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1. Introduction

Mazur-Ulam’s classical theorem states that any onto isometry between normed
spaces which maps 0 to 0 is linear. This result has been generalized by T. Figiel [2]
who showed that if Φ is an isometric embedding from a Banach space X to a Banach
space Y such that Φ(0) = 0 and span [φ(X)] = Y , there exists a linear quotient map
Q such that ‖Q‖ = 1 and Q ◦Φ = IdX . The third chapter of this short story is [4]
where it is shown that if a quotient map Q from a Banach space Y onto a separable
Banach space X has a Lipschitz lifting, then it actually has a continuous linear lifting.
Combining this statement with Figiel’s theorem provides another result from [4]: if a
separable Banach space X isometrically embeds into a Banach space Y , there exists an
isometric linear embedding from X into the space Y .

Nigel Kalton had an outstanding ability to set theorems and proofs in their proper
frame. His articles are therefore fountains of ideas, irrigating each of the many fields
to which he contributed: a non exhaustive survey on these contributions is [3]. The
paper [4] is no exception to this rule, and among other things it prepared the ground
for far-reaching extensions, where e.g. the Lipschitz assumption is weakened to the
Hölder condition, leading to very different conclusions ([5], [6], [7] ). However, some
readers could find daunting some arguments from [4], which would probably turn down
undergraduate students.

Since the extension from [4] of Mazur-Ulam’s theorem which is recalled above has
a statement which is understandable to any student in mathematics, it seems appropriate
to provide an elementary proof. This is the purpose of the present short note, where
only basic functional analysis (elementary duality theory) and calculus (culminating
at Fubini’s theorem for continuous functions on Rn ) are used. Moreover this note is
fully self-contained: even the generic smoothness of convex fuctions on Rn is shown,
and a detailed proof of Figiel’s theorem is provided (following [1], although Lemma
2 is not stated there). The main result of the note is Theorem 5, whose proof follows
the strategy of the proof of ([4], Corollary 3.2) but in such an elementary way that
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diagrams, free spaces and infinite-dimensional integration or differentiation arguments
are avoided. Thus our approach makes it clear that the core of the proof consists of
finite-dimensional considerations. We can therefore teach at an undergraduate level
Mazur-Ulam’s theorem and its natural extensions from [2] and [4].

2. Results

We begin with a classical application of Baire category theorem.

PROPOSITION 1. Let g : Rn → R be a convex function. The function g is contin-
uous on Rn and it is differentiable at every point of a dense subset of Rn .

Proof. Pick x = (xi)1�i�n ∈ Rn and α > 0.
If {e1,e2, ...,en} denotes the canonical basis of Rn , convexity shows that

sup
‖h‖1�α

g(x+h)−g(x) = max
1�i�n,|ε|=1

g(x+ εαei)−g(x).

Moreover if C is a non-empty convex subset Rn such that (−x) ∈C for all x ∈C ,
and F : C →R is a convex function such that F(0) = 0 and F is bounded above on C ,
then

sup
x∈C

F(x) = sup
x∈C

|F(x)|.

Thus we have

sup
‖h‖1�α

|g(x+h)−g(x)|= max
1�i�n,|ε|=1

g(x+ εαei)−g(x). (1)

It thus follows from the one-dimensional case that g is continuous at every point
x of Rn .

For k ∈ N∗ , 1 � i � n and t > 0, let

Ok,i(t) =
{

x ∈ Rn ;
g(x+ tei)+g(x− tei)−2g(x)

t
<

1
k

}

and
Vk,i =

⋃
t>0

Ok,i(t).

The sets Vk,i are open (as union of open sets).
Observe now that if f : R → R is a convex function, and if for a given x ∈ R we

define τ : R+ → R by

τ(t) = [ f (x+ t)+ f (x− t)−2 f (x)]/t.

then f est differentiable at x if and only if

lim
t→0+

τ(t) = 0.
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It follows that if we let
Δi =

⋂
k�1

Vk,i

then Δi = {x ∈ Rn ; ∂g
∂xi

(x) exists} .
Since every convex function of one real variable is differentiable outside a count-

able set, the sets Δi are dense in Rn .
Since every set Δi is a countable intersection of open sets, it follows from Baire

category theorem that the set
Ωg =

⋂
1�i�n

Δi

is dense in Rn .

Pick x ∈ Ωg . We define a function G by G(y) = g(y)−g(x)−
n

∑
i=1

(yi− xi)
∂g
∂xi

(x) .

Applying (1) to this function G shows that for any h ∈ Rn ,

|G(x+h)|� max
1�i�n,|ε|=1

G(x+ ε‖h‖1ei).

It follows that Ωg is the set of points in Rn where the function g is differentiable.
This concludes the proof of Proposition 1.

Let ‖ . ‖ be a norm on Rn . We denote Ω‖ . ‖ the set of points where this norm is
differentiable. If x ∈ Ω‖ . ‖ , we denote by {∇‖ . ‖}(x) the differential of the norm at x .

It is easily seen that ‖{∇‖ . ‖}(x)‖ = 〈{∇‖ . ‖}(x), x
‖x‖ 〉 = 1.

Moreover if z ∈Rn and (xp)p�1 is a sequence in Ω‖ . ‖ which converge to z , then

lim
p→∞

〈{∇‖ . ‖}(xp),z〉 = ‖z‖. � (2)

LEMMA 2. Let E be a finite-dimensional normed space, with norm ‖ . ‖ . Pick
x ∈ E a point of differentiability of the norm ‖ . ‖ with ‖x‖ = 1 . Then {∇‖ . ‖}(x) is
the only 1-Lipschitz map ϕ : E → R such that ϕ(tx) = t for all t ∈ R .

Proof. Let ϕ : E → R a 1-Lipschitz map such that ϕ(tx) = t for all t ∈ R . Pick
y ∈ E .

For all t 	= 0, one has

1 = |tϕ(y)− tϕ
(
(ϕ(y)+1/t)x

)| � ‖x− t(y−ϕ(y)x)‖.

Therefore the right-hand side function attains its minimum at t = 0. Differentia-
tion gives

〈{∇‖ . ‖}(x),y−ϕ(y)x〉= 0

and thus {∇‖ . ‖}(x) = ϕ . �
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LEMMA 3. ([2]) Let E be a normed space of finite dimension n, let F be a
normed space and let φ : E → F be an isometry such that φ(0) = 0 . We assume that
span [φ(E)] = F . Then there exists a unique continuous linear map T : F → E such
that T ◦φ = IdE , and moreover ‖T‖ = 1 .

Proof. We first consider the one-dimensional case. Let j : R → F be an isometry
such that j(0) = 0. For all k∈N . there exists x∗k ∈F∗ with norm 1 such that 〈x∗k , j(k)−
j(−k)〉 = 2k . It is easily seen that 〈x∗k , j(t)〉 = t for all t ∈ [−k,k] . It follows by weak*
compactness that there exists x∗ ∈ F∗ with norm 1 such that 〈x∗, j(t)〉= t for all t ∈R ,
and this linear form x∗ does the job.

Take now φ : E → F as above. Pick any x ∈ E where the norm ‖ . ‖ is differ-
entiable. By the one-dimensional case, there exists f ∗x ∈ F∗ with norm 1 such that
〈 f ∗x ,φ(tx)〉 = t for all t ∈ R . Lemma 2 shows that f ∗x ◦φ = {∇‖ . ‖}(x) .

It follows from Proposition 1 and (2) that for any z ∈ E\{0} , there is x′ ∈ Ω‖ . ‖
such that {∇‖ . ‖}(x′)(z) 	= 0.

It follows that we can find points x1,x2, ...,xn in Ω‖ . ‖ such that the set of linear
forms

({∇‖ . ‖}(xi)
)
1�i�n is a basis of E∗ .

We denote by (z j)1� j�n the dual basis in E , such that

{∇‖ . ‖}(xi)(z j) = δi, j.

For all 1 � i � n , there exists f ∗xi
∈ F∗ such that

{∇‖ . ‖}(xi) = f ∗xi
◦φ .

We define T : F → E by

T (y) =
n

∑
i=1

f ∗xi
(y)zi.

The map T is linear and continuous, and T ◦φ = IdE .
Uniqueness of such a map T follows immediately from span [φ(E)] = F .
Moreover, for all x′ ∈ Ω‖ . ‖ , one has

f ∗x′ = {∇‖ . ‖}(x′)◦T (3)

since these continuous linear forms coincide on the dense set span [φ(E)] . If we pick
any y ∈ F and we apply (2) to z = T (y) , it follows from (3) that ‖z‖ � ‖y‖ and thus
‖T‖ = 1. �

THEOREM 4. ([2]) Let X be a separable infinite-dimensional Banach space. Let
F be a normed space and let Φ : X → F be an isometry such that Φ(0) = 0 . We assume
that span [Φ(X)] = F . Then there exists a unique continuous linear map T : F → X
such that T ◦Φ = IdX , and moreover ‖T‖ = 1 .

Proof. We write

X =
⋃
k�1

Ek
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where (Ek)k�1 is an increasing sequence of finite-dimensional subspaces. We let Fk =
span [Φ(Ek)] . By Lemma 3, there exists a unique continuous linear map Tk : Fk → Ek

such that Tk(Φ(x)) = x for all x ∈ Ek , and moreover ‖Tk‖ = 1.
Uniqueness implies that we can consistently define T :

⋃
k�1 Fk → X by T (y) =

Tk(y) if y ∈ Fk , and ‖T‖ = 1 since ‖Tk‖ = 1 for all k . Finally our assumption implies
that F =

⋃
k�1 Fk and T can be extended to F since it takes values in the complete

space X . �

REMARKS.
1) Assuming X separable in Theorem 4 is a matter of convenience. The same

argument works for any Banach space X , written as the union of the directed set of its
finite-dimensional subspaces.

2) Theorem 4 immediately implies Mazur-Ulam’s theorem: every onto isometry
Φ : X → Y between Banach spaces such that Φ(0) = 0 is linear.

THEOREM 5. ([4]) Let X be a separable Banach space. Let Y be a Banach
space, and let Q :Y →X a continuous linear map, such that there exists an M-Lipschitz
map L : X → Y such that Q ◦L = IdX . Then there exists a continuous linear map
S : X → Y such that Q◦ S = IdX and ‖S‖� M.

Proof. Let Lip0(X) be the space of Lipschitz functions f from X to R such that
f (0) = 0, equipped with its natural norm

‖ f‖L = sup

{ | f (x)− f (y)|
‖x− y‖ ; (x,y) ∈ X2, x 	= y

}
.

The dual space X∗ is a subspace of Lip0(X) and ‖x∗‖= ‖x∗‖L pour tout x∗ ∈ X∗ .
Let (xi)i�1 be a linearly independent sequence of vectors in X such that span [(xi)i�1]

= X and ‖xi‖ = 2−i for all i .
We let Ek = span [{xi ; 1 � i � k}] .
We denote Rk : Ek → Lip0(X)∗ the unique linear map which satisfies for all 1 �

n � k et all f ∈ Lip0(X)

Rk(xn)( f ) =
∫

[0,1]k−1

[
f (xn +

k

∑
j=1, j 	=n

t jx j)− f (
k

∑
j=1, j 	=n

t jx j)
]
dt1dt2...dtn−1dtn+1...dtk.

(4)
Pick f ∈ Lip0(X) . Let fk be the restriction of f to Ek . If the function fk est

continuously differentiable, Fubini’s theorem shows that for all x ∈ Ek

Rk(x)( f ) =
∫

[0,1]k
〈{∇ fk}(

k

∑
j=1

t jx j),x〉dt1dt2...dtk. (5)

Thus |Rk(x)( f )| � ‖x‖.‖ f‖L if fk is continuously differentiable on Ek . But clas-
sically, convolutions with a sequence of smooth functions on Ek shows that any f ∈
Lip0(X) is a uniform limit of a sequence f j of functions whose restrictions to Ek are
continuously differentiable, and such that ‖ f j‖L � ‖ f‖L . Hence (5) shows that

‖Rk‖ � 1
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.
Observe now that (4) shows that if 1 � n � k , then

‖Rk+1(xn)−Rk(xn)‖ � 2‖xk+1‖.

It follows that for all x ∈ Ek , the sequence (Rl(x))l�k converges in the Banach
space Lip0(X)∗ .

We let C =
⋃
k�1

Ek and we define for all x ∈C

R(x) = lim
l→∞

Rl(x).

Clearly R is a linear map from C to Lip0(X)∗ such that ‖R‖ = 1. Moreover
Rk(xn)(x∗) = x∗(xn) for all x∗ ∈ X∗ , and thus R(x)(x∗) = x∗(x) for all x ∈ C and all
x∗ ∈ X∗ .

Since C is dense in X , it follows that there exists a linear map R : X → Lip0(X)∗
such that ‖R‖ = 1 and R(x)(x∗) = x∗(x) for all x ∈ X and all x∗ ∈ X∗ .

In the notation of the theorem, we may and do assume that L (0) = 0. We now
define a linear map S : X → Y ∗∗ by the equation

〈S(x),y∗〉 = 〈R(x),y∗ ◦L 〉 (6)

Since weak* convergence in BY ∗ implies uniform convergence on compact sets, (6)
shows that S(x) is weak* continuous on BY∗ and thus S takes its values into Y . More-
over, for any x∗ ∈ X∗ ,

〈x∗,QS(x)〉 = 〈S(x),Q∗(x∗)〉 = 〈R(x),x∗ ◦Q◦L 〉 = 〈R(x),x∗〉 = 〈x∗,x〉

and thus Q◦ S = IdX . Finally, ‖R‖ = 1 shows that ‖S‖ � M . �

THEOREM 6. ([4]) Let X be a separable Banach space. If there exists an isometry
Φ from X into a Banach space Y , then Y contains a closed linear subspace which is
linearly isometric to X .

Proof. We may and do assume that Φ(0) = 0 and that span [Φ(X)] = Y . By
Lemma 3 and Theorem 4, there is a quotient map Q : Y → X of norm 1 such that
Q ◦Φ = IdX . We can therefore apply Theorem 5 with L = Φ , and this shows the
existence of S : X → Y with ‖S‖= 1 and Q◦S = IdX . It is now clear that S is a linear
isometry from X into Y . �

REMARK. In sharp contrast with what happens in Theorem 4, the separability of
X is crucially important in Theorems 5 and 6, which both fail for instance when X is a
non-separable Hilbert space ([4], Theorem 4.3).
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