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CENTRAL AND ALMOST CONSTRAINED

SUBSPACES OF BANACH SPACES

T. S. S. R. K. RAO

Abstract. In this paper we continue the study of central subspaces initiated in [2] and its infinite
version called almost constrained subspaces. We are interested in studying situations where
these intersection properties of balls lead to the existence of a linear projection of norm one. We
show that every finite dimensional subspace is a central subspace only in Hilbert spaces. By
considering direct sums of Banach space we give examples where central subspaces are almost
constrained or one-complemented. We show that a M -ideal can fail to be a central subspace,
answering a question raised in [2].

Mathematics subject classification (2010): Primary 46B20, Secondary 41A50,46E15.
Keywords and phrases: Central subspaces, almost constrained subspaces, one-complemented sub-

spaces, Chebychev centres.

RE F ER EN C ES

[1] D. AMIR, Characterizations of inner product spaces, Operator Theory: Advances and Applications,
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