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ON THE CONTINUITY OF THE GROUP INVERSE

JULIO BENÍTEZ AND XIAOJI LIU

(Communicated by D. Hadwin)

Abstract. Let {Am}∞
m=1 be a sequence of complex group invertible matrices that converges to

A . We characterize when A is group invertible and {A#
m}∞

m=1 converges to A# in terms of the
canonical angles between Am and A∗

m , where X# denotes the group inverse of the matrix X . We
compare this characterization with some known characterizations of the continuity of the Drazin
inverse.

1. Introduction

Let Cm,n be the set of m× n complex matrices, and let A∗ , R(A) , N (A) , and
rank(A) denote the conjugate transpose, column space, null space, and rank of A ∈
Cm,n , respectively. Furthermore, let A† stand for the Moore-Penrose inverse of A , i.e.,
the unique matrix satisfying the equations

AA†A = A, A†AA† = A†, AA† = (AA†)∗, A†A = (A†A)∗.

It can be proved (see e.g. [1, Chapter 4]) that if A ∈ Cn,n , then there is at most one
matrix X ∈ Cn,n such that

AXA = A, XAX = X , AX = XA.

Such matrix (when it exists) is customarily written as A# and is called the group inverse
of A . A useful characterization of the existence of the group inverse of A ∈ Cn,n is that
A# exists if and only if rank(A) = rank(A2) (see e.g. [1, Section 4.4]).

We shall denote the zero matrix in Cn,m by 0n,m , and when there is no danger of
confusion, we will simply write 0. In addition, 1n and 0n will denote the 1× n row
vectors all of whose components are 1 and 0, respectively. If S is a subspace of Cn,1 ,
then PS and dimS stand for the orthogonal projector onto the subspace S and the
dimension of S , respectively.
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Since we will deal with limits of sequences of matrices, we need a topology.
Throughout this paper, we shall use the Euclidean norm in Cm,n : i.e., ‖A‖= sup{‖Av‖ :
‖v‖= 1,v∈Cn,1} for A∈Cm,n . A well-known result is that the Euclidean norm is uni-
tarily invariant: if V ∈ Cm,m , W ∈ Cn,n are unitary and A ∈ Cm,n , then ‖VAW‖ = ‖A‖ .
Another useful identity is the so-called C∗ -identity:

‖A‖2 = ‖AA∗‖ = ‖A∗A‖, A ∈ Cm,n. (1)

We shall also use the concept of canonical angles (also called principal angles)
which will be defined in the next paragraph [10]:

DEFINITION 1. Let X , Y be nontrivial subspaces of Cn,1 and let r = min{dimX ,
dimY } . We define the canonical angles θ1, . . . ,θr ∈ [0,π/2] between X and Y by

cosθi = σi(PX PY ), i = 1, . . . ,r,

where the nonnegative real numbers σ1(PX PY ), . . . ,σr(PX PY ) are the singular values
of PX PY . We will have in mind the possibility that one canonical angle is repeated.

In [2] it was given the following theorem:

THEOREM 1. Let A ∈ Cn,n , r = rank(A) , and let θ1, . . . ,θp be the canonical an-
gles between R(A) and R(A∗) belonging to ]0,π/2[ . Denote by x and y the mul-
tiplicities of the angles 0 and π/2 as a canonical angle between R(A) and R(A∗) ,
respectively. There exists a unitary matrix V ∈ Cn,n such that

A = V

[
MC MS
0 0

]
V ∗, (2)

where M ∈ Cr,r is nonsingular,

C = diag(0y,cosθ1, . . . ,cosθp,1x),

S =
[

diag(1y,sinθ1, . . . ,sinθp) 0p+y,n−(r+p+y)
0x,p+y 0x,n−(r+p+y)

]
,

and r = y+ p+ x . Furthermore, x and y+n− r are the multiplicities of the singular
values 1 and 0 in PR(A)PR(A∗) , respectively.

Observe that the matrices C and S of this former result satisfy

C2 +SS∗ = Ir. (3)

We shall use the Theorem 1 in this work to characterize the continuity of the group
inverse.

If a matrix A is represented as in (2), then we can write explicitly the Moore-
Penrose inverse of A and characterize the group invertibility of A .
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THEOREM 2. Let A ∈ Cn,n be represented as in (2), where the meaning of C, S
and V is written in Theorem 1. Then ‖A‖ = ‖M‖ ,

A† = V

[
CM−1 0
S∗M−1 0

]
V ∗, ‖A†‖ = ‖M−1‖, (4)

AA† =V

[
Ir 0
0 0

]
V ∗, A†A = V

[
C2 CS
S∗C S∗S

]
V ∗. (5)

Furthermore, A is group invertible if and only if C is invertible. In this situation, then

A# = V

[
C−1M−1 C−1M−1C−1S

0 0

]
V ∗, ‖A#‖ = ‖C−1M−1C−1‖. (6)

Proof. The only statement that was not proved in [2] is “if A is group invertible,
then ‖A#‖ = ‖C−1M−1C−1‖”. Let us denote D = C−1M−1C−1 . Now, by using the
C∗ -identity (1) and the identity (3), we get

‖A#‖2 = ‖A#(A#)∗‖ =
∥∥∥∥
[

DC DS
0 0

][
CD∗ 0
S∗D∗ 0

]∥∥∥∥ = ‖DD∗‖ = ‖D‖2.

This proves ‖A#‖ = ‖D‖ = ‖C−1M−1C−1‖ . �
Observe that if A has group inverse, by the previous result, none of the canonical

angles between R(A) and R(A∗) is π/2.

2. Main result

It is well known that the standard inverse and the Moore-Penrose inverse of a
matrix are not necessarily continuous functions of the elements of the matrix. The
following example shows clearly this behaviour:

EXAMPLE 1. Let

An =
[

1/n 0
0 0

]
, n ∈ N, A =

[
0 0
0 0

]
.

It is evident that limn→∞ An = A and limn→∞ A†
n �= A† . This classical example shows

that we must impose conditions to assure the continuity of the Moore-Penrose inverse.
The following result is known:

THEOREM 3. Let {Am}∞
m=1 be a sequence of complex n× p matrices converging

to A. Then the following affirmations are equivalent:

(i) limm→∞ A†
m = A† .

(ii) There exists m0 ∈ N such that rank(Am) = rank(A) for m � m0 .

(iii) sup{‖A†
m‖ : m ∈ N} < ∞ .
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(iv) limm→∞ AmA†
m = AA† .

For the proof of (i) ⇐⇒ (ii), see [8, 9]. For the remaining equivalences, see [6].
Let us observe that the above Example 1 also shows that limn→∞ An = A and the

existence of A# and A#
n for n ∈ N does not imply limn→∞ A#

n = A# .
In general, the subset of Cn,n composed of group invertible matrices is not closed

in Cn,n as the following example shows:

EXAMPLE 2. Let

Bn =
[

1/n 1
0 0

]
, n ∈ N, B =

[
0 1
0 0

]
.

Since rank(B2
n)= rank(Bn) , then Bn are group invertible for any n∈N , while rank(Bn)

= 1 �= 0 = rank(B2) , which shows that B is not group invertible. Obviously, limn→∞ Bn

= B .
The decomposition given in Theorem 1 permits illustrate the reason in Example 2,

matrix B is not group invertible. We decompose matrices Bn and B as in (2):

Bn =
[

1/n 1
0 0

]
=

[
mncn mnsn

0 0

]
, mn =

√
1+n2

n
, cn =

1√
1+n2

, sn =
n√

1+n2
.

and

B =
[

0 1
0 0

]
=

[
mc ms
0 0

]
, m = 1, c = 0, s = 1.

If θn is the unique canonical angle between R(Bn) and R(B∗
n) (there is only one

canonical angle because rank(Bn) = 1), then tanθn = sn/cn = n . Hence θn = arctann .
Note that limn→∞ θn = π/2. Recall that when a canonical angle between R(X) and
R(X∗) is π/2, then X has no group inverse (Theorem 2) and thus, the only canonical
angle between R(B) and R(B∗) is π/2.

R(B∗n)
⊥ = N (Bn)

R(B∗n)

x0

BnB
#
n x0

R(Bn)

{x ∈ C2,1 : ‖x‖ ≤ 1}

θn = arctan(n)

Figure 1: The geometry of the Example 2. In this figure, the vector x0 maximizes ‖BnB#
nx‖ with

the restriction ‖x‖ � 1 : this vector satisfies ‖BnB#
nx0‖ = ‖BnB#

n‖ .
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Also, the study of BnB#
n lights the behavior of the non group invertibility of B . By

using Theorem 2, we get

BnB
#
n =

[
mncn mnsn

0 0

][
c−1
n m−1

n c−1
n m−1

n c−1
n sn

0 0

]
=

[
1 sn/cn

0 0

]
=

[
1 n
0 0

]
,

which clearly shows that the sequence {BnB#
n}∞

n=1 is not bounded. This example is
pictured in Fig. 1. Let us recall that if X is any group invertible matrix, then XX# is
the projector onto R(X) along N (X) .

Besides the canonical angles between two subspaces of Cn,1 , there is another mea-
sure of the separation of two subspaces [5, Sect. 4.4]

DEFINITION 2. Let X and Y be two subspaces of Cn,1 . We define the gap
between X and Y by

δ̂ (X ,Y ) = max{δ (X ,Y ),δ (Y ,X )},
where δ (X ,Y ) = sup{dist(u,Y ) : u ∈ X ,‖u‖ = 1} .

In the following result we shall find δ̂ (R(A),R(A∗)) in terms of the canonical
angles between R(A) and R(A∗) when A ∈ Cn,n . In addition, also ‖AA#‖ will be
computed when A is a group invertible matrix.

THEOREM 4. Let A ∈ Cn,n . Then δ̂ (R(A),R(A∗)) = sinψ , where ψ is the
greatest canonical angle between R(A) and R(A∗) . If in addition, A is group in-
vertible, then ‖AA#‖ = 1/cosψ .

Proof. Let us represent A as in Theorem 1 and denote r = rank(A) . It is known
that if X and Y are two subspaces of Cn,1 , then δ̂ (X ,Y ) = max{(‖In−PY )PX ‖,
(‖In −PX )PY ‖} (see e.g., [4, Lemma 4.1.2]. By using PR(A) = AA† , PR(A∗) = A†A
and the equalities (5) we have

(
In−PR(A)

)
PR(A ∗) =

[
0 0
0 In−r

][
C2 CS
S∗C S∗S

]
=

[
0 0

S∗C S∗S

]
,

and now we use (1) and (3):

∥∥(
In−PR(A)

)
PR(A ∗)

∥∥2 =
∥∥∥∥
[

0 0
S∗C S∗S

][
0 CS
0 S∗S

]∥∥∥∥ =
∥∥∥∥
[

0 0
0 S∗S

]∥∥∥∥ = ‖S‖2.

In a similar way we have

(
In−PR(A∗)

)
PR(A ) =

[
SS∗ −CS
−S∗C −S∗S

][
Ir 0
0 0

]
=

[
SS∗ 0
−S∗C 0

]

and ∥∥(
In−PR(A∗)

)
PR(A )

∥∥2 =
∥∥∥∥
[

SS∗ −CS
0 0

][
SS∗ 0
−S∗C 0

]∥∥∥∥ =
∥∥∥∥
[

SS∗ 0
0 0

]∥∥∥∥ = ‖S‖2
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because (SS∗)2 +CSS∗C = (Ir −C2)2 +C(Ir −C2)C = Ir −C2 = SS∗ . And therefore,

δ̂ (R(A),R(A∗)) = ‖S‖= sinψ .
In the rest of the proof, let us assume that A is group invertible. We shall use (1)

to compute ‖AA#‖ : We get

AA# = V

[
MC MS
0 0

][
C−1M−1 C−1M−1C−1S

0 0

]
V ∗ = V

[
Ir C−1S
0 0

]
V ∗ (7)

and

(AA#)(AA#)∗ = V

[
Ir C−1S
0 0

][
Ir 0

S∗C−1 0

]
V ∗ =V

[
Ir +C−1SS∗C−1 0

0 0

]
V ∗.

In view of (3) we have Ir +C−1SS∗C−1 = Ir +C−1(Ir −C2)C−1 = C−2 . Thus, if 0 �
θ1 � · · · � θr < π/2 are the canonical angles between R(A) and R(A∗) , then

‖AA#‖2 = ‖(AA#)(AA#)∗‖ = ‖C−2‖ = max{1/cos2 θi, i = 1, . . . r} = 1/cos2 θr.

This proves the theorem. �

The former Theorem 4 implies the following corollary which clarifies one hypoth-
esis of the main result of the paper, Theorem 5.

COROLLARY 1. Let {Am}∞
m=1 be a sequence of complex n× n group invertible

matrices. Let ψm be the greatest canonical angle between R(Am) and R(A∗
m) . Then

the following conditions are equivalent

(i) {AmA#
m}∞

m=1 is a bounded sequence.

(ii) There exist ψ ∈ [0,π/2[ and m0 ∈ N such that ψm � ψ for all m � m0 .

(iii) There exist s < 1 and m0 ∈ N such that δ̂ (R(Am),R(A∗
m)) � s for all m � m0 .

Here comes the main result of the paper which is justified in some manner by
Examples 1 and 2:

THEOREM 5. Let {Am}∞
m=1 be a sequence of complex n×n group invertible ma-

trices converging to A. Let ψm be the greatest canonical angle between R(Am) and
R(A∗

m) . The following affirmations are equivalent

(i) A is group invertible and limm→∞ A#
m = A# .

(ii) {A#
m}∞

m=1 is a bounded sequence.

(iii) limm→∞ A†
m = A† and there exist ψ ∈ [0,π/2[ and m0 ∈ N such that ψm � ψ for

all m � m0 .

(iv) A is group invertible and limm→∞ AmA#
m = AA# .
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Proof.
(i) ⇒ (ii) is evident since {A#

m}∞
m=1 is convergent, in particular is bounded.

(ii) ⇒ (iii): Since {Am}∞
m=1 and {A#

m}∞
m=1 are bounded sequences, then the se-

quence {AmA#
m}∞

m=1 is bounded. By Corollary 1 there exist ψ ∈ [0,π/2[ and m0 ∈ N

such that ψm � ψ for all m � m0 .
Let rm = rank(Am) . By Theorem 1, we can represent Am as follows

Am = Vm

[
MmCm MmSm

0 0

]
V ∗

m, (8)

where Vm ∈ Cn,n are unitary, Mm ∈ Crm,rm are nonsingular, and Cm ∈ Crm,rm , Sm ∈
Crm,n−rm are real matrices such that the meanings of all these matrices are the same
as those of V , M , C and S , respectively, in Theorem 1. Observe that ‖Cm‖ � 1.
By Theorem 2, one has that every Cm is nonsingular, ‖A†

m‖ = ‖M−1
m ‖ and ‖A#

m‖ =
‖C−1

m M−1
m C−1

m ‖ . Thus

‖A†
m‖ = ‖M−1

m ‖ = ‖CmC−1
m M−1

m C−1
m Cm‖ � ‖Cm‖‖C−1

m M−1
m C−1

m ‖‖Cm‖ � ‖A#
m‖.

By hypothesis, {A#
m}∞

m=1 is bounded, and thus {A†
m}∞

m=1 is bounded. By Theorem 3
one has limm→∞ A†

m = A† .
(iii) ⇒ (i): Let r be the rank of A . Since limm→∞ A†

m = A† , by Theorem 3,
there exists m0 ∈ N such that rank(Am) = r for m � m0 . From now on, we will take
m � m0 . By Theorem 1, we can represent Am as in (8), where Vm ∈ Cn,n are unitary,
Mm ∈ Cr,r are nonsingular, and Cm,Sm are real matrices such that the meanings of all
these matrices are the same as those of V , M , C and S , respectively, in Theorem 1.

Let us denote Fm = C−1
m M−1

m C−1
m , which is nonsingular. By using the left identity

of (6) one has

A#
m = Vm

[
C−1

m M−1
m C−1

m M−1
m C−1

m Sm

0 0

]
V ∗

m = Vm

[
FmCm FmSm

0 0

]
V ∗

m,

By applying the left identity of (4) one obtains

(A#
m)† = Vm

[
CmF−1

m 0
S∗mF−1

m 0

]
V ∗

m = Vm

[
C2

mMmCm 0
S∗mCmMmCm 0

]
V ∗

m. (9)

On the other hand, by employing the representations of AmA†
m and A†

mAm given in (5)
one has

(A†
mAm)Am(AmA†

m) = Vm

[
C2

m CmSm

S∗mCm S∗mSm

][
MmCm MmSm

0 0

][
Ir 0
0 0

]
V ∗

m

= Vm

[
C2

mMmCm 0
S∗mCmMmCm 0

]
V ∗

m. (10)

Since {Am}∞
m=1 and {A†

m}∞
m=1 are convergent sequences by hypothesis, the expressions

(9)–(10) show that {(A#
m)†}∞

m=1 is a convergent sequence.
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For m ∈ N , let Bm = (A#
m)† . We have proved that {Bm}∞

m=1 is a convergent se-
quence. Evidently, one has B†

m = A#
m . By hypothesis and the right equalities of (4) and

(6), one has

‖A#
m‖ = ‖C−1

m M−1
m C−1

m ‖ � ‖C−1
m ‖2‖M−1

m ‖ =
‖A†

m‖
cos2 ψm

<
‖A†

m‖
cos2 ψ

. (11)

The sequence {A†
m}∞

m=1 is bounded because by hypothesis, this sequence is conver-
gent. Therefore (11) proves that {A#

m}∞
m=1 is bounded. Thus, {B†

m}∞
m=1 is a bounded

sequence. By Theorem 3 we have {B†
m}∞

m=1 converges to some matrix, say R , in other
words, limm→∞ A#

m = R . Now (recall that {Am}∞
m=1 converges to A), by letting m→ ∞

in the equalities

Am = AmA#
mAm, A#

m = A#
mAmA#

m, AmA#
m = A#

mAm

we obtain, respectively,

A = ARA, R = RAR, AR = RA,

from which we get that A is group invertible and A# = R = limm→∞ A#
m .

(i) ⇒ (iv): Evident.
(iv) ⇒ (iii): By hypothesis, the sequence {AmA#

m}∞
m=1 is convergent, hence bo-

unded. By Corollary 1, there exist ψ ∈ [0,π/2[ and m0 ∈ N such that ψm � ψ for all
m � m0 .

Next, we shall prove limm→∞ A†
m = A† . Let rm = rank(Am) . By Theorem 1, we can

represent matrices Am as in (8), where the meanings of Vm ∈ Cn,n , Mm,Cm ∈ Crm,rm ,
Sm ∈ Crm,n−rm are the same as those of matrices V,M,C,S in Theorem 1, respectively.
By a similar computation as in (7) we have

A#
mAm = Vm

[
Irm C−1

m Sm

0 0

]
V ∗

m = Vm

[
C−1

m Cm C−1
m Sm

0 0

]
V ∗

m.

By the left equality of (4) applied to A#
mAm we get

(A#
mAm)† = Vm

[
C2

m 0
S∗mCm 0

]
V ∗

m.

Now we use the C∗ -identity to get an expression of ‖(A#
mAm)†‖ :

‖(A#
mAm)†‖2 =

∥∥∥[
(A#

mAm)†][
(A#

mAm)†]∗∥∥∥ =
∥∥∥∥
[
C2

m CmSm

0 0

][
C2

m 0
S∗mCm 0

]∥∥∥∥
=

∥∥∥∥
[
C4

m +CmSmS∗mCm 0
0 0

]∥∥∥∥ =
∥∥C4

m +CmSmS∗mCm
∥∥ . (12)

By taking into account (3) we get C4
m +CmSmS∗mCm =Cm(C2

m +SmS∗m)Cm =C2
m . Hence

(12) reduces to ‖(A#
mAm)†‖= ‖Cm‖ because Cm is a diagonal and real matrix. Further-

more, since Cm is a diagonal matrix whose elements are the cosines of some angles,
then ‖Cm‖ � 1.
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We summarize what we have at our disposal. By hypothesis, {AmA#
m}∞

m=1 con-
verges to AA# , and in the previous paragraph we proved that {(AmA#

m)†}∞
m=1 is a

bounded sequence. By Theorem 3, there exists m0 ∈ N such that rank(AmA#
m) =

rank(AA#) for all m � m0 . By taking into account that AmA#
m is the projector onto

R(Am) along N (Am) we have rank(AmA#
m) = rank(Am) for any m � m0 , and analo-

gously, we get rank(AA#) = rank(A) . Thus, we can assure rank(Am) = rank(A) for all
m � m0 . Finally, by Theorem 3 we get limm→∞ A†

m = A† . �
REMARKS.

1. Observe that the proof of the former result (see equations (9)–(10)) distills that
for any matrix A ∈ Cn,n group invertible,

(A#)† = (A†A)A(AA†).

2. The two conditions in item (iii) of Theorem 5 are independent as can be seen in
the examples 1 and 2 given in the first section: In Example 1, matrices An satisfy
AnA†

n = A†
nAn = diag(1,0) , and by using the definition of the canonical angles, we

have that the greatest canonical angle between R(An) and R(A∗
n) is 0; however

limm→∞ A†
m does not exists. In Example 2, as we showed, the greatest canonical

angle between R(Bn) and R(B∗
n) is arctann ; however rank(Bm) = rank(B) = 1,

which yields (by Theorem 3) that limm→∞ Bm
† = B† .

It is worth comparing Theorem 3 with the continuity of the Drazin inverse, since
the group inverse is a particular case of the Drazin inverse. Let us review some known
facts of the Drazin inverse (see [1, Chapter 4] or [3, Chapter 7] for a deeper study): Let
A ∈ Cn,n . The smallest positive integer k for which rank(Ak) = rank(Ak+1) holds is
called the index of A , and denoted Ind(A) . Furthermore, for every A ∈ Cn,n , there is a
unique matrix denoted by AD that satisfies

AkADA = Ak, ADAAD = AD, AAD = ADA.

This matrix AD is called the Drazin inverse of A . Evidently, the group inverse is a
particular case of the Drazin inverse. Since the continuity of the Drazin inverse has been
studied by some authors, it is convenient to compare such studies with our Theorem 3.

S.L. Campbell and C.D. Meyer were the first authors in characterizing the Drazin
inverse. They defined the core rank of A ∈ Cn,n as the rank of Ak , where k = Ind(A) .
See [3, Theorem 10.7.1] for the proof of the following result:

THEOREM 6. Let {Am}∞
m=1 a sequence in Cn,n that converges to A. Then the

sequence {AD
m}∞

m=1 converges to AD if and only if there exists m0 ∈ N such that the
core rank of Am is equal to the core rank of A for m � m0 .

As is easily seen, in this characterization, no appeal to the canonical angles ap-
pears.

Another study for the continuity of the Drazin inverse was made in [7]. In such
paper, the following result was proved (we slightly change the statement because the
original setting of this work is a Banach algebra).
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THEOREM 7. Let {Am}∞
m=1 a sequence in Cn,n that converges to A. Then {AD

m}∞
m=1

converges to AD if and only if sup{‖AD
m‖ : m ∈ N} < ∞ .

We shall see how this result implies (ii) ⇒ (i) of Theorem 5: Let Am be group in-
vertible matrices for any m∈N such that limm→∞ Am = A and sup{‖A#

m‖ : m∈N}< ∞ .
By Theorem 7 we get limm→∞ A#

m = AD . By making m→ ∞ in the equality AmA#
mAm =

Am we get AADA = A . This implies that A is group invertible and AD = A# .
However, let us remark that the proof of Theorem 5 presents a unified approach by

using the canonical angles.
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