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NULL–ORBIT REFLEXIVE OPERATORS

DON HADWIN, ILEANA IONAŞCU AND HASSAN YOUSEFI

Abstract. We introduce and study the notion of null-orbit reflexivity, which is a slight perturba-
tion of the notion of orbit-reflexivity. Positive results for orbit reflexivity and the recent notion of
C -orbit reflexivity both extend to null-orbit reflexivity. Of the two known examples of operators
that are not orbit-reflexive, one is null-orbit reflexive and the other is not. The class of null-orbit
reflexive operators includes the classes of hyponormal, algebraic, compact, strictly block-upper
(lower) triangular operators, and operators whose spectral radius is not 1. We also prove that
every polynomially bounded operator on a Hilbert space is both orbit-reflexive and null-orbit
reflexive.
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