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SPECTRA AND APPROXIMATIONS OF A
CLASS OF SIGN-SYMMETRIC MATRICES

OLGA Y. KUSHEL

(Communicated by L. Rodman)

Abstract. A new class of sign-symmetric matrices is introduced in this paper. Such matrices
are called J-sign-symmetric. The spectrum of a J-sign-symmetric irreducible matrix is studied
under the assumption that its second compound matrix is also J-sign-symmetric. The con-
ditions for such matrices to have complex eigenvalues on the spectral circle are given. The
existence of two positive simple eigenvalues A; > A, > 0 of a J-sign-symmetric irreducible
matrix A is proved under some additional conditions. The question when the approximation
of a J-sign-symmetric matrix with a J-sign-symmetric second compound matrix by strictly J-
sign-symmetric matrices with strictly J-sign-symmetric second compound matrices is possible
is also answered in this paper.

1. Introduction

The classical theorem of Gantmacher and Krein (see [1, p. 263, Theorem 9]) al-
lows one to infer the positivity of the first two eigenvalues of a matrix A = {a;;}
from simple positivity properties of A.

A matrix A is said to be positive (non-negative)if all its elements a;; are positive
(respectively, nonnegative). A matrix A is said to be 2-strictly totally positive (2-STP)
if A is positive and its second compound matrix A® s also positive. Recall that NS

i
k'l
n, of the initial matrix A. The minors are listed in the lexicographic order. The matrix
A@ s (5) x (5) dimensional, where (}) = w

We denote by p(A) the spectral radius of A. Arrange the eigenvalues {A;}"_ | of
A into a sequence (taking into account their multiplicities), so that

n
i,j=1

is the matrix that consists of all the minors A ( ,where | <i<j<n, 1< k<I<

PA) =M= M| = [As] = -+ = |Aal.
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THEOREM A. (Gantmacher, Krein [1, p. 263]) If A is a 2-STP matrix, then
(@) PA) =41 > T > A > > |A] > 0;
(b) both Ay and A, are simple.

The first result of this paper (Theorem 8) extends the Gantmacher—Krein theorem
to a wider class of matrices. To specify this class we take any subset J of [n] :=
{1,2,...,n} and a matrix A = {a;;}] ,_,. Asusual, J°:= [n]\J. Then

] x[n]=UxJ)UUXI)VUI xJ)VU X JT)
is a partition of [n] x [n] into four pairwise disjoint subsets.

DEFINITION 1. A matrix A = {a,-j}zjzl is called strictly J-sign-symmetric (SJS)
if

ai;j>0 on (JxJ)U(xJ);

and
a;ij <0 on (JxJ)YU(JxJ).

Note, that the subset J is uniquely determined (up to J¢) by A.
A matrix A is called 2-strictly totally J-sign-symmetric (2-STJS) if A is SJS,
and its second compound matrix A(?) is also SJS.

THEOREM 8. If A is a 2-STJS matrix, then
@ pA) =M >0 >[A[= = 20;
(b) both Ay and ), are simple.

We also extend the second Gantmacher—Krein theorem (see [1, p. 269, Theorem
13]). A matrix A is said to be 2-totally positive (2-TP) if A is nonnegative and its
second compound matrix A?) is also nonnegative.

THEOREM B. (Gantmacher, Krein [1, p. 269]) If A is a 2-TP matrix, then

PA) =M =0 =N3> = |4 >0.

Theorem B comes out from Theorem A and from the following statement (see [1,
p- 268, Theorem 12].

THEOREM C. (Gantmacher, Krein [1, p. 268]) If A is a 2-TP matrix, then there
exists a sequence {A}_| of 2-STP matrices which converges to A.

DEFINITION 2. A matrix A = {a,-j}zjzl is called J-sign-symmetric (JS) if
aij >0 on (JxJ)U(xJ);

and
a;; <0 on (JxJ)U(J xJ).
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In this case the subset J may not be uniquely determined, but there is a finite number
of ways to determine it.

A matrix A is called 2-totally J—sign-symmetric (2-TJS) if A is JS and its second
compound matrix A is also JS.

We show that not every 2-TJS matrix is similar to a 2-TP matrix. So the following
results can not be deduced from similarity transformations of the well-known class of
2-TP matrices. We show that, although the set of all 2-STP matrices is dense in the
set of all 2-TP matrices, the set of all 2-STJS matrices is not dense in the set of all
2-TJS matrices. So Theorem B can be extended only to a certain subclass of 2-TJS
matrices, which can be approximated by 2-STJS matrices. This approximation exists
under certain requirements on both sets J C [n] and J, C [(5)]. (The sets J and J, are
given in Definition 1 for the matrices A and A(?), respectively.) These requirements are
described in Section 10 in terms of the properties of a special binary relation W (J,J;)
on [n]. The obtained conditions are necessary as Example 4 of a 2-TJS matrix, for
which such an approximation does not exist, demonstrates.

Our proof of the extension of Theorem B consists of two steps.

First, for a given 2-TJS matrix, we find a 2-TP matrix A, a permutation matrix Q
and a diagonal matrix D such that A = DQAQ’D~! (Theorem 10). Note that this con-
struction is not possible for every 2-TJS matrix, but is possible under our assumptions.

Applying Theorem C, we find a sequence {A, }e_, of 2-STP matrices that con-
verges to A. Then each A, = DQA QD! is a 2-STJS matrix and the sequence
{A,};;_, convergesto A. Thus we obtain

THEOREM 12. If A is a 2-TJS matrix and at least one of the possible binary
relations W (J,J,) is transitive, then

PA) =M =h > A= =[] >0

If all the possible binary relations W (J,J,) are not transitive, the spectral proper-
ties of a 2-TJS matrix A are completely different and the matrix A cannot be approx-
imated by 2-STJS matrices. However, we can still describe the peripheral spectrum of
such a matrix under some additional conditions.

The matrix A is said to be reducible if there is a permutation of coordinates which
A O
B A,
matrix A is said to be irreducible [6].

reduces it to the form ( ) , where A|, A, are square matrices. Otherwise the

THEOREM 13. Let A be an irreducible 2-TJS matrix. Then one of the following
two cases occurs:

(1) At least one of the possible binary relations W (J,J>) is transitive. Then A has a
positive simple eigenvalue Ay and a nonnegative eigenvalue A :

pAY =M > 2|3 =>- 2| =0
(2) All W(J,J2) are not transitive. Then there is an odd number k > 1 of eigenvalues

on the spectral circle |A| = p(A). Each of them is simple and they coincide with
the kth roots of (p(A))F.
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A matrix A is called 2-torally irreducible J-sign-symmetric (2-T1JS) if A is ir-
reducible J-sign-symmetric and its second compound matrix A is also irreducible
J-sign-symmetric. In this case both the sets J and J, are uniquely determined. Thus
the binary relation W (J,J,) is uniquely determined. So we have the statement

THEOREM 14. Let A be a 2-T1JS matrix. Then one of the following two cases
occurs:

(1) The binary relation W (J,J,) is transitive. Then A has two positive simple eigen-
values Ay, Ay:
pAY=M>L ===l

(2) The binary relation W (J,J,) is not transitive. Then there are exactly three eigen-
values on the spectral circle |L| = p(A). Each of them is simple and they coincide
with the cube roots of (p(A))3.

We also give examples illustrating both cases of Theorem 14.
Then we give a sufficient condition of the existence of the second nonnegative
eigenvalue.

THEOREM 15. Let A = {a;;}};_, be an irreducible 2-TJS matrix. Let at least
one entry ai (i =1, ..., n) be nonzero. Then A has a positive simple eigenvalue

A1 = p(A) and a nonnegative eigenvalue A :
PA)=21> M= W3] = > |Aa| 2 0.

The following statement generalizes Theorem 13 to the case of arbitrary 2-TJS
matrices.

THEOREM 16. Let A be a 2-TJS matrix with p(A) > 0. Then Ay = p(A) is a
positive eigenvalue of A. Moreover, there are m sets of eigenvalues on the spectral
circle |A| = p(A), where m is the algebraic multiplicity of Ay = p(A). The jth set
(j=1, ..., m) contains an odd number k; > 1 of eigenvalues which coincide with the
k;jth roots of (p(A))k.

2. Tensor and exterior powers of R”

Since tensor and exterior powers of function spaces can be realized also as function
spaces, we consider R" as the n-dimensional function space X, defined on the discrete
set [n] ={1,2,...,n}. The standard basis of X is formed by the functions ey, es,...,e,,
defined by

Lif i=j;
0, ifi # j.
The tensor square ®>X of the space X is the space of all functions defined on the

set [n] x [n], which consists of n? pairs of the form (i, j), where i, € [n]. If x,y € X,
then their tensor product

(x@y) (i, j) = x(0)y(j)
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is a function on [n] x [n]. All the possible tensor products {e;®e;}];_; of the initial

basis functions form a basis in ®?X (see [2], [3]). It follows that dim(®?X) = n?.

The exterior square A?X of the space X is a subspace of the space ®2X, consist-
ing of antisymmetric functions, i.e. functions f(i, j), satisfying the equality f(i,j) =
—f(j;i) on [n] x [n].

The space A’X is spanned by elementary exterior products x A y:

(xAY)(@,J) = (x@y) (i, ) = (Y@ x) (i, ) = x(0)y(7) —x()y (@)
Given any subset W C [n] x [n], we denote by W* its symmetric reflection in
[n] x [n] with respect to the main diagonal A={(i,i): i=1, ..., n}:
W ={(j,i): (i,j) e W}
Let W C [n] x [n] satisfy
WUW? = [n] x [n]; (1)
WAW* =A. (2)

LEMMA 1. Given any W C [n] x [n] satisfying (1) and (2), the space N*X is
isomorphic to the space X(W \ A) of all real functions on W \ A.

Proof. Any function on W\ A can be extended via antisymmetry to [n] x [n] by
the unique way. The received antisymmetric function is supposed to be zeroon A. [

REMARK. This simple fact is no doubt well known, but we could not find it in the
literature.

LEMMA 2. Given any W C [n] X [n] satisfying (1) and (2), the size of the set
W\ A, Card(W\A), is equal 1o (5).

The proof of Lemma 2 is quite obvious.
Lemma 2 implies that for any W satisfying (1) and (2) the following spaces are
isomorphic:
A2R" = X(W\ A) = RE),
It is easy to see that we can define 2(5) different sets W C [n] x [n], satisfying (1)
and (2). In this way, we get 2(3) different constructions for the space A\2X 2= X(W\A).

3. Binary relations on [n]

Binary relations on [n] are defined by the subsets of [n] x [n] (see [4]). Given an

w
arbitrary W C [n] x [n], we write i < j to denote (i,j) € W.
As usual, we say that a binary relation W is:

w
— reflexive if i < i for any i € [n]; equivalently, if A C W NW*;

w w
— antisymmetric if i < j, j < i imply i = j for any i,j € [n]; equivalently, if
WNWS=A;
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W w w
— transitive if i < j and j < k imply i < k for any i, j,k € [n]; equivalently, if
(i,j) € W and (j,k) € W imply (i,k) € W;

w w
— connected if, for any i, j € [n], we have either i < j or j < i; equivalently, if
WUW? = [n] x [n].
w
A binary relation < is said to be a linear order, if it is reflexive, antisymmetric,
transitive and connected (see [5]).

LEMMA 3. Any set W C [n] X [n] satisfying (1) and (2) determines a connected
antisymmetric reflexive binary relation on [n]. If in addition W is transitive, then it
determines a linear order on [n].

Conversely, any connected antisymmetric reflexive binary relation on [n] is gen-
erated by a set W C [n] x [n] satisfying (1) and (2), and any linear order on [n] is
generated by a transitive set W C [n] X [n] satisfying (1) and (2).

Proof. = The first part of the proof follows from the reasoning preceding the
lemma.
< Given a binary relation < on [n], we define:

W={(i,)) € [n]x[n]:i<j}
WS ={(i,j) € [n] x [n] : j < i}.

Then the necessary properties of W and W* follows from the corresponding properties
of <. O

The set M = {(i,j) € [n] x [n] : i < j}, which defines the natural linear order on
[n], is used in the classical theory of 2-TP matrices (see [1]).

4. Bases in A\ZR”

Given an arbitrary basis ey, ..., e, of R", we consider the set of all possible
exterior products of the form {e; /\ej}, where 1 < i < j < n to be the canonical basis
of the space AZR" (see [2], [3]). However, there exist other bases of AZR” consisting
of exterior products of the initial basic vectors. Namely, we can construct 2() different
bases by choosing an arbitrary element from every pair e¢; Ae; and e; Ae; (i # j).

LEMMA 4. Every W C [n] X [n] satisfying (1) and (2) uniquely defines a basis
in N’R", consisting of the exterior products of ey, ..., e,. The converse is also true:
every basis in N*R" consisting of some exterior products of ey, ..., e, uniquely defines
a set W C [n] X [n], satisfying (1) and (2).

Proof. = Givenaset W C [n] X [n] satisfying (1) and (2), we examine the system
A ={eiNej}(ijjew\a- Show that A is a basis in A2X. For any e¢; \e; € A and for any
(k,1) € W\ A we have

Lif (i,j) = (k,1);
(eiNej)(k,l) =
0  otherwise.
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This shows that the system A is linearly independent. Since A2X =X(W \A) is (5)-
dimensional and A contains exactly (g) elements, the system A also spans the whole
space AZX.

< Given a basis A of the space A*X consisting of some exterior products of

ey, ..., en, we define the set W:
W ={(i,j) € [n] x [n]: e;Nej € AfUA.

Show that W satisfies (1). Take a pair (ig, jo) € WNW?. In this case we have (ig, jo) €
W and (jo,ip) € W. If ig # jo, then e;; Aej, € A and ej, Aej, € A. It follows that
ej, Nej, and e, Ae;, are linearly independent. This contradicts the equality e;, Aej, =
—(ej, Neiy). So we have iy = jo for any pair (ig, jo) € WNW*.

We now verify condition (2). Assume that there exists a pair (ig, jo), io # Jjo, in
([n] % [n]) \ (WUW?). Then we have (jo,io) € ([n] x [n]) \ (WUW?). It follows that
neither e;; Aej, no e;, Nej, isin A. Add e;, Aej, to the system A. It is easy to see
that the obtained system remains linearly independent. This contradicts the condition
that A is a maximal linearly independent system in A’X. [J

Abasis {e;A\e;}(; jjew\a defined by the set W is called a W —basis. We enumerate
the elements of a W—basis in the lexicographic order.

EXAMPLE 1. Let M = {(i, ) € [n] x [n]: i < j}. Then M\A={(i,j) € [n] x [n] :
i < j}, and the corresponding basis is {e; Ae;}i<;, i.e., the canonical basis of the space
AZR” (see [1], [3]).

5. Exterior square of a linear operator in R”

The exterior square A?A of the operator A : X — X acts on the space AX ac-
cording to the rule:

(A2A)(x Ay) = Ax N Ay.

Recall the following properties of A2A (see [1], p. 64).

1. A*(AB) = (A2A)(A*B) for any linear operators A,B : X — X.

2. (A2A)~1 = A%(A~1) for any invertible linear operator A : X — X.

Below we study spectral properties of the operator A, assuming that its exterior
square A’A leaves invariant a cone in A?X. For this condition to hold, it is enough to
have the matrix of A%A positive in some basis in A\?X.

Let an operator A be defined by a matrix A = {a;;};_, in the basis {ey, ..., en}.
To examine the matrix of A2A in a W—basis defined by a set W satisfying (1) and (2)
we recall the following definitions.

A determinant A < ;{ J ) , formed by the rows indexed by the integers i and j and

the columns indexed by k and [ (i, j, k, [ € [n]) of the matrix A, is called a generalized
minor of the second order.



742 OLGA Y. KUSHEL

We call the matrix consisting of all generalized minors A ( ;{ { ) , where (i, j), (k,1) €

(W\ A), the second W —matrix of the initial matrix A and denote it by A&%) . The gen-
eralized minors are listed in the lexicographic order.

EXAMPLE 2. Let W =M = {(i,j) € [n] x [n] : i < j}. Then the corresponding

W —matrix is a matrix consisting of all minors A (llc {) with i < j, k<1, i.e., the

second compound matrix.
We now demonstrate the connection between A‘(,[%) and the matrix of A2A.

THEOREM 1. Let the operator A be defined by a matrix A = {a;;}};_, in the
basis ey,...,en. Then, for any W C [n] X [n] satisfying (1) and (2), the matrix of the
exterior square N*A of the operator A in the W —basis {ei/\ej}(,) jlew\a coincides with

the second W —matrix Aé‘%).

Proof. Since A(ex) = Y, ayge; for k=1, ..., n, we have
i=1

n n n
(/\2A)(ei/\ej) =AejNAej = (Zakiek> A (Zaljel> = Z ak,-alj(ek/\el) =
k=1 =1

ki=1

n

= Z ak,-alj(ek/\el) + 2 ak,-alj(ek/\el) + Z ak,-alj(ek/\el) =
(k)eW\A) Pl (kD)e(W\A)

= 2 ak,-alj(ek Ne)+0— 2 ak,-alj(el Aeg).
(k)e(W\A) (k1)e(W\A)

Interchange the indices [/ and k in the third sum:

2 ak,-alj(ek Nep) — 2 aliakj(ek Nep) =
(k1)e(W\A) (k)e(W\A)

k1
= (akialj —al,-akj)(ek/\el) = 2 A (l ]) (ex Neyp),
)

(k1)e(W\A) (k1 e(W\A

where A (llc ]l ) are the elements of the corresponding column of the matrix A‘(;) . So

the matrix of A%A in the basis {e; A ej}i,j)ew\a coincides with A&%) . O

It follows from Theorem 1 that the matrix of A?A in the basis {e; A ej}i<j coin-
cides with A , 1.e., the second compound matrix of A.

THEOREM 2. Let W C [n] x [n] satisfy (1) and (2). Let {A;}}_, be the set of all
eigenvalues of the matrix A repeated according to their multiplicity. Then all possible
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products of the type {AiA;}, where 1 < i< j < n, form the set of all eigenvalues of the

second W —matrix Aé‘%) repeated according to their multiplicity.

Proof. Recall that all possible products of the type {A;A;}, where 1 <i< j<n,
form the set of all eigenvalues of A%A, repeated according to their multiplicity (see [3]).
Then apply Theorem 1. [

Note, that in the case W = M Theorem 2 turns into the Kronecker theorem (see
[1, p. 65, Theorem 23]) about the eigenvalues of A® . The proof of the Kronecker
theorem that does not make use of exterior products is given in [1].

6. Nonnegative and J -sign-symmetric matrices

The proof of Theorem A is based on the well-known result of Perron and Frobenius
(see [6]).

THEOREM 3. (Perron) Let the matrix A of a linear operator A : R* — R" be
(entrywise) positive. Then the spectral radius p(A) > 0 is a simple positive eigenvalue
of the operator A. Moreover, p(A) is srictly bigger than the absolute value of any other
eigenvalue of A, and the eigenvector x| corresponding to Ay = p(A) is (entrywise)
positive.

It is easy to see, that the Perron theorem also holds for any matrix similar to a
positive matrix. Here a natural question arises: how to determine if an arbitrary matrix
is similar to some positive matrix? We now prove a criterion of similarity, which will
be used later.

THEOREM 4. The matrix A is SJS if and only if A = DAD"! for some positive
matrix A and diagonal matrix D.

Proof. = Define the diagonal matrix D:
-1 ifiel;
dii =
1 otherwise.

Then A = D'AD is positive.
< Define J C [n] as follows:

J={i€n]: sign(dy) =—1}.
Then A can be seen to be strictly J-sign-symmetric. [

COROLLARY 1. Let the matrix A of a linear operator A : R" — R" be SJS. Then
the spectral radius p(A) > 0 is a simple positive eigenvalue of the operator A, strictly
bigger than the absolute value of any other eigenvalue of A.

Note that the number of all different types of n x n SJS matrices is equal to 2",

while the number of all different types of (5) x (5) SIS matrices is equal to 2()-1,
The class of positive matrices is a subclass of irreducible nonnegative matrices.
The following result of Frobenius is widely known:
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THEOREM 5. (Frobenius) Let the matrix A of a linear operator A be nonnegative
and irreducible. Then the spectral radius p(A) > 0 is a simple positive eigenvalue of
the operator A. The eigenvector x| corresponding to the eigenvalue Ay = p(A) is
positive. If h is a number of the eigenvalues of the operator A whose absolute values
are equal to p(A), then all of them are simple and they coincide with the hth roots of
(p(A))". Moreover; the spectrum of A is invariant under rotations by 2% about the

origin.

The number % of the eigenvalues whose absolute values are equal to p(A) is
called the index of imprimitivity of the irreducible operator A. The operator A is called
primitive if h(A) = 1, and imprimitive if h(A) > 1.

THEOREM 6. The matrix A is JS if and only if A = DAD"! for some nonneg-
ative matrix A and diagonal matrix D. Moreover, if A is irreducible, then A is also
irreducible.

Proof. The proof is analogical to the proof of Theorem 4. [

COROLLARY 2. Let the matrix A of a linear operator A be irreducible JS. Then
the spectral radius p(A) > 0 is a simple positive eigenvalue of the operator A. If h is a
number of the eigenvalues of the operator A whose absolute values are equal to p(A),
then all of them are simple and they coincide with the hth roots of (p(A))". Moreover,

the spectrum of A is invariant under rotations by 27” about the origin.

Note, that if the matrix A is irreducible JS, then the set J is uniquely determined
(up to the set J¢).

The following sufficient criteria of primitivity was proved in [7] (see [7], p. 49,
Corollary 1.1): if a matrix A = {a,-j}zjzl is irreducible, and Y, a; > 0, then A is
primitive. This implies

LEMMA 5. Let the matrix A = {aij}f_,»:l of a linear operator A be JS. Let at least

one element aj; be nonzero. Then p(A) > 0 and if A is irreducible then it is primitive.

Proof. Since A is JS we have a;; > 0 for i =1, ..., n. Since at least one of
aji # 0, we have the following estimate

n
zaii >0,

where {A4;}"" | is the set of all eigenvalues of the operator A, repeated according to
multiplicity. O
Let us recall also the following result of Frobenius (see, for example, [6]).

THEOREM 7. (Frobenius) Let the matrix A of a linear operator A be nonnegative
and reducible. Then there is a n X n permutation matrix P such that

PAP ! =A,
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where A is a block-triangular form with the finite number | < n of square irreducible
(or zero) blocs Aj (j=1,...,1) on the principal diagonal and zero entries above the
principal diagonal:

Ay 0o ... 0 0 0o ...0

0 A, ... O 0 0o ...0

~ 0 0o ... A 0 0o ...0
A= r 3
B.y11Byi2...By1, Ay 0.0 (3)

Br+21 Br+22 e Br+2r Br+2r+1 Ar+2 .. 0

By B ... By By B A

A is uniquely defined (up to a permutation of the blocks).

The spectral radius p(A) is an eigenvalue of the operator A with the correspond-
ing nonnegative eigenvector x\. Moreover, the following equalities hold:

1
o) =Uon(a). pa)= max {p(a))
=1 e
where G,(A;) are the sets of all eigenvalues and p(A;) are the spectral radii of the
irreducible blocks A; (j=1,...,1).

If tlle matrix A is reducible JS, then we have the representation A = IZPKP”D*1 s
where A is the block-diagonal form of a nonnegative reducible matrix A. Note, that
the algebraic multiplicity of any eigenvalue A with |A| = p(A) does not exceed the
algebraic multiplicity of p(A).

7. Proof of Theorem 8

Enumerate the eigenvalues of the operator A decreasing order of their absolute
values (taking into account their multiplicities):

M| = 22| 2 |A3] = -+ = |2l

Applying Corollary 1 to the SIS matrix A, we get 1 = p(A) > 0 is a simple positive
eigenvalue of A. Applying Corollary 1 to the matrix A?), we get p(A(2>) >0isa
simple positive eigenvalue of A(2).

It follows from Theorem 2 that the matrix A®) has no eigenvalues other than the
products of the form A;A;, where i < j. Therefore p(A(z)) > 0 is a product A;4; for
some indices i, j, i < j. Since the eigenvalues are enumerated in decreasing order, and
since there is only one eigenvalue on the spectral circle |A| = p(A), we get p(A?) =

As. So M:f’(i—f”w. 0
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8. Connection between A&%) and A

In Section 10 we will study the case when the matrix A is 2-TJS, i.e., A is similar
to some nonnegative matrix, and its second compound matrix A?) is also similar to
some nonnegative matrix. Note that these two conditions do not mean that A is similar
to a 2-TP matrix and do not guarantee the reality of the peripheral spectrum of the
matrix A. This can be seen by invoking the above conception of a W—basis and a
W —matrix. The following theorem describes the link between the matrices Aé‘%) and
A2,

THEOREM 9. Let the second compound matrix A of the matrix A be JS. Then

there exists a set W C [n] x [n] satisfying (1) and (2) such that the corresponding W —

. 2) . . . .. . 2) . .
matrix Ay, is nonnegative. Moreover, if A?) g irreducible, then Aév) is also irre-

ducible.

The converse is also true. Suppose for some set W C [n] X [n] satisfying (1) and

(2), the matrix A‘(;)

is nonnegative. Then the second compound matrix A s Js.
Moreover, if A&%) is irreducible, then A?) is also irreducible.
Proof. < Given a set W C [n] x [n] satisfying (1) and (2) such that the cor-

responding W —matrix A‘(;) is nonnegative, we show that A(?) is JS. Define the set
L C[(H)]: o
B =A{a(ij): (i,j) e MOW)\A},

where o(i, j) = ¥i~! (n—k) + j—i is the number of the pairs (i, j) in the lexicographic
order. Notice that J§ = [(3)]\ J>. We get

Jy={a(i,j): (i,j) € MNW)\ A}

[(’;)] x [(;ﬂ = (o X Ja) U (J2 X J§) U (JS X Jo) U (J5 x J5).
Since M = (M NW)U (MNW?*), we get the corresponding partition of M x M :
MxXM=(MNW)x (MOAW))U(MNW) x (MNW*))U
UMW) x (MNW)U((MNW?) x (MNW?)).

iJj

Examine an arbitrary minor A ( k1

) , where i < j, k <. We have the following

four cases.

Case 1. If (i,),(k,l) € Jo, then (i,j),(k,]) € (MNW), and A (;{ {) is an element of

A&%) and hence is nonnegative.
Case 2. If (i, ), (k,1) € JS, then (i, ), (k,]) € (MNW?*) and (j,i),(l,k) € (MNW). The
AN Ji\ . 2) .
k1 =A 1k k) isan element of Ay’ and is

also nonnegative.

equality A ( implies that A (
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Case 3. If (i,j) € J, and (k,I) € J§, then (i,j) € MNW and (k,]) e MNW*. The

equality A (k l) —A (l k) implies that A (k l) is nonpositive.

Case 4. This case (i,j) € MNW?*, and (k,l) € MNW is analogous to Case 3. Here

A (;{ {) is again nonpositive.

The remaining proof of irreducibility of Aé‘%) is obvious.
= Now let A®) be JS. Then we can find a set J, C [(5)] such that

aij=0 on (JxJ)U(JsxJ5);

and
aij< on (JQXJQ)U(JEXJE).

Define a set W:
(i,j) € W & eitheri < jand o(i, j) € J, ori > jand a(j,i) € J5. 4)

It is easy to see that W satisfies (1) and (2). The nonnegativity and irreducibility
of Aé‘%) are proved analogously to the proof of the first part. [

9. Permutations and isomorphisms of the space X

It is well known (see Theorem B), that the two eigenvalues of a matrix A with
largest absolute values are real and nonnegative whenever A is 2-TP. However, it is not
true for a 2-TJS matrix A. In Section 10 we will give some sufficient conditions for the
reality of the peripheral spectrum of a 2-TJS matrix.

Let us study the case when W is transitive.

LEMMA 6. Every transitive W satisfying (1) and (2) is uniquely defined by a
permutation 6, = (0(1),...,0(n)). The converse is also true: every permutation o,
of [n] is uniquely defined by a transitive W satisfying (1) and (2).

Proof. = Given a permutation ¢, = (6(1),...,0(n)), we define W :

W ={(i,j) € [a] x[n]: o, ' (i) <0, "' (j)}-

Properties (1) and (2) are obvious. To check transitivity, We let (z ]) (j.k) ew
for some i, j,k € [n]. Then we have o, (i) < o, !(j) and o, !(j) < 0, (k). Since
o, ! maps (o(1),...,0(n)) to [n], these inequalities imply o, ! (i) < G_l(k) and the
inclusion (i,k) € W holds.

< Given a transitive W satisfying (1) and (2), we define o, by induction:

Doi(l):=1.

2) 0p(1):=2, 0(2) :=1,if (2,1) € W and 0»(1) := 1, 02(2) := 2 otherwise.
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3) Given 0|, we define
l'=max{k: 1 <k<j—1; (0j_1(k),j) e W}.

If (0j-1(k),j) €eW* forall k=1, ..., j—1,let [ := 0. Define

oj(i) == Js i=1+1;
G.,',](l'—l),i:l-l-l ceey e

Show that the resulting permutation ¢, defines the same set W. Let

Vi={(i,j) € n] x [n]: 0, (i) < 0, (j)}-

Show that V coincides with W . Let (i, j) € V. In this case the inequality o, ! (i) <
o, !(j) implies i < j in o,([n]). Let ky, ..., ky be all indices between i and j in
0,([n]). Write 0,([n]) in the following form:

Gu([n]) = Ga(1), ooy iy K1y vy Koy s ey O(n).

It follows from the construction of o, that all the pairs (i,k1), (k2,k3), ..., (km—1,km),
(km, j) belong to W. Since W is transitive, the inclusion (i,k2) € W follows from
the inclusions (i,k;) € W, (k1,ky) € W. Repeating this reasoning m times, we get the
inclusion (i, j) € W. Therefore the inclusion V. C W holds. Show that W C V. Suppose
the contrary: o, ' (ig) > o, !(jo) for some (ig, jo) € W\ A. Then o, !(jo) < o, ! (io)
implies jo < io in 0,([n]), and it follows from the above reasoning that (jo,ip) € W\A.
This contradicts condition (2). [

Define a permutation operator Qg, :

an(ei) = €, (i) i=1,...,n

THEOREM 10. Let the matrix A of a linear operator A : R" — R" be nonnegative,
and let its second compound matrix A?) be JS. Let W C [n] x [n], defined by (4), be
transitive. Then there exists a permutation operator Qg, such that the matrix P =
Q(T,nAQGn is 2-TP. Moreover, if A and A are irreducible, the P and P are also
irreducible.

Proof. Define 0, as in the proof of Lemma 6. Notice that p;; = ag,(;)s,(;)- The
matrix P = QGTAQQ is obviously nonnegative. Prove that P(2) is nonnegative. Examine
iJj

l

an arbitrary minor P X

A(20 )

ou(k) ou(l))

It follows from the construction of o, that (0,(i),0,(j)) € W if and only if
c, '0,(i) < 0, '0,(j). So the inequalities i < j, k < I imply (0, (i), 6,(})), (0u(k),0u(1))

, where i < j, k <. It is equal to the generalized minor
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€ W. Hence the minor A On(i) On(/) is an element of the W —matrix A&%). So the
on(k) o,(1)
(2)

matrix P coincides (up to a permutation of coordinates) with Ay;”. Applying Theo-

rem 9 to A‘(,‘%), we get that A&%) is nonnegative and irreducible. ]

Note that Theorem 10 may not hold if W is not transitive.

10. Approximation of a 2-TJS matrix by 2-STJS matrices

Let us prove the generalization of Theorem C using Theorem 10.
Given a 2-TJS matrix A, we find two sets J C [n] and J, C [(5)] from Definition

2 for the matrices A and A, respectively.
Given the sets J and J,, we construct a set W(J,J2) C [n] X [n]: a pair of indices
(i,j) € W(J,J») if and only if one of the following four cases occurs:

(a) i<j,i,jeJori,jeJ, and a(i,)) € J»;
(b) i<j,ied, jeJorjel, icJ and a(i,j) € JS;
(¢) i>j,i,jeJori,jeJ, and afj,i) €JS;
d i>j,ied, jeJorjel, icJ and a(j,i) €.

Note that since J and J, are not uniquely determined, the set W (J,J;) is also not
uniquely determined.
Let us prove the following statement.

THEOREM 11. Let A be a 2-TJS matrix. Let at least one of the possible W (J,J>)
be transitive. Then there exists a sequence {A,} of 2-STJS matrices which converges
to A.

Proof. Since A isJS, we can apply Theorem 6:
A=DAD!, (5)

where A is a nonnegative matrix. Examine the second compound matrix A, Tt
follows from Properties 1 and 2 of A?A that the matrix A® can be represented in the
form:

AP =pPA@ (D12,

The equality (D~!)?) = (D®))~! implies
A =pPA@) (@)1

Hence A can be written as

A® = (D)~ TA@Dp>), (6)

Since both matrices D) and (D(?))~! are diagonal and the matrix A(?) is JS, the

2) 2)

matrix A is also JS. Given a JS matrix A , we construct W, according to (4). Let



750 OLGA Y. KUSHEL

us show that the obtained set W coincides with W (J,J,). Applying Theorem 6 to A,
we get:
A® ZDADDH

where A is a nonnegative (%) x (%) matrix, D is a diagonal matrix. The following
equality follows from (6):

AN~ A A

A® = Dd?)"'DAP D 'D?). (7)

Write equality (7) in the following form:

A® ZDACD

where D = (D?))~'D. Since D? is a diagonal matrix with diagonal elements equal
to +1, we have (D®)~! =D® and D =D?D.
For the JS matrix A(?) we define the set J, as in the proof of Theorem 6:

e ()] =)

The equality dgo = d2) duye for the elements of D holds forall o =1, ..., ().

2
The elements dézo)( of the matrix D) are defined by the set J:

@ —1, if for (i, j), such that a = a(i, j) we havei € J,j € JSori € J¢,j € J;
d P

oo T

L, if for (i, ), such that ¢ = (i, j) we have i € J,j € Jori € J¢, j € J-.
The elements dA(m of D are defined by the set J;:

~ 1, ifa €y
daa =
1, if o€ Js.

Hence o € J if and only if one of the following two cases occurs:
(a) for (i,j) suchthat ¢ = (i, j) wehave i€ J,jeJorieJ jeJ and o € J»;
(b) for (7, ) suchthat oo = c(i,j) wehave i€ J,jeJoricJ’ jeJ,and o € J§.

Now (4) shows that the set W constructed from JE coincides with W (J,J,).

Since W (J,J,) is transitive, so is W, and we apply Theorem 10 to the nonnegative
matrix A with a JS second compound matrix AD . Wwe get that for some permutation
o, the matrix P = Q% AQg, is 2-TP. Applying Theorem C, we find a sequence of 2-
STP matrices {P,}*_,, which converges to P. We construct the sequence {A,} via
the rule A, = DQ(;n;&vnQ(T,"D’l , where D is a diagonal matrix from (5). It follows from
Theorem 4 that the matrices A, are 2-STIJS for any n = 1,2,.... Finally, it is easy to
see that the sequence {A,} converges to the matrix A. [J
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The proof of Theorem 12 follows from Theorem 11 and from the continuity of
eigenvalues.

Note that if W(J,J2) is not transitive, then the approximation of a 2-TJS matrix
by 2-STJS matrices is not always possible, and the statement of Theorem 12 may not
hold.

11. Proofs

Proof of Theorem 13. Enumerate the eigenvalues of the operator A, repeated ac-
cording to their multiplicity, in decreasing order of their absolute values:

Al = ] = = |l

Let us examine the first case when W (J,J;) is transitive. The positivity of A; and
the nonnegativity of A, is proved analogously to the proof of Theorem 8. Applying
Corollary 2 to A, we get that p(A) is a simple eigenvalue of A.

Now let us examine the second case when all the possible W (J,J,) are not transi-
tive. As usual, 2(A) denotes the index of imprimitivity of A. Assume that #(A) = 2g,
where ¢ is a positive integer. Applying Corollary 2 to A we obtain that A has a sim-

ple positive eigenvalue A; = p(A) > 0, all the eigenvalues of the operator A equal in
x(j—1)i
absolute value to p(A) are simple and they can be written as A; = p(A)e g (j=

1,...,2q).

Let 7(A) = 2. Then there are two eigenvalues p(A) >0 and —p(A) on the spec-
tral circle |A| = p(A). Hence there is only one negative eigenvalue —p2(A) on the
spectral circle |A| = p(A2A) of the operator A?A. This fact contradicts Theorem 7.

Theorem 2 implies that all the eigenvalues equal in absolute value to p(A2A) can

n(j—1)i m(m—1)i

be written as A;A,, = p*(A)e @ e 7 , where 1 < j<m<2q. Thus there are
exactly (22‘1) eigenvalues (taking into account their multiplicities) on the spectral circle
|A| = p(A%A). The equality

mi  ®(2g-1)i 2ni 7(2q-2)i n(g—1)i m(g+1)i

p2(A)=p*(Aeie ¢ =p*(Aede ¢ =..=p*Ae i e 4

shows that the algebraic multiplicity of p(A?A) = p?(A) is equal to g — 1.

Applying Theorems 6 and 7 to A?A we obtain, that the algebraic multiplicity of
any eigenvalue A of A%A with |A| = p(A?A) does not exceed the algebraic multiplicity
of p(A2A). Since all eigenvalues on |A| = p(A?A) coincide with all the 2¢gth roots
of (p(A))%, we have 2¢ different eigenvalues with the greatest multiplicity g — 1.
Thus the common number of eigenvalues on |A| = p(A%A) taking into account their
multiplicities is not greater than 2¢g(¢g — 1). We came to the contradiction because
2q(q—1)<(¥). O

Now let us assume the irreducibility of A(?).

Proof of Theorem 14. Enumerate the eigenvalues of the operator A, repeated ac-
cording to their multiplicity, in decreasing order of their absolute values:

M| = Ao = > A
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Let us examine the first case when W (J,J,) is transitive. The equality #(A) = 1 follows
from Theorem 12. The positivity of A; and A, is proved analogously to the proof of
Theorem 8. Applying Corollary 2 to A and A%A, we get that p(A) and p(A?A) are

2
simple eigenvalues of A and A%A respectively. Then the equality A, = 2 1(3? A/;) implies

that A, is a simple eigenvalue of A. If h(A) = h(A%A) = 1, then A, is obviously

2n(j—b)i

2 h(A2
different from the other eigenvalues. If 1(A2A) > 1, the equality A; = 2 (A2A)e 1070

p(4) ’
where j =2, ..., h(A?A) + 1 follows from Theorem 2 and Corollary 2.

Now let us examine the second case when W (J,J,) is not transitive. We prove that
h(A) = h(A?A) = 3 by contradiction, excluding all the possible values /(A), except for
h(A) =3.

Applying Theorem 6, we get

A=DAD !,
where A isa nonnegative irreducible matrix, D is a diagonal matrix. Then
A® =DpPIAG)(p))~T,

The above equality implies that A®@ s irreducible JS. Applying Theorem 9 to A@,

we get that the matrix K&%) where W = W (J,J,) is nonnegative and irreducible.

Suppose h(A) = 1. Applying Theorem 5 to the matrix A, we get that the opera-
tor A has the first positive simple eigenvalue A; = p(A) > 0, with the corresponding
positive eigenvector xj . Applying the Frobenius theorem to the matrix Z‘(,‘%), which is
also nonnegative and irreducible, we get that p(A%A) is a simple positive eigenvalue of
A?A, with the corresponding positive eigenvector ¢.

Since A, is different in absolute value from the other eigenvalues and since p(A2A)
is simple, Theorem 2 shows that p(A%A) = A1 A,, for some unique value m > 1. With-
out loss of generality, we can assume that m = 2, i.e., p(A’A) = AjA,. Then @ =
x1 Axy, where x| is the positive eigenvector corresponding to A; and x; is the eigen-
vector corresponding to A,. Let us examine the coordinates of the vector ¢ in the
corresponding W —basis. Since W is not transitive, there exists at least one triple of
indices i, j,k € [n] for which the inclusions (i, ), (j,k) € W, (i,k) € W* hold. In this
case the coordinates of ¢ = x| Ax, in the corresponding W —basis satisfy the following
inequalities:

_ 12 12 .
Po(i ) = Xi Xj — XjX; > 0;

1.2 1.2 .
Qo) = XX — XX > 0;

1.2 1.2
Por(k,i) = XpX; — X x; > 0.

(Here xf, xl,», xf{ are the coordinates of the vectors x;, [ = 1,2.) Adding the first two

expressions multiplied by x{ >0 and x! > 0 respectively, we get:
12 12

x}» (o xy —xx7) > 05
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x,lxl-2 —xl-lx,% > 0.
This system has no solutions. So the case of h(A) =1 is excluded.

Let h(A) = 2. Then there are two eigenvalues p(A) >0 and —p(A) on the spec-
tral circle |A| = p(A) of the operator A. Hence there is only one negative eigenvalue
—p?(A) on the spectral circle |A| = p(A2A) of the operator A?A. This fact contradicts
Corollary 2.

It remains to exclude the case of i(A) > 3. Since all eigenvalues of the operator
2m(j—1)i
A on the spectral circle [A| = p(A) can be written in the form A; = p(A)e "™ (j=

1, ..., h(A)), Theorem 2 implies:
Moday = M3 -1 = = Adpa)—(x-2) = - = p*(A).

Hence the eigenvalue p(A2A) = p%(A) of the operator AA is not simple. This fact
also contradicts Corollary 2.

Finally prove that #(A?A) = 3 when h(A) = 3. Indeed, in this case there are
exactly three eigenvalues A; = p(A), A, = p(A)e%, A3 = p(A)e% on the spectral

2rmi

circle [A| = p(A), and there are also exactly three eigenvalues 414, = p2(A)e

Tl

Mz =p2(A)eT and ads = p(A)eT p(A)eT = p2(A) on the spectral circle |A| =
p(A?A). O

bl

COROLLARY 3. Ifthe matrix A of a linear operator A : R" — R" is 2-STJS, then
the set W(J,Jy) is transitive.

Let us give the examples illustrating both cases of Theorem 14.

EXAMPLE 3. Let the operator A : R3 — R? be defined by the matrix

85 0 6.1
A=1|-56 32 -74
6 —2.8 6.6

This matrix is irreducible JS with J = {1, 3}.
In this case the second compound matrix is the following:

27.2 —28.74 —19.52
A® = -238 195 17.08
352 744 04

The matrix A?) is also irreducible JS with Jo = {2, 3}.

Examine the set W(J,J>). We have

(1,2) e W(J,Ja),since 1 <2,1€J,2€J%and a(l,2)=1€JS;
(1,3)eW(J,J2),since 1 <3, 1,3€J,and a(1,3) =2€ Js;
(3,2) e W(J,Jo),since 3>2,3€J,2€J and a(2,3) =3 € J,.
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[} (@] @)
(] (@) @)
O O [}

Hlustration 1. The set W (J,J3).

Applying Lemma 6, we get that W (J,J>) defines the linear order 1 <3 <2 on
[3]. The operator A satisfies the conditions of Theorem 14, case (1). The two largest
eigenvalues of A are A; = p(A) = 15.102 and A, = 3.53642; all other eigenvalues
have smaller absolute values.

EXAMPLE 4. Let the operator A : R3 — R? be defined by the matrix

001
A=1(100
010

This matrix is obviously nonnegative and irreducible.
In this case the second compound matrix is the following:

10

AP = 1

— O O

0 —
0 0
The matrix A?) is irreducible JS with J, = {1, 3}. Examine the set W, corre-

sponding to the set of indices J, = {1, 3}. It consists of the pairs (1,2), (2,3) and
(3,1) (see Ilustration 2).

Hllustration 2. The set W .

The set W defines the non-transitive binary relation 1 <2, 2 <3, 3 <1 on the
set of the indices [3]. The operator A satisfies the conditions of Theorem 14, case (2).
Then A = p(A) = 1, and there are exactly three eigenvalues 1, ¢ and ¢ on the
spectral circle |[A| = 1, all of which are simple and coincide with 3 th roots of unity.
The proof of Theorem 15 follows from Lemma 5.

Proof of Theorem 16. Applying Theorems 6 and 7 we obtain block representation
(3) of the matrix A. We consider only those blocks A; with p(A;) = p(A). The
number of such blocks is equal to the algebraic multiplicity m of p(A). Every square
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submatrix A; (j=1, ..., m) is obviously irreducible 2-TJS. Applying Theorem 13 to
every A, we obtain that there is an odd number k; > 1 of eigenvalues on the spectral
circle [A| = p(A;). Each eigenvalue is simple and they coincide with the & -th roots of
(p(A))%i . The equality

op(A) = UGI’(AJ)
J

completes the proof. [
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