducibility
of a given polytope, it suffices to find the rank of some rather large matrix. But we
won’t.

The rigidity of triangles implies that a symmetric polytope is irreducible if “many”
of its 2-dimensional faces are triangles. This was known long ago [20]. However,
it is instructive to check that if u,v,w are three vertices of a polytope, each two of
which are adjacent, then any function ρ , satisfying the conditions in our theorem, must
coincide on {u,v,w} with the restriction of a homothety. (In fact, u,v,w need not form
a triangular face here.) So the existence of sufficiently many triangles in the graph (1-
skeleton) of P , together with the condition ρ(v) = ρ(−v) , forces ρ to be constant,
from which irreducibility follows.

It is not hard to check that a parallelotope of any dimension is irreducible. Al-
though it is still surprising today to learn that a 2-dimensional euclidean disc is re-
ducible, this fact was apparently known to Euler; the “reducing set” is the well known
Reuleaux triangle. In fact, any 2-dimensional convex body other than a parallelogram
is reducible, and euclidean balls of any dimension (other than one) are reducible. This
more or less summarizes what was known about this topic before 1960.

Using Theorem 6, we [22] were able to describe some large families of irreducible
polytopes. We just list the main ones. Some were proved much earlier with different
techniques by Shephard [20].
• A symmetric polytope is irreducible if every 2-dimensional face is a parallelogram.
• A symmetric polytope is irreducible if it is the direct sum of two irreducible poly-
topes.
• A symmetric polytope is irreducible if it is the convex hull of two (possibly reducible)
polytopes lying in complementary subspaces.
• A symmetric polytope is irreducible if it is the convex hull of each pair of opposite
maximal faces.
• A symmetric polytope is irreducible if it is the convex hull of a maximal face, with
no pair of its edges parallel, and the opposite face.
• As mentioned at the beginning, every n -dimensional symmetric polytope with 4n−2
or fewer vertices is irreducible (unless n = 2).
• Combined with Baire category, these arguments can also be used to establish the
existence of irreducible, smooth, strictly convex bodies.

A related, and much more studied, concept is the following: a finite dimensional
compact convex set A (not necessarily symmetric) is said to be decomposable if it can
be expressed as a sum A = B+C , where B and C are compact convex sets not ho-
mothetic to A ; otherwise A is indecomposable. It is clear that a (symmetric) reducible
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set is decomposable, but the converse is false. For example, any parallelogram is de-
composable, but not reducible. The only 2-dimensional indecomposable bodies are
triangles. In three and higher dimensions, it is much harder to decide which sets are
decomposable. Not surprisingly, the existence of large families of triangles guarantees
indecomposability.

More recently we have realized that similar methods can be used to study decom-
posability of polytopes. This is the object of current research work with K. Przesławski
[17, 18]. In particular, functions from the vertex set into the ambient vector space play
a vital role. We thought that the use of such maps in [22] to study irreducibility (where
Theorem 6 was first proved) was a new idea. However such functions were implicitly
used by Kallay in [9], albeit in the context of decomposability.

An interesting feature of our work is that 4-cycles which are not coplanar play a
role as important as triangles. Using them, we have now classified (as decomposable or
indecomposable) all polytopes with 15 or fewer edges [18].
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[15] Å. LIMA, On M -ideals and best approximation, Indiana Univ. Math. J. 31 (1982), 27–36.
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