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ON INVERSE PROBLEMS FOR LEFT–DEFINITE

DISCRETE STURM–LIOUVILLE EQUATIONS

R. ALAHMAD AND R. WEIKARD

Abstract. We establish an expansion theorem and investigate inverse spectral and inverse scat-
tering problems for the discrete Sturm-Liouville problem

−u′′(n−1)+q(n)u(n) = λw(n)u(n)

where q is nonnegative and w may change sign. If w is positive, the �2 -space weighted by w
is a Hilbert space and it is customary to use that space for setting the problem. In the present
situation the right-hand-side of the equation does not give rise to a positive-definite quadratic
form and we use instead the left-hand side to define such a form and hence a Hilbert space (such
problems are called left-definite). The difference equation gives rise to a linear relation which,
upon proper restrictions, generates a self-adjoint operator. For this operator we define a Fourier
transform and investigate the relationship between two operators with the same transform (the
inverse spectral problem). If q− q0 and w− 1 are summable one may define the scattering
process and we solve the inverse scattering problem. For coefficients decaying sufficiently fast
to q0 and 1 , respectively, the concept of a resonance is introduced as a generalization of the
notion of an eigenvalue and the set of iso-resonant operators, i.e., operators having the same
eigenvalues and resonances, is described.
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