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BINARY SHIFTS OF HIGHER COMMUTANT INDEX

GEOFFREY L. PRICE

For Robert T. Powers,
on the occasion of his seventieth birthday

Abstract. In a previous paper the author has shown that all binary shifts of commutant index 2
are cocycle conjugate. In this paper we show that there are only finitely many conjugacy classes
of binary shifts of commutant index 3.

1. Introduction

We continue a study of the binary shifts on the hyperfinite //; factor R. A binary
shift o is a unital *-endomorphism on R with the property that the subfactor index,
[R: a(R)], is 2. The study of binary shifts was initiated by R. T. Powers. In his
original paper Powers classified binary shifts up to conjugacy, [8][Theorem 3.6]. The
cocycle conjugacy classification (Definition 1.1) is still an open problem, but partial
results have been obtained previously by the author and others, see [2, 4, 9, 10, 11, 12].
In [10] the author has shown that all binary shifts of commutant index 2 are cocycle
conjugate, and some results on binary shifts of higher commutant index were obtained
in [11]. It follows from a result in [2] that there are at least 22 distinct cocycle
conjugacy classes of binary shifts of commutant index k, k > 2. Here we consider the
binary shifts of commutant index 3. We show that there are at most 5 distinct cocycle
conjugacy classes of these shifts.

In [10] the author carried out an analysis of the congruence classes of Toeplitz
matrices over GF(2) associated with binary shifts of commutant index 2 (see Defini-
tion 1.2, see also [7]) for a detailed study on the congruence of matrices over a field of
characteristic 2). We showed that the Toeplitz matrices associated with a pair of binary
shifts of commutant index 2 are congruent. This result allows one to show that the cor-
responding binary shifts are cocycle conjugate. Similar techniques were used in [11] to
study certain higher commutant cases. Here we employ an extension of the techniques
used in [10, 11] to study the commutant index 3 case. It appears that additional tech-
niques will be required to settle the question of whether there are only finitely many
distinct cocycle conjugacy classes of higher commutant index.
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A pair o and B of unital x-endomorphisms on R are said to be conjugate in R
if there is a *-automorphism ¥ of R such that & =y~ ! o B o y. The notion of cocycle
conjugacy is derived from A. Connes’ notion of outer conjugacy of automorphisms in
[3], and is defined as follows.

DEFINITION 1.1. A pair o and 8 of unital *-endomorphisms on R are cocycle
conjugate if there exists a unitary operator y in R such that Ad(y) o o is conjugate to
B.

Next we define what is meant by a binary shift, cf. [8][Definition 3.2]. Let
ap,ay,... be a fixed sequence of 0’s and 1’s in GF(2), with ap = 0. Let ug,uy,...
be a sequence of self-adjoint unitary operators such that, for all j,k € Z+,

ujqu: (—l)akujJrkuj. (1.1)

We shall call generators with the relations above a spin system (see [1] for results on
more general spin systems). In [12] it was shown that the AF -algebra generated by a
spin system is simple if and only if the sequence ...,a»,a1,ap,ai,as, ... is not periodic.
In every such case the C*-algebra generated by the spin system is isomorphic to the
CAR algebra, [11][Theorem 3.5] (see also [1]). We shall assume in all that follows
that the sequences ag,a;,as, ... we study have this property, and we shall refer to such
sequences as the bitstream for the spin system. Let T be the unique tracial state on the
CAR algebra. It follows that 7(w) = 0 for any non-trivial word u = ulg’ullc' ...u* in the
u;’s. Using the GNS representation of the CAR algebra A with respect to the trace 7
one may consider A as a strongly dense subalgebra of R. In what follows we abuse
notation by viewing A as a C*-subalgebra of R. Thus the set of linear combinations of
words in the generators forms a weakly dense submanifold of the algebra R.

The assumption that the commutation relations are translation-invariant makes it
possible to define a unital *-endomorphism o on </ by setting o/(u;) = u;;; and
extending the definition of « to linear combinations of words in the obvious way. The
mapping ¢ extends to a unital x-endomorphismon R, which we also denote by o. As
noted above the subfactor index of a(R) in R is 2, see [8][Section 3].

As shown in [8] the bitstream ag,ay,... of a binary shift o is a complete conju-
gacy invariant, i.e., binary shifts o and B are conjugate if and only if their bitstreams
are identical. We conclude this section by presenting two cocycle conjugacy invariants
for binary shifts on R.

DEFINITION 1.2. The commutant index of a binary shift ¢ is the first positive
integer k (or o) such that the relative commutant algebra of(R)' MR is nontrivial.

It follows from a remark in [5] that £ > 2. Examples of binary shifts of commutant
k exist for every k € {=,2,3,...}, [11]. For example, fix k > 2 and consider the
bitstream 0...010... where a; =0 for i # k—1 and q;_; = 1. It is straightforward
to show that o has commutant index k and that u, generates the algebra a*(R)' NR.
At the other extreme, ¢ has infinite commutant index if and only if its bitstream is not
eventually periodic (by eventually periodic we mean that there exists a non-negative
integer g such that a4,a,41,... is a periodic sequence).
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THEOREM 1.3. [11][Cor. 5.7] Let & be a binary shift of finite commutant index
k. Then there is a word u = u(r)ouil .ulm, with rg necessarily equal to 1, which gen-
erates o (R)' NR. In fact for j >0 the algebra "/ (R)' MR is the 27" -dimensional

algebra generated by u,o/(u),...,o (u).

COROLLARY 1.4. [2][Theorem 2.1] Let o be a binary shift of finite index k.
Then its bitstream ag,ay, ... is eventually periodic, i.e. there is a non-negative integer
r < k such that ar,a,1,... is periodic.

Proof. Let u = uyuj'...u}" be the word generating o*(R)’ NR. Since u com-
mutes with the generators uy, iy, u42,... we obtain the following homogeneous sys-
tem of equations over GF(2) (where, if j < 0 in the system below we define «; to be

ajp):
agro + ag_1r1 +ag_or+ ...+ ar_mrm = 0
170+ apry + 112+ ...+ Qg 17 =0

Agy2ro + appir1 tagra + .o+ a2t =0

Since rp = 1 we may rewrite the system as

g = 11 +ag—or2+ ...+ Ak—mhm
1 = Qg +ag—112+ ...+ Qp—t-17m
A2 = Q1M1+ Qg2+ .o+ Qg 2Tm

It follows (see [6][Theorem 6.11]) that the sequence ag, a1, ... is periodic. [

Let u be the word generating o*(R)' N R in the statement of the theorem above.
Let d;, for j > 0, be the sequence of 0’s and 1°’s satisfying uo/ (u) = (—1)% o/ (u)u.
Since o/ (u) € ¥ (R) for j >k we have d; =0 for these j. On the other hand, o*~! (u)
has the form u,” ' ...w" | = w_w, where w € o*(R). Since o has commutant
index k, u anticommutes with u;_; and commutes with w. Therefore u anticommutes
with o*~!(u) and so d;_; = 1. Note that the sequence dy,dy,... has the property
that ... ,d>,d;,dy,d;,ds, ... is not periodic, so by [12] the von Neumann algebra R..
generated by u, o(u), o> (u) ... is also isomorphic to R. It follows that o restricts to a
binary shift on R.. with bitstream dy,d|,.... We denote the restriction of o to R.. by
O... Following [2], (see also [4]) 0. is called the derived shift of o« and dy,d;,... is
the derived bitstream. In [2] it is shown that the derived bitstream is a cocycle conjugacy
invariant for o, i.e. a necessary condition for o and 8 to be cocycle conjugate is that
their derived shifts o and fB.. are conjugate.

It is easy to show that a binary shift ¢ with a finitely non-zero bitstream ag, ay, ...,
ai_»,1,0,0,..., has commutant index k, and in this case o coincides with its derived
shift ow., as u = ug generates a*(R)’ NR. On the other hand any commutant index k
binary shift must have a derived shift with a bitstream of the form above. Therefore we
have the following.
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THEOREM 1.5. [2]. There are at least 272 distinct cocycle conjugacy classes of
binary shifts of commutant index k, k > 2.

As mentioned above there is only one class of binary shifts of index 2 up to cocy-
cle conjugacy. The preceding theorem shows that there are at least two cocycle conju-
gacy classes of binary shifts of commutant index 3. The object of this paper is to show
that there are at most five. We believe that there are exactly five but we do not know
how to prove this.

We note that nothing is known about the number of cocycle conjugacy classes of
binary shifts of commutant index co. These are the binary shifts whose bitstreams are
never eventually periodic. It is not known, for example, whether all binary shifts of
commutant index o are cocycle conjugate to each other or whether there are uncount-
ably many distinct cocycle conjugacy classes.

2. The center sequence

Let ag,ay,... be the bitstream of a binary shift o.. We define <7, for each n € N
to be the n X n matrix

ap ag ay ...dp—1
ai ap ay ... dp—1
o, = a a ao an—1 (2 1)
ap—1 p—2 Ap-3 ... 4o

with entries in GF(2), and call ., the n x n Toeplitz matrix associated with ¢, or the
n x n Toeplitz matrix associated with the bitstream ag,a;,az,....

For each n € N let ¢, = v(n) be the nullity of .«7,. The center sequence cy,cy, ...
has the following remarkable property.

THEOREM 2.1. [l 1][Corollary 2.10] The center sequence is the concatenation of
strings of even length. lIts strings are of the form 1,0 or 1,2,...,j—1,j,j—1,....,0
for some j > 2, where j may vary from one string to the next. In particular, c, is odd
if and only if n is.

For example, given the bitstream 011000... it is possible to show that the corre-
sponding center sequence is 101210 repeated forever (see Theorem 2.5 (vi)).

DEFINITION 2.2. For n € N let A,, be the finite-dimensional von Neumann sub-
algebra of R generated by ug,uy,... ,u,—1.
Note that A, has dimension 2", consisting of all linear combinations of words of
kn—1

the form ug‘)u’fl ...u," , with exponents k; € {0,1}. The following result links ¢, to

the dimension of the center of A, of R and justifies the name center sequence.
THEOREM 2.3. [l1][Lemma 3.3, Theorem 3.4] The center % (A,) of A, is an al-

gebra of dimension 2. More precisely, suppose Cy1,Cr12,...,Cry2j 1S a String in the

center sequence of the form 1,2,....j—1,j,j—1,...,1,0, for some r > 0. Then there
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generated by z,0.(z),...,a9 1 (z) if 1 <q < jand by 047771 (z), 007 (2),...,a/ 7 (2)
if j<q<2j. The exponents of z read the same backwards as forwards, i.e., sy,8y_1,...,
So is the same as $o,S1,...,8y.

is aword z of the form z=uuy' ...u¥ in Ay, with so =1 =s,, such that 2 (A,1q) is

REMARK 2.4. In what follows we shall refer to z as a palindrome since its expo-
nents sg,S1,...,s read the same in reverse order.

In this paper we consider almost exclusively binary shifts of commutant index 3.
The following five binary shifts of commutant index 3 will play an important role in
the analysis. The notation by ...b,, means that the pattern b ...b, repeats forever.

THEOREM 2.5. Consider the following binary shifts By through Bs, determined
by the given bitstreams.

(i) B has bitstream 0110.
(ii) Bo has bitstream 010.
(iii) B3 has bitstream 001.
(iv) B4 has bitstream 0010.
(v) Bs has bitstream 0110.
Each of these binary shifts has commutant index 3.

(vi) The word v = vy generates B}(R)' NR and v anticommutes with B;(v) = v;.
Hence By coincides with its derived shift Bi.. The center sequence is 101210.

(vii) The word v =vgv3 generates [35 (R)' MR and v anticommutes with Ba(v). Hence
its derived shift has bitstream 0110, i.e., Bo. is conjugate to By. The center
sequence of B is 10101210.

(viii) The word v =vv3 generates B; (R)'NR and v anticommutes with B3(v). Hence
its derived shift has bitstream 0010, ie., Bi. is conjugate to By. The center
sequence of B3 is 121010.

(ix) The word v = vy generates B;(R) NR and v commutes with B4(v) = vy. Hence
B4 coincides with its derived shift Bye.. Its center sequence is 1210.

(x) The word v =vyv|vov3 generates [353_(R)’OR and v commutes with Bs(v). Hence
its derived shift has bitstream 0010, ie., Bs. is conjugate to PBy. The center
sequence of Bs is 101210.

Proof. We illustrate the proof using B = B,. We show 8 has commutant index
3. It is easy to show, using the bitstream for f3, that v = vov3 € B3(R)' N R. Since
[R: B(R)] =2 ([8)) it follows from [5] that B(R)' NR is trivial. Suppose there is a
nontrivial word w in 82(R)'NR, then by [11], v must be in the *-subalgebra generated

by w and B(w). Hence w must have the form vivi1vA2V83 with kg = 1. If k3 = 1 then
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w = £v, but v does not commute with v,. Hence w = vov]{l vgz and v=twf(w) =
v} AR R This shows that w = vovyva, but this word does not commute with
v, so we have shown that B2(R)' NR is trivial, and therefore 8 has commutant index

3.

We now show that the center sequence for 8 is of eventual period 6 and has the
form 10101210.... Using the bitstream 010 for 3, easy calculations show that the
first five entries cg,cy,c2,c3,c4 of the center sequence for 8 are 1,0,1,0,1 (see Theo-
rem 2.3). (Alternatively, one can use the nullity sequence corresponding to the Toeplitz
matrices for 8 to show that this is so.) For each n € N of the form n = 6k—2,k € N,
we will show that the center 2(%,) of the algebra %, = {vo,v1,...,v,}" is generated
by the word v = vgv;...v, and Z(%B,+1) is generated by v and B(v). It is trivial
to show this by direct calculation for n = 4. Suppose the result holds for n = 6k — 2
for some k > 1. Consider the word v/ = vovy...vuee = (Vovi--- Vi) (Vnsl -+ Varg) =
Vst Vni6) = —VVni1Vnra) Vni2Viss) (Vay3vass) - Since vovz € B3(R)' NR it fol-
lows from the symmetry of the commutation relations that the words v, 41Vn+4, Vit2Vats
and v, 13v,46 all commute with v through v,y. But v € 2(%,+1), so vy through
Vpa1 also commute with v. Hence vg through v, all commute with v/, by the in-
duction assumption. By the symmetry of v/, moreover, it follows, since v through vg
all commute with v/ and ('), that v, 7 down through v, all commute with v'.
Hence V' is in the center of both B, and B, 7. Similarly using the assumption that
B(v) € Z (P, 1), it follows that B(v') is in the center of B, 7. Therefore ¢, ¢ is at
least 1 and c,,47 is at least 2.

Next note that vy anticommutes with B2(V') =v,...v,,g because vy commutes
with B(v'), commutes with v, s (because n+8 = 6(k+ 1) —2+2 =6(k+ 1) and
agj =0 for all j)and anticommutes with v; : therefore B2(v') is notin 2 (%), so
by Theorem 2.3, ¢, 48 < ¢p47.

Next observe that for any r > 3 the center sequence term ¢, satisfies ¢, < 3.
For suppose r is the first » > 3 such that ¢, = 3. By the observations made about
co,C1,C2,C3,C4 in the first paragraph of the proof, » > 6. Then ¢,_3,¢,—2,c,—| must be
0, 1,2 respectively, by Theorem 2.1. Then by Theorem 2.2 there is an element z € %, _;
such that z, 8(z) and B%(z) are in 2°(4,) and z is a word beginning with vo. Hence
B?(z) begins with v,. Since vov3 € %, generates B(R)' MR and also anticommutes
with v,, however, it follows that vovs anticommutes with 82(z). Therefore B2(z) is
not in the center of %, , a contradiction, and we have established our claim.

Combining the observations of the last two paragraphs together with Theorem 2.1,
we see that ¢, Cp+1,Cnt+2,Cnt3,Cnra 18 1,2,1,0,1. Then either ¢,45 =0 or ¢,15 =2.
If ¢;+5 =2 it follows from the bound ¢, < 3 for r > 3 that ¢,,1¢ =1 and ¢,17 =0. But
we have shown that ¢,+7 > 2. Hence c¢,4+5 = 0,c¢,46 = 1. This proves the assertions
about the form of the center sequence for f3.

Finally, the claims about the bitstreams of the derived shifts ;.. for each of the
B, s are easily verified, using the Powers’ result that two shifts are conjugate if and only
if they have the same bitstream, [8][Theorem 3.6]. [
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THEOREM 2.6. Let ¢ be a binary shift of commutant index 3. Then its center

sequence eventually coincides with the center sequence of one of the shifts Bj, 1 < j <
5.

Proof. The derived shift .. must have bitstream either 0010 or 0110. By the
theorem above the center sequence of 0., has period 4 or 6. From [13][Theorem 3.7]
the center sequence of ¢ is eventually periodic with period an even integer dividing the
period of o... Therefore the possible periods are 2, 4 or 6. If the center sequence of ©
has eventual period 4 or 6 it follows from Theorem 2.1 that its center sequence must
eventually agree with that of one of the five shifts 3 i, 1 < j< 5. We nextrule out the
possibility that the center sequence of ¢ has eventual period 2.

Let w=v’v{'...v/m be the nontrivial word which generates 6> (R)' NR. Then by
Theorem 1.3, w must anticommute with v, and ryp must equal 1.

For each positive integer p let A, be the 2”-dimensional algebra generated by
the spin generators vq through v, | of o. Suppose the center sequence eventually
has period 2. Fix an even positive integer n such that n > m and c,,cy+1,Cn+2,... 18
periodic with period 2. Then ¢, =cy42=...=0 and cp41 =cpe3=... = 1. Let Zn
(resp., zy+2 ) be a nontrivial word generating % (A,,11) (resp. Z(A,13)). We know by
Theorem 2.3 that both z,, and z,,, “start” with vy and that z, (resp., z,+2) ends in v,,
(resp., in vp42).

For the remainder of the proof we will use the notation x ~ y for words x and
y in the generators vg,vy,... to indicate that x = £y. Note, for example, that if y =

kok1 vk is any word in the v;’s then y* = vk vA1080 and y ~ y*.

Consider x = 62(z,)zu+2, a word which begins with vy. Note that x € A, 4, be-
cause because both o2 (zx) and z,1, end in v,,, and therefore x ends in v, or ear-
lier. 02 (z4) commutes with v, through v,;,, since z, commutes with vy through v, .
Also z, anticommutes with v, 1, otherwise we would conclude that z, € Z(A,12),
a contradiction since c¢,+> = 0. Since z, anticommutes with v, it follows from
the fact z, is a palindrome (Theorem 2.3), that o? (z4) anticommutes with v;. Since
Znia € Z(Ans3) the facts about 62(z,) imply that 62(z,)z,12 anticommutes with v
and commutes with v, through v, .

Next consider the word wx, which commutes with v3,...,v,.,, anticommutes
with v, and starts with a generator after vy. Hence we can define y by y = o~ ! (wx).
The word y commutes with v,...,v,+; and anticommutes with v;. Also y € A,
since x €A and m<nm,SO0wEA,41.

We claim that y starts with the generator vg. For if y starts with v, or higher,
0 2(y) commutes with vy through v, | and lies in A, ;. Hence 6 2(y) € AN
A,—1 C Z(A,) which is trivial, since ¢, = 0. If y starts with v; then since it anticom-
mutes with v; and commutes with v, through v, ;| we conclude that y anticommutes
with itself, a contradiction. Hence we have determined that y starts with vg.

Since both x and y start with vy we can form ¢! (xy), which commutes with vy
since both x and y anticommute with v;. Hence 6~ !(xy) commutes with v, through
vp,ie., 07 (xy) € Z(A,;1). Therefore either 6! (xy) ~ z, or 6~ (xy) ~ 1.

First suppose 6! (xy) ~ z,. Then xy ~ 6(z,), or x6 ! (wx) ~ 6(z,), or & (x)wx ~
6%(zn), or 6(x)W6?(21)Zns2,0F O(X)WZnya ~ 1,50 W2 ~ &(x). Since w commutes
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with v,43 and z,. does not (otherwise z,42 € Z(A,+4), which is trivial) the word
Wz, anticommutes with v, 3. But o(x) commutes with v,;3, a contradiction. So
we have ruled out the possibility that 6~ (xy) ~ z,.

Next suppose 6~ !(xy) ~I. Then xy ~ 1,50 x ~y=0"!(wx), so o(x) ~ wx,
or w ~ x0(x). Therefore xo(x) commutes with v;, forall j > 3. Since x commutes
with v through v,4», 0(x) commutes with v3 through v,43. Since both w and o(x)
commute with v,;3, so must x. Continuing in this way we conclude that x commutes
with v; forall j > 2. Then x € 6*(R)' NR, which is trivial. But x starts with vy and
so is not trivial. This contradiction shows that xy »~~ I. Hence we have ruled out the
possibility that the center sequence has eventual period 2.

As we have ruled out the possibility that a shift of commutant index 3 could have
a center sequence of eventual period 2, we see from the first paragraph of the proof that
if the center sequence of the derived shift o.. has eventual period 4 then so does ©.
Similarly if the eventual period of the center sequence of 0., is 6 then the same is true
for 0. An application of Theorem 2.3 on the form of strings of a center sequence now
establishes the result. [J

When the bitstream of 0., has the form 0010 (see Theorem 2.5, see also [13][Theo-
rem 2.10]), i.e., when the word v that generates ¢>(R)’ MR commutes with o(v) then
the eventual period of both ¢ and 0., is 4. In the case when o is a binary shift for
which v, the generator of 63 (R)' MR, anticommutes with (v), the eventual period of
the center sequence of 0., and of ¢ is 6. Hence we have established the following.

COROLLARY 2.7. Let G be a binary shift of commutant index 3. If 0. has
bitstream 0010 then the center sequences of both 0w and © have eventual period 4.
If 0w has bitstream 0110 then the center sequences of both 6 and 0.. have eventual
period 6.

3. Toeplitz matrices and congruence

As we have seen, the Toeplitz matrix associated with a bitstream contains impor-
tant information about the corresponding binary shift. In this section we show that if a
pair of binary shifts of commutant index 3 have center sequences which eventually co-
incide, then their associated Toeplitz matrices are congruent. We first recall the notion
of congruence of a pair of n x n matrices. See [7][Chapter IV] for details.

DEFINITION 3.1. A pair of n x n matrices </ and 4 are congruent if there is a
unitary matrix U such that U'.«7U = 2, where U’ is the transpose of U .

It is clear that congruence of matrices is an equivalence relation and that congruent
matrices have the same rank.

As it will be useful to consider infinite Toeplitz matrices (see below) we will de-
velop a notion of congruence in this context. Before we do so we introduce some
notation. Given a binary shift o of commutant index 3, with corresponding bitstream
ap,ay,das,. .., let & be the semi-infinite Toeplitz matrix over GF(2) determined by the
bitstream for o, i.e.,
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ap day az az a4 ...
ay apay ay az ...
ay ay apay ay ...
o = asz a» ay ap ay ... (3.1)
a4q az dz dap agp ...

Note that for n > 1, o, from (2.1) is the n x n upper left block of /. For
convenience in subsequent calculations the rows and columns of 7, are numbered
from O to n— 1. Let ug,u;,us,... be the generators of a satisfying the commutation
relations

Uillj ) = (—l)“kui+kui, i,k e AR

Let A, be the 2" -dimensional C*-subalgebra generated by the words in the spin gen-

erators ug, uy, ..., uy—1. Let w=uuj'...ul be the word generating o*(R)' NR.

DEFINITION 3.2. For fixed n > 2 and i,j € {0,...,n— 1} with i # j, let E;; be
the n x n elementary matrix with 1’s along the main diagonal, a 1 in the (i, j) position
of the matrix, and O’s elsewhere.

We will always be able to determine the size of the matrix E;; from the context in
which it appears. The following properties of Ej; are easily verified.

PROPOSITION 3.3. Let A be an n x n matrix over GF(2). Then
1. BE;; is the matrix obtained from 9 by adding column i to column j.
2. E;# is the matrix obtained from % by adding row i to row j.

3. Eji= El’, ie., Ej; is the transpose of E;;.

4. E;' =Ey.

The following result is immediate from combining the first two properties of the
preceding Proposition and the fact that the matrices <,,n € N over GF(2) have 0
diagonal.

COROLLARY 3.4. If o, is the n x n corner matrix of &/ and E;; is an n X n
elementary matrix then E! i;af,,Ei i has 0 diagonal.

Let B be another binary shift of commutant index 3, with bitstream bg,by, ...,
Toeplitz matrix A, whose center sequence eventually agrees with that of o.. We may
then conclude from the paragraph preceding Corollary 2.7 that the bitstreams of their
derived shifts o, and f. coincide. We use the notation dod d20 for the bitstream
of ¢t and .., where d =1 and d; is 0 or 1, depending upon whether the center
sequence of ¢ has period 4 or 6.

We will show for n sufficiently large that ., and %, are congruent. We will
establish this congruence with the use of products of n X n elementary matrices. We
first show that for n sufficiently large %, is congruent to a matrix of a special form.
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A similar result will follow for %,. We will make use of products of the form &} =
E", jE;'f;nl \1j---Ej", ;- By Theorem 2.5 there are infinitely many p € N such that
the string ¢,cp11¢p12¢p+3¢p14 s 01210. Fix n> p+4 > p > m. Using the fact that
Cpt2 = 2, [11][Corollary 6.5] shows that (éon_léon_z . éop_;,_g)[ﬂfnéon_lgn_g . é()p_,_z =

Z,, where .%, is the matrix

0 0
”Q{p"rz O 0
(%) 0 0
e ea 0 0

00 ... 0 ey €] 0 d1 d2 0 0 , (3_2)
00 . 00 ed 0 d d O 0
00 ... 00 0 dy di 0 dy dy 0O ... 0
00 0 0 ... 0 dy di 0 d
00 0o 0 ... 0 0 d, di O

and where d) = ey = 1.

Since the matrices %7),.%7, 1,4/, have nullities 0, 1,2 respectively, there is, by
Theorem 2.3, an element z = u;'u}' ...u)) with the following properties: z generates
Z(Apy1), z,0(z) generate Z°(Ap42), and o(z) generates 2°(A,y3). Also so =1
and the vector of exponents, s = [sg,s1,...,Sp|, reads the same backwards as forwards.
Since o(z) is in the center 2'(A,42) of A,ys it follows that the dot product (over
GF(2)) of the vector [0,s0,51,...,5,] with all of the rows of .27, ,» gives 0. The same
holds for the dot product of this vector with [0,0,...,0,e3,e;] in the row below the cor-
ner matrix %+2 . To see this, observe that the latter vector is a linear combination of the
rows of 27, > and the row vector [a,42,dp+1,...,a0). But [0,50,s1,...,s,] annihilates
the rows of @7, > and [sg,s1,...,s,] annihilates the last row [ap,ap_1,...,a0] of 7.

. . . . . Cpfl Cp,z o
These observations establish the claim. Hence if 7,11 =E,, (E) [ .. E\),. .



BINARY SHIFTS OF HIGHER COMMUTANT INDEX 297

then via &, the matrix F, is congruent to the matrix

0 0 0
42{p+1

0 0 0

0 e O 0
00 00 0 0 e O 0
00 0e e 0 d d O 0
00 00 (5] d1 0 dl d2 0 0
00 00 O0dyd 0d d O 0
00 0 0 ... 0 d d 0 d
00 0 0 ... 0 0 d d O

obtained from .7, by changing the last row and column of the corner matrix <7, > to
0’s, and replacing e; with 0 inrow p+ 1 and column p+ 1 of .%,.

Next note that since s annihilates the rows of <7, it follows that if we set &, to

be E;’i ’11 b Elclp (note that ng’p = Eq p is “missing” from this expression) then via 7,

the matrix above is congruent to the matrix
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ap 0 0 0
)

ap,2 0 0
ap ai ap2 0 0 e O
0 0 0 0O 0 0 e O
0 O ex er 0 d dr O ’

(%) d1 0 d1 d2 0
0 0 0 O0dyd 0 d dy O 0
o 0 ... 0o 0 ... 0 d, di 0 d;
0 0 dy di O

Applying techniques from [11], and using the assumption that 27, is invertible,
there is a product %) of elementary matrices E£j; with 0 < j<p—1land 0 <k<p-—1
which implements the congruence between 7/, and _¢#,,, where _¢, is the Toeplitz ma-
trix with 1°’s along its secondary diagonals and 0’s elsewhere. It follows, by comparing
the first and last columns of the matrix

ao
ai

:@p.i,—l - ’

ap ... c.ap2 0

that D) %),+1 % is the matrix



BINARY SHIFTS OF HIGHER COMMUTANT INDEX 299

O~ O

p

0
010 ... ...00

The latter matrix is congruent, via the product %" = E»,Es,...E,_5 ,, to the ma-
trix 7, 1. Hence A, is congruent via &, »...8,12%,11%p%0-# to the matrix %, :

Let B be any other binary shift of commutant index 3 whose center sequence
eventually coincides with the center sequence of o. If B has bitstream bobb; ... let
%, denote the n x n Toeplitz matrix whose first row is bg, by, ...,b,_1. Then following
the procedure above shows that for n sufficiently both %, and <7, are congruentto 6.
We will apply this observation to show that the two binary shifts o and 8 are cocycle
conjugate.

We will use the notation .#(n) to denote the matrix &,_1...&8,42%p 19, Do X
for o which implements the congruence between <7, and %,. (We will also simplify
the notation by writing .#y(n) as &,_1...&,.2.% in what follows.) Similarly 2, and
%y are congruent via the same procedure and we shall use .#3(n) to denote the matrix
implementing this congruence.

Denote by F", (resp., F*) the vector space of n-tuples [to,71,...,f,—1] (resp. of
finitely non-zero co-tuples) over the field GF(2). It will be convenient to view F¥ as a
subspace of F" for non-negative integers k < n, and F" as a subspace of F*, for all
n. Let {e;: j > 0} be the standard basis for F~,i.e. ¢; hasa 1 in the j spot and
0’s elsewhere. We shall also use the notation Fyy', (resp., F;°) for the subspace of F"
(resp., of F*°) consisting of all vectors whose first entry is 0.

For 0 < j < j+k the identities

(e) nejix = ay (3.3)

are easily verified.

The next result follows from an analysis of the transformations .#Z(n). Details
of the proof may be found in [11]. In the statement of the following lemma we shall
assume that p is a fixed integer chosen so that p > m, where m is the length of the word
w=ug ...um generating &> (R)' NR and <7, and 7,4 are both invertible. Also we
shall assume n € N is chosen so that n > p+4.

LEMMA 3.5. (cf.[11][Theorem 6.12]) Let n and p be as above. Then
(0) My (n)tf;%nt///a (n) =%n,

() forany j suchthat 0< j<n—1,andany k> 1, My(n+k)ej = My(n)e; and
Ma(n+k) e = My(n) e,
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(i) Ay(n)eg=eo= Mu(n) ey,
(i) if vE FY!, then Mo (n)v and My(n) v lie in F},
(iv) ifve FP'? then Mo(n)v and My (n)v lie in FPH2.

(v) if j = p+2 then both #My(n)e; and Mo (n) 'e; lie in F(‘)"+1 (the linear span of
{617...,ej}.

We remark that it follows from the form of .#y(n) for n > p+4 thatif p+4 <
k < n then .#y(n)ey and .#y(n)"'e; are bothin F¥ but notin F¥! i.e. that both of
these vectors end in e .
Given the results of the lemma it makes sense to define an invertible transformation
My, on Fy° by setting
Moej = — limg///a(n)eﬁ

for j > 1, and extending .#,, to all of FO by linearity. Similarly for M.

From now on let § be another binary shift of commutant index 3 whose center
sequence eventually agrees with that of o. Let vy, vy,... be the spin generators for 3,
andlet w' =v{?...v" be the word generating 33(R)'NR. Let bob; ... be the bitstream
defining the commutation relations among the generators. Let % be the Toeplitz matrix
corresponding to this bitstream with upper n x n corners denoted by %, . Finally let
W (n) =W p(n) be the invertible linear transformation .7 (")////3_ '(n) on F,. Note
from the lemma that % (n) restricts to an invertible transformation on Fj'.

For the remainder of this section we assume that p has been chosen so that p >
mop = max{m,m'}, and such that the center sequences of both a and 8 agree and
coincide with one of the center sequences in Theorem 2.5 from position p and above.
We assume p has also been chosen so that the center sequences for both & and 3 take
the values 01210 for k = p through k = p +4. In particular %7,, %), <), 4, %) 4 are
all invertible. Finally, we shall assume n € N has been chosen so that n > p+4.

The following result is obtained as an application of the lemma. The proof uses
the fact that E l—E; -

THEOREM 3.6. Let . denote the unilateral shift on F”. Under the standing
assumptions of the preceding,

0) # (n) ey (n) =B,

(i) for any j such that 0 < j<n—1l,andany k> 1, % (n+k)ej =W (n)ej and
W (n+k)~! V/(n)_l,

(il) # (n)eg =eg = W(n)_leo,
(iii) if vE FJ then # (n)v and # (n)~'v lie in F},
(iv) ifve FP™? then W (n)v and # (n)~'v lie in FY*?,

(V) if j = p+2 then both Wy (n)e; and Wy (n) 'e; lie in FOjJrl (the linear span of
{61,...,€j},
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(vi) for any k such that n > k > p, and for any v of the form s,jej_
+ S 1€h—(m—1) T - T S1€6-1 H e, W (n)S V=S W (n)V = rmeri1-m +
Fm—1€g+1—(m—1) - TT1eg+exy1.

Proof. All but the last statement follow from their counterparts in the lemma.
For (vi) note that if & = EJ’”m, JE, (m'—1,)" 1. .EjL,  for j>my, then .#p(n) =
&y 16y a6y ', where F' is the counterpart for § of .7 in the expression for

Mo (n). Noting that (&)~ 'v = ¢; and that (&7)~'v =v for j > k, it follows that

W (n)V = Mo (n)Mp(n)""v
= Mo (n)(Ey_16,-5. p+29/) v
= Mo(n)(F')” l(é”,§+z) L)Y
= Ma(n)(F')H(Epa) - (ED)7NY
:///a(”)(g\/) 1(51;+2) ! (éok 1)
= Mo(n)(F') e
= Ma(n)er

= nfl@pnf2 oo @@17+2J €k

= nfl@pnf2 oo @@17+2ek

=&n-16p-2... Erex

=&,-16,-2... é"kH(rmek,m + Fm—1€k—(m—1) + ...t e+ ek)

= rmek7m+rm—lek7(m71) + . rieg—1 F ek

The last statement of the theorem follows from this calculation. [

From the theorem it makes sense to define # on F* as # = — lim# (n).

n—o0

LEMMA 3.7. (cf [11][Theorem 6.12]) For all j > 0 and for all k > 0 it follows
that (W ~Le;) B(W ~Lejir) = a.

Proof. We have
(W_lej)t‘@w_leﬁrk — (%ﬁ'ﬂglej)t‘@%ﬁ'ﬂo?leﬂrk
- e;(///‘;l)t‘///é '@‘//ﬁ/fgleﬁk
= e;(%gl)t%/flglej+k, where % = “lim”%,
= e;%er
= ag. O

As we shall see in the next section, the linear transformation # ~1.7 % .71
Fy° in the following lemma is closely related to a unitary operator in R which imple-
ments the cocycle conjugacy between o and 3.
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LEMMA 3.8. For j>0and k>0, (W sW .S e, BW 1SW S e =
by.

Proof. We calculate
(W aw s e ) BW WS ej= (W T I W e BW T I W e
= WS W BY T IW e
=, W' S A S Weji
=i W' AIWejii
= ef/flt%)eﬁk—l
= by,

where we have used the fact that v.' &/ .w = v/w for any vectors v and w in
F=. O

REMARK 3.9. From the proof of (vi) in the theorem note that Mg ly = ¢; for
k> p,where V=sye;_n + S 1€ (m—1)+ ..+ 5161+ €.

COROLLARY 3.10. The mapping @ = W .S W .7~V is well-defined as a linear
transformation on Fy> and is in fact an isomorphism on Fy°. Moreover, when restricting
A to Fy,

WIS B W IWS ) =B N
Therefore @(e;)' B¢(ex) = ¢ PBey for all j,k € N.

Proof. Note by (ii), (iii) and (iv) of the theorem, @(ey) =# .S W ey =W 1.7 e
=% "le; € Fy,and for k> 1 parts (iii) and (iv) of the theorem show that ¢(ex) € Fy°
as well. In particular it follows from (iii) that ¢ [z is an isomorphism on Fj for all
n = p,hence ¢ itself is actually an isomorphism on F;°.

It is straightforward to see, from the symmetry of .7, that for j, k € N, e’}d ey =
e’,.fl% ex—1 . Therefore, on Fy°,

W oW NN Bw W s =g Ny sy gy gy s
=g VY S g W T
=V gy !
=7 Vpy!
=%. O

From now on we will specialize to the case where 8 is the binary shift §, from
Theorem 2.5 above with generators vg, vy, ... and bitstream 01001001001 . ... We have
shown that 8 has commutant index 3 and that vov3 is the word generating 3(R)'NR.

Our goal is to show that if ¢ is any other binary shift of commutant index 3,
whose center sequence eventually coincides with that of 8, then § and a are cocycle
conjugate.
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We record the following remark, which follows immediately as a special case of
the remark above and part (vi) of Theorem 3.6.

REMARK 3.11. For k> p, M51(6k+ek_3) =e¢r,and W = . W onthe vector
space of finitely non-zero linear combinations of {e,43+ep,€pia+epi1,...}.

4. Cocycle conjugacy results

As above we will assume in this section that 3 = 3, is the binary shift of commu-
tant index 3 from Theorem 2.5. Below we follow the approach of [10, 11] to define an
automorphism 7 on B(R) related to the map ¢ on F;° of the previous section. As we
will see, 7 is “nearly” an inner automorphism in the sense that for sufficiently large n
there is a unitary operator y in B, (more specifically, in B,NNN(f3), (see the paragraph
following Theorem 4.5 below for the definition of NN(f3)) such that, for any word v in
the generators vg,vy,..., T(v) = +y*vy. Using y we will be able to show that 3 and o
above are cocycle conjugate, i.e., if ¢ is any binary shift of commutant index 3 whose
center sequence eventually coincides with the center sequence 10101210 of 3, then o
and B are cocycle conjugate (see Theorem 4.12).

A similar analysis can be carried out to show that if ¢ is a binary shift of commu-
tant index 3 whose center sequence eventually coincides with the center sequence of
B3 of Example 3 (respectively, of Bs of Example 5) then o is cocycle conjugate to 33
(respectively, to fBs).

Recall that the derived shift of 3, is conjugate to fB;, as is the derived shift of
B3, whereas the derived shift of s is conjugate to 4. Therefore the center sequences
of each of the binary shifts 3,,3 and 5 do not eventually coincide with the center
sequences of the corresponding derived shift. On the other hand, in [11][Theorem 7.12]
it was shown that if o is a binary shift of finite commutant index whose center sequence
eventually agrees with the center sequence of its derived shift .. then o and .. are
cocycle conjugate.

As the center sequence of any shift of commutant index 3 must eventually coincide
with the center sequence of one of the binary shifts f3;,i = 1,2,3,4,5, we can combine
our results from this section and from [1 1] to conclude that there are at most 5 cocycle
conjugacy classes of shifts of commutant index 3.

DEFINITION 4.1. Given a vector s = speg + s1e1 + ... +54¢4 € F, let x(s) be
the word vi'vi'...vy' in R.

Next we use the mapping ¥ to define a mapping 7 on (R). First note by an
application of (3.3) it follows the words ¥ (s) and y(t) commute if and only if s’ %t =
0. From Corollary 3.10 we have

@(e;) Bo(er) = ¢ Bey

for all j,k € N. It therefore follows that if we define words x; in B(R) by x; =
x(@(ej)), for j > 1, thenfor j,k > 1, x; and x; commute if and only if v; and v do.
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We define 7 on the v;’s, for j > 1, by

. X
2(v;) = xj, if xj=xj, and
i) = .
V=lxj, if xj=—x;

For convenience we will write m(v;) =w; forall j € N.
By Corollary 3.10 the mapping ¢ is an isomorphism of F;°. It follows that the set
of linear combinations of words in the w;’s, for j > 1 is weakly dense in 3(R). Hence

; — 1R ! H
by defining 7 on words v =v v ...} according to

n(v) =wiwg .. o,
7 extends to a *-isomorphism on B(R).
The following notation will be useful.

DEFINITION 4.2. Forany n € N let B? be the C* -subalgebra of B, generated by
ViyeeeyVn.

We now wish to show that we can assume that 7 fixes the words v, v,.3 for all
n > p+2. To see this note first from Theorem 3.6(vi) that ¢ fixes e, +e¢,+3, so 7 fixes
VnVn+3 up to multiplication by a scalar, i.e. 7T(v,v,43) = byvyvp3 for some b, € C of
modulus one. On the other hand, since ¢ is an isomorphism of Fj for n > p+2 it
follows that 7 restricts to a *-automorphism of BY. Fix n > p+2. From the paragraph
following Lemma 3.5 we see that we can assume ¢(e,) “ends” with e,, hence 7(v,)
“ends” with v,,, i.e. there is a unitary operator w, in the algebra generated by v; through
Vu—1, such that m(v,) = wv,. Since T(vyvui3) = byvnpvpss, T(vats) = cwvyys for
some scalar ¢. Since the word wv, = m(v,) is hermitian, wv, = (wv,)* = v,w*, so
vowv, = w*. Then

Vit 3WVnt3 = Vi3V (VaWvi ) Vg 3
= V3V W Vp Vi3
= V3V VpVp3w"
= W*,

where the next to last equality holds because vygv3 commutes with v3,v4,... and there-
fore, by symmetry v,v,+3 commutes with v,,v,_1,...,v;. Hence wv,,3 is hermitian
if wv, is. Therefore, having defined 7(v,) as wv, we can define 7(v,+3) as wv,3,
if wv,w =v,, and as —wv,3 if wv,w = —v,. In either case we have T(v,v,13) =
vnVny3. Therefore, having defined 7(v,42), w(vp43) and m(v,44) we can define v; for
Jj = p—+35 such that 7 fixes v,v,+3 for all n > p+2. Hence we have established the
following result.

LEMMA 4.3. There is a *-automorphism ©t of B(R) such that ©t(v;) is a scalar
multiple of x(@(ej)), forall j €N, andforall n> p+2, Tt fixes v,vp43.

REMARK 4.4. Note from Theorem 3.6(vi) that for n > p+2, ¢(e,) is a vector
which ends in e,. Hence 7(v,) is a scalar multiple of a word which ends in v,,.

In [8][Lemma 3.3] Powers obtained the following characterization of the normal-
izer N(f3) of B, i.e. the subgroup of unitary operators w in R such that w*xw € B(R)
forall x € B(R).
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THEOREM 4.5. A unitary operator w is in N(3) if and only w has the form Al
or AV Vi, ... v, where 0 <ky <ky <...<ki.

s

In [9][Theorem 3.7] it was shown that if y € R is a unitary operator with the
property that Ad(y) maps words in the v;’s into other words, then y is a finite product
of words and operators of the form T'(w), for w € N(B), where T'y. = (1/v/2)(I+iw),
if w=w" and (I+w)/v2,if w= —w*. We use the notation NN(B) (the normalizer
of the normalizer group N(f3)) to denote the group of such operators. The proof can
easily be adapted to show that the result holds for factors B, as well as for R, i.e., if
y € By, where B, is a factor and Ad(y) leaves N(f3) N B, invariant, then y is of the
form above. We shall use this result in the proof of the following theorem.

THEOREM 4.6. For any n > p+2, 1 restricts to an automorphism of BY. If, in
addition, BY is a factor, then there is a unitary operator y, € BYNNN(B) such that,
for all words v = vy, vy, ... v, in BY, T(v) = yivyn,.

Proof. For n > p+2 it follows that ¢ restricts to an isomorphism of Fj and
therefore, 7(v;) = x(¢(e;)),1 < j < nisin BY, hence 7 is an automorphism of BY).
If BY is a factor then the automorphism 7 [z is inner. Let y, be a unitary operator
implementing this automorphism. !

To show that y, € NN(f) note by Lemma 4.3 that & maps words v € B in the
v;’s into scalar multiples of words in the v;’s. Therefore Ad(y,)(v) is a word in the
v;j’s. It follows that y, € NN(f), from the remark in the paragraph preceding the
theorem. [

REMARK 4.7. Note that for n € N, Bg is a factor if and only if B,,_; is a factor,
since B,_1 = {vo,...,vs_1}" and BY = B(B,_1) = {v1,...,v,}" are isomorphic.

COROLLARY 4.8. Forevery n> p+2 such that BY is a factor, let y, € B satisfy
750 = Ad(yn) as above. Then BY ¢ is also a factor and y,y; . € NN(B) N (BY)'N

! 0
{VaVit3, Vi 1V 44, Vi 2Vnt 55 Vit 3Vnt6 1 NB, ¢

Proof. Since the center sequence is eventually periodic with period 6 it follows
that BY ¢ is also a factor. Since mgo = Ad(yn) and 70 — Ad(Yn+6), YiXyn =
n n+

Vi r6XVnte forall x € BY, so that YnYy 4 cOmmutes with BY. Since vov3 € B3(R)' NR,
it follows that vovs,vive,vavs and v3ve all commute with {vg,v7,vg,...}”. By the
symmetry of the commutation relations for the spin system corresponding to 3 it fol-
lows that the operators v, vy, +3,Vy+1Vntd, Vpt2Vats and v,43v,46 all commute with Bg
and hence with y, € Bg. On the other hand, y,+¢ commutes with each of these four
operators, since 7 fixes them.

Since 7 maps words in (R) into words in B(R), and since Ad(yn) g0 = 750, it
follows from the argument in the paragraph preceding Theorem 4.6 that y, € NN(B).
Similarly for y,¢. Hence y,y;, s € NN(B) also. [

The following is an immediate consequence of the proof of Theorem 2.5.
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PROPOSITION 4.9. Let n > p+2 be such that B is a factor and the center
Z(B° 1) of B° 41 (respectively, Z(B, +2) of BY 12) is generated by one (respectively,
two) words. Then Z(BY. ) ={z}", where z=viva...vyy1 and Z(BY_ ;) = {z,B(2)}".

THEOREM 4.10. Fix n > p+2 such that v, =0,V,1 =1 and V,40 =2. Then
C= (Bg)/ N {VnVn+3,Vn+1Vn+4,Vn+2Vn+5,Vn+3Vn+6}/ NByy6 = {Zozlzz,z11223}” where
20 = VnVn+3 and Zj = ﬁ‘,(ZO),fOr .] = 07 17273‘

Proof. 1tis straightforward to see that C is generated by the words that it contains.
Suppose w € C is a word. Noting that BY, ¢ = B,V {20,21,22,23}" we can write

t s X .
w= (VG .. V) (2h2 25225) where the exponents are 0’s or 1’s. Since w and

zo through z3 commute with BY) it follows that / does too, where W = v v5 ...V,
We will show that w is a scalar multiple of a word of the form 1% f(u)%!, where u
is the word generating the center of Bg 41 (and therefore, by Proposition 4.9, u and
BB (u) are the words generating the center of BY. ,). Assume that ¥ is a nontrivial word,
then w ¢ B since BY has trivial center. Therefore # is a word that ends with either
Vp+1 OF vu4o and so, since u ends with v, 1, by Theorem 2.3, there is a word of the
form 1% 8(u)*! such that wu* 3 (u)*! € B, and commutes with BY. Since B has trivial
center, W must be a scalar multiple of #*3(u)*!. Therefore we may assume that w has
the form 1 B (u)*120°2]" 252253 .

From the commutation relations associated with the bitstream for 3 it follows that
zo anticommutes with both z; and z, and commutes with z3. Also note from the com-
mutation relations for 8 that vyv; commutes with vg, anticommutes with both v, and
vo, and commutes with v3,vy,.... Therefore we can use the symmetry of the commu-
tation relations to conclude that zy anticommutes with v, | and v,;» and commutes
with v; for 1 < j < n. We also have the result from the preceding proposition that
u=vvy...vy+1. Using the observations above we arrive at the following equations
over GF(2), from w commuting with zo through z3.

sotp1+p2=0
si+pot+p2+p3=0
po+pi+p3=0
p1+p2=0

Then s =0, s; =0, p; = p2 and p3 = po + g, where g = p; = p,. This establishes
the claim. O

Using the preceding results we can show that the *-automorphism 7 of B(R) is
“nearly” inner.

COROLLARY 4.11. Let n and y =y, as above. Then for any word 7 in the
generators vi,va,..., m(z) = +y*zy.
Proof. By assumption y*zy = 7(z) for all words z € B). Since BY  is gen-

erated by Bg and the words z9,21,22,23,2-1 = Va—1Vnt2 and Z_p = V,_2Vuy1, We
may assume that z is one of these words. Since y commutes with zg through z3
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we have y*z;y = z; = 7(z;) for 0 < j < 3. Let w=yj ,v. Since y and y, ¢ are
in NN(f), sois w. Then if j = —1 or —2 we have, since both 7w and Ad(y,+6)
fix zj, ¥'zjy = W'y, 62jynr6w = w'z;w. Since w € C, where C is as in the previ-
ous theorem, it follows from the theorem and paragraph describing NN(f3) follow-
ing Theorem 4.5 that w*z;w must be a scalar multiple of one of the following words:
7j,2j202122,2j21%223 OF 2;2023. But y*zjy € Bg+2 whereas z; is the only word of the
four above that is in BB 45 Therefore we have shown that y*z;y = £y,  (7;vn+6 and

that therefore Ad(y) agrees with 7 on words in BS 16> Up to multiplication by +1.
0

Similarly Ad(yn+¢) agrees with 7 on words in B, 412> Up to scalar multiplica-
tion by 1. But since Bg+12 is generated by BS and z;, for =2 < j <9, and since
Ad(y),Ad(yn+6) and Ad(y,+12) all fix the z;’s up to multiplication by +1; and since
Ad(y,412) agrees with 7w on BY), |, it follows that Ad(y) agrees with 7 on words in
Bg 412 up to a multiple of —1. Continuing inductively establishes the result.

THEOREM 4.12. Let & be a binary shift on R of commutant index 3 and center
sequence that eventually coincides with the center sequence of 3. Then B and o are
cocycle conjugate.

Proof. Let W = My M, 5 ! be the invertible linear transformation defined in the
paragraph preceding Lemma 3.7. From Lemma 3.7 it follows that for any j € N and
keZt, (W e, BW ej=ar= ¢/ ej ;. Hence if we define x;,j € Z* by x; =
x(W e i), the x;’s satisfy the same commutation relations as do the spin generators
for o.

Since #~! is an invertible linear transformation on F* it follows that F* is
spanned by {# e jJj =0}, From the definition of the x;’s in the preceding paragraph
we may therefore conclude that every generator wy is a word in the x;’s. Hence the
von Neumann algebra generated by the x;’s coincides with R.

Let y be the unitary operator defined in the previous result. Then y satisfies
Ad(y)(v) = £m(v) for every word v in the v;’s. We will show that Ad(y)o B is conju-
gate to o, cf. [10]. We shall do this by demonstrating that Ad(y) o B(x;) = £x;1 for
all j > 0. To begin note that % ~'ey = e from Theorem 3.6(ii), xo = x (¥ ~ley) =
x(eo) = vp. But then

Y B(xo)y =y"viy
==x7(v1)

=2x(¢(e1))
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Suppose y*B(x;)y = x4 for 0< j<k—1. Since Boy = yo.” on Fy’,

Y By =y Bx(# 'e))y
=4y (LW er)y
=+1(x (Y er))

and since Toy = Yo,

Y By =tx(o(SW ' er)
=+y(W Low s oW e
= ﬂ:)((Wﬁlelgrl) = tXpy 1.

Define ¥, j € NU{0} inductively by xj = xo and for j >0, ¥} | =Ad(y)o B(x]).
Then ; = =£x; for all j and therefore the s satisfy the same commutation relations
as the w;’s. Therefore we have shown that Ad(y)o B is conjugate to & from which we

can conclude that o and 3 are cocycle conjugate. [

We suspect that for any k > 2 there are only finitely many cocycle conjugacy
classes of binary shifts of commutant index k. The proof that we have used to estab-
lish the result for commutant index 3 does not immediately generalize, however. In
the proof above we relied on the fact that if o has commutant index 3 its center se-
quence contains infinitely many strings of the form 1210. The analogous result is not
necessarily true for the higher commutant cases, i.e., it is not always true that the center
sequence of a binary shift of commutant index k with k > 4 contains has the property
that ¢, = k— 1 for infinitely many n. In [13][Example 4.2], for example, a binary
shift of commutant index 4 is identified whose center sequence eventually has period
2. The proof of Theorem 4.12 does not seem to generalize to cases such as this. We
also suspect that the eventual pattern of the center sequences of binary shifts of a fixed
commutant index is a complete cocycle conjugacy invariant. As evidence to support
this conjecture R. T. Powers and the author showed in [9] that if Ad(y)of3 and a are
conjugate with y € NN(f3) the center sequences of 3 and o must eventually coincide.
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