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DYNAMICS OF TUPLES OF MATRICES IN JORDAN FORM

GEORGE COSTAKIS AND IOANNIS PARISSIS

Abstract. A tuple (Ti,...,T;) of nx n matrices over R is called hypercyclic if for some x € R”
the set {Tlml szz ~~Tkm"x smy,ma,...,m; € No} is dense in R”. We prove that the minimum
number of n X n matrices in Jordan form over R which form a hypercyclic tuple is n+ 1. This
answers a question of Costakis, Hadjiloucas and Manoussos.
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