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BANACH ALGEBRAS OF OPERATOR SEQUENCES

M. SEIDEL AND B. SILBERMANN

Abstract. During the last decades it turned out to be fruitful to apply certain Banach algebra
techniques in the theory of approximation of operators by matrix sequences. Here we discuss
the case of operator sequences (acting on infinite dimensional Banach spaces and which do
not necessarily converge strongly) and we derive analogous results concerning the stability and
Fredholm properties of such sequences. For this, the notions of P -Fredholmness and P -strong
convergence play an important role and are extensively studied. As an application we consider
the finite sections of band-dominated operators on l p -spaces, including the cases p ∈ {1,∞} .
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[2] A. BÖTTCHER, B. SILBERMANN, Analysis of Toeplitz Operators, Second edition, Springer-Verlag,
Berlin, 2006.

[3] S. N. CHANDLER-WILDE, M. LINDNER, Limit Operators, Collective Compactness and the Spectral
Theory of Infinite Matrices, Mem. Amer. Math. Soc. 210 (2011), No. 989.

[4] S. N. CHANDLER-WILDE, M. LINDNER,Boundary integral equations on unbounded rough surfaces:
Fredholmness and the Finite Section Method, J. Integral Equations Appl. 20 (2008), 13–48.

[5] D. E. EDMUNDS, W. D. EVANS, Spectral Theory and Differential Operators, Oxford University
Press, New York, 1987.

[6] I. C. GOHBERG, I. A. FELDMAN, Convolution equations and projection methods for their solution,
Nauka, Moscow 1971; Engl. transl.: Amer. Math. Soc. Transl. of Math. Monographs 41, Providence,
R. I., 1974; German transl.: Akademie-Verlag, Berlin 1974.

[7] I. C. GOHBERG, N. KRUPNIK, One-dimensional Linear Singular Integral Equations, Birkhäuser
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