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THE NEW ν –METRIC INDUCES THE CLASSICAL GAP TOPOLOGY

AMOL SASANE

Abstract. Let A+ denote the set of Laplace transforms of complex Borel measures μ on [0,+∞)
such that μ does not have a singular non-atomic part. In [1], an extension of the classical ν -
metric of Vinnicombe was given, which allowed one to address robust stabilization problems
for unstable plants over A+ . In this article, we show that this new ν -metric gives a topology
on unstable plants which coincides with the classical gap topology for unstable plants over A+
with a single input and a single output.
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