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THE RIEMANNIAN MEAN AND MATRIX INEQUALITIES RELATED

TO THE ANDO–HIAI INEQUALITY AND CHAOTIC ORDER

TAKEAKI YAMAZAKI

Abstract. The Riemannian mean on the convex cone of positive definite matrices is a kind of
geometric mean of n -matrices which is an extension of the geometric mean of two-matrices. In
this paper, we derive the Ando-Hiai inequality for the Riemannian mean which is an extension
of the well-known Ando-Hiai inequality of two-matrices. Moreover, we shall show an extension
of a characterization of chaotic order. Lastly, we will give a negative answer for the problem
whether the same results are satisfied or not for other geometric means of n -matrices.
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