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CLASS A OPERATORS AND THEIR EXTENSIONS

SUNGEUN JUNG AND EUNGIL KO

(Communicated by R. Curto)

Abstract. In this paper, we study various properties of analytic extensions of class A operators.
In particular, we show that every analytic extension of a class A operator has a scalar exten-
sion. As a corollary, we get that such an operator with rich spectrum has a nontrivial invariant
subspace.

1. Introduction

Let s and ¢ be separable complex Hilbert spaces and let £ (.57, %") denote
the space of all bounded linear operators from .57 to % . If 57 = ¢, we write
ZL(A) inplace of L(A, 0). I T € L (), we write 6(T), 04p(T), and 0,(T)
for the spectrum, the approximate point spectrum, and the essential spectrum of T,
respectively.

An arbitrary operator T € .Z(.5°) has a unique polar decomposition T = U|T|,
where |T| = (T*T)% and U is the appropriate partial isometry satisfying ker(U) =
ker(|T|) = ker(T) and ker(U*) = ker(T*). Associated with T is a related operator
|T\%U \T\% , called the Aluthge transform of T, and denoted throughout this paper by
T. For an arbitrary operator T € .Z(.7¢), the sequence {f(")} of Aluthge iterates of

—

T is defined by 7(¥ = T and T("t1) = T(®) for every positive integer 7.

An operator T € .Z () is said to be p-hyponormal if (T*T)? > (TT*)P. If
p =1, T is called hyponormal and if p = %, T is called semi-hyponormal. An opera-
tor T is said to be w-hyponormal if |T| > |T| > |T*|. w-Hyponormal operators were
introduced by Aluthge and Wang (see [2] and [3]). An operator T € £ () is said
to be class A if |[T?| —|T|?> >0, and T is said to be F-quasiclass A if F(T)*(|T?| —
|T|?)F(T) > 0 for some function F that is analytic and nonconstant on some neighbor-
hood of o(T). We say that an operator T € .£(57) is p-quasiclass A if there exists
a nonconstant polynomial p such that p(T)*(|T?| —|T|?)p(T) = 0. In particular, if
p(z) = Z* for some positive integer k or p(z) = z, then T is said to be a k-quasiclass
A operator or a quasiclass A operator, respectively. The class of these operators has
been studied by many authors (see [10], [13], [14], [23], and [27], etc.). An operator
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T € L(s) is called normaloid if ||T| = r(T) where r(T) :=sup{|A|: A € o(T)}
denotes the spectral radius of 7. It is well known from [10] that

p-hyponormal = w-hyponormal = class A = normaloid.

We give the following example to indicate that there exists a k-quasiclass A oper-
ators which does not belong to class A.

100
EXAMPLE 1.1. Let T=| 000 | € £(C?). Then |T?|—|T|* #0, andso T is
010
not a class A operator. However, T*"(|T2| — |T|2)T* = 0 for every positive integer k,
which implies that T is a k-quasiclass A operator for every positive integer k.

From the above example, it is natural to ask whether k-quasiclass A operators are
normaloid or not. Next we give a k-quasiclass A operator which is not normaloid.

EXAMPLE 1.2. Let W, be the unilateral weighted shift with weights o := {04, >0
of positive real numbers. Then it is easy to compute that W, belongs to k-quasiclass A
if and only if
O < O S O <o

Hence, if we take the weights o such that oy =2 and o, = % forall n > 1, then W,
belongs to k-quasiclass A for all £ € N, but it is not normaloid.

We also find an equivalent condition for some operator-valued bilateral weighted
shifts to be k-quasiclass A operators.

EXAMPLE 1.3. Let % = &;___7%, where J¢, = J¢ for all integers n. Given
two positive operators A and B in .Z(J¢), define an operator T € £ (%) by Tx =y
with the following relation; if x = @;___x, € # ,then y= & ___y, € # is given by

JAxpifn <]
= B,y ifn> 1.

By straightforward computations, we get that 7 is a k-quasiclass A operator if and
only if
AK[(AB?A)? — A2)AF > 0.
For instance, we shall provide an example by using the Maple program. Let A =

3 -2 (2 0 2 B
(_2 3 ) andB-(Ozm) be operators on 77 = R~, and let .7, = J¢ for all

positive integers n. Note that

sl o (017472 —3.1798---
(AB°A)? —A _<—3.1798--- 11.770---
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as computed in [10]. Then

Stiamiant 42143 70778.--- —71500. -
A’[(AB“A)I — A%]A —<_71500,--- 72227. -

and its eigenvalues are 143010.--- and —1.1705---, and so
A3[(AB*A)? — A%JA3 # 0.

Therefore if we define T on &

/0 as in the above, then T is not a 3-quasiclass
A operator.

An operator T € £ () is said to be analytic if there exists a nonconstant analytic
function F on a neighborhood of ¢(7) such that F(T) = 0. We say that an operator
T € L(A) is algebraic if there is a nonconstant polynomial p such that p(7T) =0. In
particular, if 7% = 0 for some positive integer &, then T is called nilpotent. An operator
T € L(s) is said to be quasinilpotent if 6(T) = {0}. If an operator T € L () is
analytic, then F(T) = 0 for some nonconstant analytic function F on a neighborhood
D of 6(T). Since F cannot have infinitely many zeros in D, we write F(z) = G(z)p(z)
where G is a function that is analytic and does not vanish on D and p is a nonconstant
polynomial with zeros in D. By Riesz-Dunford calculus, G(T') is invertible and then
p(T) =0, which means that T is algebraic (see [5]). When p has degree k, we say
that T is analytic with order k throughout this paper.

An operator T € £ () is called scalar of order m if it possesses a spectral dis-
tribution of order m, i.e., if there is a continuous unital homomorphism of topological
algebras

D:Cy(C) — Z(#)

such that ®(z) = T, where as usual z stands for the identical function on C, and
Ci'(C) for the space of all continuously differentiable functions of order m which are
compactly supported, 0 < m < eo. An operator is subscalar of order m if it is similar
to the restriction of a scalar operator of order m to an invariant subspace.

In 1984, M. Putinar showed in [25] that every hyponormal operator is subscalar
of order 2. In 1987, his theorem was used to show that hyponormal operators with
thick spectra have a nontrivial invariant subspace, which was a result due to S. Brown
(see [4]). In this paper, we study various properties of analytic extensions of class A
operators. In particular, we show that every analytic extension of a class A operator
has a scalar extension. As a corollary, we get that such an operator with rich spectrum
has a nontrivial invariant subspace. In addition, we study some properties of analytic
extensions of class A operators.

2. Preliminaries

An operator T € £ () is called left semi-Fredholm if T has closed range and
dim(ker(T)) < oo, and T is called right semi-Fredholm if T has closed range and
dim(Z /ran(T)) <eo. When T is either left semi-Fredholm or right semi-Fredholm, T
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is called semi-Fredholm. In this case, the Fredholm index of T is defined by ind(T') :=
dim(ker(7')) — dim(s¢ /ran(T)). Note that ind(7) is an integer or feo. We say that
T is Fredholm if it is both left and right semi-Fredholm. Especially, an operator T €
L () is said to be Weyl if it is Fredholm of index zero. The Weyl spectrum is given
by 6,,(T) ={A € C: T — A is not Weyl} and we write my(T) := {4 € isoc(T):0 <
dim(ker(7T — 1)) < eo}. We say that Weyl’s theorem holds for T if o(T)\ 6,,(T) =
moo(T). A hole in 0.(T) is a nonempty bounded component of C\ ¢,(T), and a
pseudoholein o,(7T') is a nonempty component of 6,(7)\ 6;.(T) or of 6,(T)\ 6+ (T),
where 0;.(T) and 0,.(T) denotes the left essential spectrum and the right essential
spectrum of T, respectively. The spectral picture of T is the structure consisting of
0.(T), the collection of holes and pseudoholes in 6,(T), and it is denoted by SP(T)
(see [24] for more details).

An operator T € £ () is said to have the single-valued extension property (or
SVEP) if for every open subset G of C and any analytic function f: G — % such
that (T —z)f(z) =0 on G, we have f(z) =0 on G. For T € () and x € 7,
the set pr(x) is defined to consist of elements zp in C such that there exists an ana-
lytic function f(z) defined in a neighborhood of zp, with values in 57, which verifies
(T —2)f(z) = x, and it is called the local resolvent set of T at x. We denote the com-
plement of pr(x) by or(x), called the local spectrum of T at x, and define the local
spectral subspace of T, Hr(F) = {x € 7 : or(x) C F} for each subset F of C. An
operator T € £ () is said to have property (B) if for every open subset G of C and
every sequence f;, : G — J of 7 -valued analytic functions such that (T — z)f,(z)
converges uniformly to O in norm on compact subsets of G, then f,,(z) converges uni-
formly to O in norm on compact subsets of G. An operator T € £ (J¢) is said to have
Dunford’s property (C) if Hr(F) is closed for each closed subset F of C. It is well
known from [18] that

Property () = Dunford’s property (C) = SVEP.

Let z be the coordinate function in the complex plane C and du(z) the planar
Lebesgue measure. Consider a bounded (connected) open subset U of C. We shall
denote by L?(U,.»#) the Hilbert space of measurable functions f: U — .7, such that

1/

20 = ([ IF@IPdu()* <o

The space of functions f € L?>(U,.7#) that are analytic in U is denoted by
AU, ) =12(U, )N OU, )

where 0(U, 7¢) denotes the Fréchet space of .7 -valued analytic functions on U with
respect to uniform topology. A%(U,.7¢) is called the Bergman space for U . Note that
A%(U, ) is a Hilbert space.

Now, let us define a special Sobolev type space. For a fixed non-negative integer
m, the vector-valued Sobolev space W™ (U,.7#") with respect to d and of order m will

be the space of those functions f € L2(U,#’) whose derivatives o f,- - ,8_m f in the
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sense of distributions still belong to L?(U,.5#’). Endowed with the norm

mo
[ £1lin = 219 fl30-

i=0
W™ (U, ) becomes a Hilbert space contained continuously in L*(U, 7).

We can easily show that the linear operator M of multiplication by z on W (U, %)
is continuous and it has a spectral distribution @ of order m defined by the following
relation; for ¢ € Ci(C) and f € W"(U,5¢), ®(¢)f = ¢f. Hence M is a scalar
operator of order m.

3. Main results

In this section, we will show that every analytic extension of a class A operator
has a scalar extension. For this, we begin with the following lemmas.

LEMMA 3.1. ([25]) For a bounded open disk D in the complex plane C there is
a constant Cp such that for any operator T € £ () and f € W™(D, ) (m > 2) we
have
i , =itl L =it2
I(I=P)d fllzp <Co(I(T=2)"0 fllep+I(T—2)"0  fl2p)
for i=0,1,---,m—2, where P denotes the orthogonal projection of L?(D,.7#) onto
the Bergman space A%(D,.7¢).

LEMMA 3.2. ([25]) Let T € £(5) be a hyponormal operator and let D be a
bounded disk in C. If {f,} is a sequence in W"(D,.7¢) (m > 2) such that

lim (T ~2)0 full2.0 =0
for i=1,2,---,m, then lim,_. \\élfn\\27D0 =0 fori=1,2,---,m—2 where Dy is a
disk strictly contained in D.

LEMMA 3.3. Let D be a bounded disk in C and let m be a positive integer with
m>12.1f T € () is aclass A operator and f, is a sequence in W (D,.7’) such
that

lim [|(T = 2)3 fullp =0
fori=1,2,---,m, then it holds that

. =i

Jlim [[(1=P)d full2.0, =0

for i =0,1,2,---,m— 12, where P denotes the orthogonal projection of L*(D,.s#)
onto A%2(D, #) and D is any disk relatively compact in D. Furthermore, we have

lim (|9 full2.0, =0

fori=1,2,---,m— 12, where D, is any disk relatively compactin D; .
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Proof. As in [14, Lemma 3.1], we can show that
) =i
Jlim [[(1=P)d full2.p, =0

for i =0,1,2,---,m— 12, where P denotes the orthogonal projection of LZ(D,,%” )
onto A%2(D, ##) and Dy is any disk relatively compact in D. Then it follows that

lim || (T — 2)P3 f,

2.0, =0
for i=1,2,---,m—12. Since T has property (f3) from [14], we get that
. i
lim 1P full 2., = 0

for i =1,2,---,m— 12, where D, is any disk relatively compact in D;. Hence we
complete our proof. [l

The next lemma is the key step to prove the subscalarity for analytic extensions of
class A operators.

LEMMA 3.4. Let T € £ (5 ® %) be an analytic extension of a class A operator,
n'n
0T
let D be a bounded disk in C containing ¢(7T'). Define the map V : ' ®.%# — H(D)
by

ie., T = ) where Tj is a class A operator and T3 is analytic with order k£ and

—

Vh=10h( =10h+ (T — )W 2(D, )W 12(D 1))

where

H(D) := W*T2(D o)W 12(D, #) /(T — 2)WH12(D, ) W2k+12(D, ')

and 1 ® h denotes the constant function sending any z € D to h. Then V is one-to-one
and has closed range.

Proof. Let f, = fl @ f2 € W*12(D ) aW '12(D, %) and h, = h} G h2 €
JC @ X be sequences such that

r}glolc T —2)fi+1® hn||W2k+12(D7%)@W2k+12(D7J{() =0. (D

Then from (1) we have the following equations:

limy—eo || (T} — 2) £} + Tof2 + 1@ ALl = 0 @
limy—eo || (T3 — 2) f2 + 1 @ h2||ypaks12 = 0.
By the definition of the norm for the Sobolev space, (2) implies that
limy .. | (Ty = 2)0 £} + T30 f2]l2p =0 )

limy o || (T3 = 2)0 f2]l20 =0
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for i=1,2,---,2k+ 12. Since T3 is analytic with order k, there exists a nonconstant
analytic function F on a neighborhood of ¢(73) such that F(73) = 0. As remarked
in section one, write F(z) = G(z)p(z) where G is analytic and does not vanish on a
neighborhood of ¢(73) and p(z) = (z—z1)(z—22) - -- (z—z) is a polynomial of degree
k.Set qj(z) = (z—2zj+1) - (z—z) for j=0,1,2,---,k—1 and gx(z) = 1.

Claim. It holds for every j=0,1,2,--- k that

. =i
lim [|¢;(73)0 f;

fori=1,2,---,2k—2j+12,where 6(T) G D& --- S D2y S D1 G D.

20; =0

To prove the claim, we will use the induction on j. Since 0= F(73) = G(T3) p(T3)
and G(T3) is invertible, it follows that go(73) = p(T3) =0, and so the claim holds when
Jj = 0. Suppose that the claim is true for some j = r where 0 < r < k. That is,

lim [lg/(73)9 fll2.0, = 0 )

fori=1,2,---,2k—2r+12,where 6(T) S D, S --- S D1 S D. By the second equation
of (3) and (4), we get that

. —i
= lim 1gr+1(T3)(Ts — 2)0 f2 |12,
= lim (g1 (T3)(T5 = 21 + 2041 ~2)0 f2 o, &)

) i
= lim 1(zr41—2)qr41(T3)d 2|20,

fori=1,2,.---,2k—2r+12. Since z,111 is hyponormal, by applying Lemma 3.2 we
obtain that

. N
lim [|g,+1(73)3 f3ll2.0,,, =0 (6)

fori=1,2,---,2k—2r+10, where 6(T) & D, 1 S D,. Hence we complete the proof

of our claim.
From the claim with j =k, we have

lim |97 |2.0, = 0 (7

for i=1,2,---,12, which implies by Lemma 3.1 that

Lim |1 = P2) f]l2.0, = 0 ®)

where P, denotes the orthogonal projection of L*(Dy, #") onto A?(Dy,#). By com-
bining (7) with the first equation of (3), we obtain that

lim |[(T; —2)9'f,

2.0, =0 )
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fori=1,2,---,12. From Lemma 3.3, it follows that

lim [|(1 = P) fy 2., = 0. (10)

Set Pf, := (gﬁ) . Combining (8) and (10) with (2), we have

lim ||(T —2)Pf,

D, =0.
Let I' be a curve in Dy ; surrounding 6 (7). Then
lim [|P£(2) +(T =) (1@ k) (2)| =0

uniformly for all z € I". Applying Riesz-Dunford functional calculus, we obtain that

lim ||—/an ) dz+hy|| =
But by Cauchy’s theorem, 5= [ Pf,(z) dz = 0. Hence lim,—.. |[,|| =0, and so V is
one-to-one and has closed range. [

Now we are ready to prove that every analytic extension of a class A operator has
a scalar extension.

THEOREM 3.5. Every analytic extension of a class A operator is subscalar.

T, T
075
is a class A operator and T3 is analytic with order k. Let D be an arbitrary bounded
open disk in C that contains ¢(7). As in Lemma 3.4, if we define an operator V :
H A — H(D) by Vh = 1®h, then V is one-to-one and has closed range. The
class of a vector f or an operator S on H(D) will be denoted by f, respectively S. Let
M be the operator of multiplication by z on W2*+12(D, s#)eW?**+12(D, #"). Then
M is a scalar operator of order 2k + 12 and has a spectral distribution ®@. Since the
range of T — z is invariant under M, M can be well-defined. Moreover, consider the
spectral distribution @ : C3**12(C) — .2 (W +12(D, #)&W>*12(D, ¢')) defined by
the following relation; for ¢ € C3¥*12(C) and f € W*+12(D, )W +12(D, %),
®()f = @f . Then the spectral distribution ® of M commutes with 7 — z, and so M
is still a scalar operator of order 2k + 12 with @ asa spectral distribution. Since

Proof. Let T = < ) be an operator matrix defined on 7 ® %, where T;

VTh=1@Th=z0h=M(1&h) =MVh

forall he #®.#, VT = MV. In particular, ran(V) is invariant under M, where
ran(V) is the range of V. Since ran(V) is closed, it is a closed invariant subspace of
the scalar operator M. Since T is similar to the restriction M lran(v) and M is a scalar
operator of order 2k + 12, T is subscalar of order 2k+12. [J

As an application of our main theorem, we prove that every F -quasiclass A oper-
ator is subscalar with the following lemma.
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LEMMA 3.6. Let T € .Z(s¢) be F-quasiclass A and let .# be an invariant
subspace for T'. Then the restriction T| 4 is a p-quasiclass A operator.

Proof. Since T is an F -quasiclass A operator, F(T)*(|T?| — |T|*)F(T) = 0 for
some function F analytic and nonconstant on a neighborhood of ¢ (7). Set F(z) =
G(z)p(z) where G is a nonvanishing analytic function on a neighborhood of ¢(7') and
p is a nonconstant polynomial. Since .7 is a T -invariant subspace, we can write 7 =

(7(;1 ;2> on the decomposition J# = .# & .#*, where T} =T| 4, Ts = (I—P)T (I —
3

P)| 4. .and P denotes the orthogonal projection of .7 onto .# . Since (T?)"T?)% >
0, from [9] we can set

mi=yrri= (L),

where B>0, D >0, and C = B%SD% for some contraction S : #~+ — .# . Then a
simple calculation gives that

2 2 %
(Tz)*TQ:T2|2:<B C) _ ( B>+CC BC—i—CD).

Cc*D C*B+DC* C*C + D?
Since

(T?)*T? = ((le)*le *) :

we get that B>+ CC* = (T?)*T?. Hence

1

12| = (T2)'T2)* = (B> +CC")? > B.

T =T"T = (TI*TI *) = <T12 *)
* ok ko ok

0 < F(T)*(|T? = |T]*)F(T)
_ F(T)* (B_ ‘Tl‘z *) F(T) — G(T)* (p(Tl)*(B_ ‘T1|2)p(Tl) I) G(T)

* * *

Also, since

we have

by Riesz-Dunford’s functional calculus. Since G(T) is invertible, we obtain from [9]
that p(T1)*(B — |T1|?)p(T1) = 0, which completes our proof. [

THEOREM 3.7. Every F -quasiclass A operator is subscalar. In particular, every
k-quasiclass A operator is subscalar of order 2k + 12.

Proof. Suppose that T € £ () satisfies that F(T)*(|T?| — |T|*)F(T) > 0 for
some analytic function F on a neighborhood of ¢ (7). If the range of F(T') is norm
dense in 27, then T is a class A operator. Hence T is subscalar of order 12 by
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Theorem 3.5. So it suffices to assume that the range of F(T) is not norm dense in
. Since F(T) commutes with T, ran(F(T)) is a T -invariant subspace, and so
7(;1 ;:2 on J =ran(F(T)) G ker(F(T)*) where T} =

3
T|m, =(-P)T(I- P)|ker(F(T)*)7 and P denotes the projection of .# onto

we can express T as T =

ran(F(T)). Note that F(z) = G(z)p(z) where G is a nonvanishing analytic function on
a neighborhood of 6(7T') and p is a nonconstant polynomial. Then G(T) is invertible
and thus we obtain that ker(F(T)*) = ker(p(T)*). Since p(T3) = (I —P)p(T)(I —
P)‘ker(F(T)*)’ it holds for any x € ker(F(T)*) that

(p(T3)x,x) = (p(T)x,x) = (x,p(T)"x) = 0.
Hence p(T3) =0 and so T3 is analytic. In addition, since P(|T?|—|T|>)P >0, we have
T[T > B~ >0

from the proof of Lemma 3.6 and [9]. This means that 7} is a class A operator. There-
fore if 73 is analytic with order k, then T is subscalar of order 2k + 12 by Theorem
3.5 0O

In the next corollary, we obtain a partial solution to the invariant subspace problem
for analytic extensions of class A operators, which is a generalization of S. Brown’s
result mentioned in section one.

COROLLARY 3.8. Let T € .Z(# @ %) be an analytic extension of a class A
operator. If 6(7T) has nonempty interior in C, then T has a nontrivial invariant sub-
space.

Proof. The proof follows from Theorem 3.5 and [8]. O

For the following corollary, note that an operator T € £ () is said to be power
regular if {||T"x|| : }_ o converges for each x € 7 and rr(x) denotes the local spec-

tral radius of T at x given by rr(x) := limsup,_,., HT”xH% . Moreover, we recall that
for an operator T € .Z (), a spectral maximal space of T is defined to be a closed
T -invariant subspace .# of .7 with the property that .# contains any closed 7 -
invariant subspace .4~ of ¢ such that o(T| 4 ) C 6(T|.»). Furthermore, recall that
an operator X € £ (', %) is called a quasiaffinity if it has trivial kernel and dense
range. An operator S € .Z () is said to be a quasiaffine transform of an operator
T € L(X) if there is a quasiaffinity X € £ (J,¢) such that XS = TX. Also,
operators S € L () and T € £ (#") are quasisimilar if there are quasiaffinities
Xe LA, X)andY € L(H,5) suchthat XS=TX and SY =YT.

COROLLARY 3.9. If T € .Z(# @ .%') is an analytic extension of a class A op-
erator, then the following statements hold.
(i) T has property (), Dunford’s property (C), and the single-valued extension prop-
erty.
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@ii) T is power regular.

(iii) 7 (x) = limy_ || T"x||# for all x € 2.

(iv) Hr(E) is a spectral maximal space of 7 and o(7T |y, (g)) C o(T)NE for any
closed subset E in C.

(v) If S is a quasiaffine transform of 7' such that XS = TX where X is a quasiaffinity,
then S has the single-valued extension property and XHs(E) C Hy(E) for any subset
E in C.

Proof. (i) From section two, it suffices to prove that T has property (). Since
property (f) is transmitted from an operator to its restrictions to closed invariant sub-
spaces, we are reduced by Theorem 3.5 to the case of a scalar operator. Since every
scalar operator has property () (see [25]), T has property ().

(ii) From Theorem 3.5, T is similar to the restriction of a scalar operator to one
of its invariant subspaces. Since a scalar operator is power regular and the restrictions
of power regular operators to their invariant subspaces are still power regular, T is also
power regular.

(iii) The proof follows from (i) and [18].

(iv) Since T has property (C) from (i), Hr(E) is closed for any closed subset E
in C. Hence the proof follows from [6] or [18].

(v) Let f: G — 2 @ % be an analytic function on an open set G in C such
that (S—2z)f(z) =0. Then (T —2)Xf(z) =X(S—2z)f(z) =0 on G. Since T has the
single-valued extension property, X f(z) =0 on G. Since X is a quasiaffinity, f(z) =0
on G. Hence S has the single-valued extension property. To prove the last conclusion,
it suffices to show that o7 (Xx) C og(x) for any x € 5 @ % ; in fact, if it holds, then
x € Hg(E) implies or(Xx) C E, which means that Xx € Hr(E). If z9 € ps(x), then
we can choose an .7 @ ¢ -valued analytic function f on some neighborhood of zy for
which (S —z)f(z) =x. Since XS =TX, we have (T —2)X f(z) =X(S—2)f(z) = Xx,
and so zo € pr(Xx). O

COROLLARY 3.10. Let C and D be operator matrices in . (5 & %) which
are analytic extensions of class A operators. If C and D are quasisimilar, then 6(C) =
o(D) and o.(C) = 0.(D).

Proof. Since C and D satisfy property () from Corollary 3.9, the proof follows
from [26]. O

COROLLARY 3.11. Let T € £ (@ %) be an analytic extension of a class A
operator. If there exists a nonzero vector x € ¢ @ %" such that or(x) & o(T), then
T has a nontrivial hyperinvariant subspace.

Proof. Set .# := Hr(or(x)), i.e., # ={yc€ A DK :0or(y) Cor(x)}. Since T
has Dunford’s property (C) by Corollary 3.9, .# is a T -hyperinvariant subspace from
[6] or [18]. Since x € .#, we get .# # {0}. Suppose .# = # &% . Since T has
the single-valued extension property by Corollary 3.9, it follows from [18] that

o(T)=Jor(y):ye # &2} Cor(x) G o(T),
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which is a contradiction. Hence .# is a nontrivial T -hyperinvariant subspace. [

Next we show that every analytic extension T € £ (¢ ®.%) of aclass A operator
is isoloid (i.e., isoo(T) € 0,(T) where isoo(T) denotes the set of all isolated points
of o(T)). If T € £(s) is analytic, then there exists a nonconstant polynomial p(z)
such that p(T) = 0. If ¢(z) is a minimal polynomial satisfying ¢(7T) = 0, it is obvious
that g(z) is a factor of p(z).

LEMMA 3.12. Suppose that T € £(5° @& J¢") is an analytic extension of a class
T,
0 T
A operator and F(73) = 0 for a nonconstant analytic function F on a neighborhood
D of o(T3). Then the spectrum o(T) = o(7;) Uo(T3) and o(T3) is a subset of
{z€ C: p(z) =0} where F(z) = G(z)p(z), G is analytic and does not vanish on D,
and p is a polynomial.

A operator, i.e., T = is an operator matrix on S ¢ % where T; is a class

Proof. Since p(T3) =0, choose a minimal polynomial g such that ¢(73) = 0 and
q(z) is a factor of p(z) as remarked in the above. Then {z € C: g(z) = 0} is nonempty
and is contained in {z € C: p(z) = 0}. First we will show that o(73) = 0,(T3) =
{z€ C:q(z) =0}. Since ¢(T3) =0, we have ¢(c(T3)) = o(q(T3)) = {0} by the
spectral mapping theorem. This means that 6(73) C {z € C: g(z) = 0}. Moreover if
we assume that z;,---,z; are all the roots of g(z) = 0, not necessarily distinct, then
(T3 —21)(T5s — 22) -+ (Ts — zx)x = 0 for all x € #. By the minimality of the degree
of g, we can select a vector xop € £ such that (T3 —z3)--- (T3 — z¢)x0 # 0, and so
21 € 0p(T3). Similarly, z; € 0,(73) forall i=1,2,---,k. Hence o(T3) = 0,(T3) =
{z€ C:q(z) =0}. Since {z € C:¢q(z) =0} is a finite set, o(7;) No(T3) is also
finite, which implies that o(71) N o(73) has no interior point. By using [11], we get
o(T)=o(T1)Uo(T3), which completes the proof. [

THEOREM 3.13. Every analytic extension of a class A operator is isoloid.

Proof. Suppose that T € £ (¢ @ ¢ is an analytic extension of a class A oper-
ator. Then we get by Lemma 3.12 that 6(T) = o(71) Uo(T3) and o(73) is a finite set.
Let A € C be an isolated point of ¢(T). Then either A4 is an isolated point of ¢(7})
or A € o(T3). If A is an isolated point of 6(71), then A € 6,(T;) C 0,(T) because
every class A operator is isoloid by [13]. Thus we may assume that A € 6,(73) and
A ¢ o(Th). Since A € 6,(T3), we get ker(T3 —A) # {0} . In addition it holds for any
x € ker(T3 — A) that (T —A)(—(Ty — 1) 'Tox®x) =0. Hence A € 0,(T). O

COROLLARY 3.14. Let T € £ (7 @ %) be an analytic extension of a class A
operator. If 7 is quasinilpotent, then it is nilpotent.

Proof. Since o(T) = {0}, Lemma 3.12 implies that 6(77) = {0} and T3 is
nilpotent. Since 7 is a class A operator, it is normaloid by [10]. Hence we get
IT1|| = r(Ty) = 0. Therefore, T is nilpotent. [
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extension of a class A operator, i.e., T is a class A operator and F(73) = 0 for some
nonconstant analytic function F on a neighborhood D of ¢(73) with the representation
F(z) = G(z)p(z) where G is analytic and does not vanish on D and p(z) = (z—z1)(z—
22) -+ (z—z) is a polynomial. Then

(i) Hr(E) D Hr, (E) & {0} for every subset E of C, and

(ii) if E is a closed subset of C with z; ¢ E for some i = 1,2,---  k and {Tj};:1 are
mutually commuting, then

PROPOSITION 3.15. Suppose that T = ( ) € L (A @©X) is an analytic

Hr(E) C{x1®x, € ' ® A : pi(T3)x1 € Hr,(E) and x; € ker(p;(T3))}

where pi(z) = (z—z1) - (z—zi—1)(z—zi41) - (2—2) -

Proof. (i) Let E be any subset of C and let x; € Hy, (E) be given. Since T has the
single-valued extension property by Corollary 3.9, there exists an .7 -valued analytic
function f; on C\ E for which (T} —z)f1(z) =x; on C\ E. Hence (T —z)(f1(z) ®
0)=x1®00n C\E,and so x; ®0 € Hr(E).

(ii) We may assume that E' is any closed subset of C with z; ¢ E, and let x| ®x; €
Hr(E) be given. Since T has the single-valued extension property by Corollary 3.9,
we can choose an J# @ % -valued analytic function f(z) = f1(z) ® f>(z) defined on
C\ E such that (T —z)f(z) =x; ©x, forall z€ C\ E. Then we have

(i =2)fi(2) + T2f2(2) = x1 (11
(—2)f2(2) =x2
forall ze C\E. Since p(T3) = (T3 — z1)p1(T3) = 0, it follows from (11) that
(Z—Zl)pl(Tg)fz(Z)+p1(T3))C2EOOH (C\E (12)

By taking z = z; in (12), we obtain that p;(73)x, =0, which means x, € ker(p;(73)).
Moreover, (11 —z)p1(T3) f1(z) = p1(T3)x; on C\ E from (11), which implies p;(73)x; €
Hp (E). O

In the following proposition, we will consider the Putnam’s type inequality cor-
responding to the analytic extension of a class A operator. Note that the Putnam’s
inequality holds for class A operators;

172 =T < —p(o(T))

8-

where (t denotes the planar Lebesgue measure (see [23]).

nhn
0 T3
extension of a class A operator, i.e., T is a class A operator and F(73) = 0 for some
nonconstant analytic function F on a neighborhood D of ¢(T') with the representation

PROPOSITION 3.16. Suppose that T = < € L (A ®X) is an analytic
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F(z) = G(z)p(z) where G is analytic and does not vanish on D and p(z) is a polyno-
mial.

(i) If T is compact, then both p(T) and F(T) are expressed as the sum of a normal
operator and a nilpotent operator of order 2.

(ii) The following inequality holds;

1
—u(o(T

—1(o(T))

where P is the orthogonal projection of .7 & % onto ¢ @ {0}. Moreover, if o(T)
is a Lebesgue null set, then 77 is normal.

F(Ty) S

0 0
T is compact and Tj is the restriction of T to the invariant subspace . @ {0}, T} is
also compact. Thus 7} is normal by [14], and so is F(T;). Since F(T)—F(T;)®0 is a
nilpotent operator of order 2, we complete the proof for F(T'), and the proof for p(T)
is analogous.

(i) Since PTP = TP, we get that |T?| = (P|T?P)? > P|T?|P by Hansen’s
inequality (see [10]). Since |Ty|*> = (TP)*(TP) = P|T|*P, we have |T?|—|Ti|* >
P(|T? —|T|*)P. Since o(T) = o(Ti) Uo(T;) and o(T3) is a finite set by Lemma
3.12, it follows from [23] that

2 2
PAT = TI7)Pl| <

Proof. (i) We have F(T) = ( ) for some operator S : # — . Since

1 1
IP(T?| = TPl < [[|T7] = Taf*[] < —i(o(h)) = —u(o(T)).
Moreover, if u(o(T)) =0, then u(c(77)) =0, and hence T; is normal from [28]. O

COROLLARY 3.17. Under the same hypotheses as in Proposition 3.16, let 6(T")
be a Lebesgue null set. If 77 has dense range, then T is the direct sum of a normal
operator and an analytic operator.

Proof. Since T; is normal by Proposition 3.16, it suffices to show that 75 = 0.
Since o(T) is a Lebesgue null set, we know that P(|7%| —|T|?)P =0 and |T?| = |T1|?
from Proposition 3.16. From easy computations, we get that

T2 = TP * and |T|* = N+ Ty BT+
* ok * * )

Hence |TZ|? = |T\|* + T} TS Ty . Since |T2| = |Ti|*, T T,y Ty = 0. Since T has
denserange, 7o =0. Thus T =T1 ¢ 17;. U

Next we show that the spectral mapping theorem for the Weyl spectrum and Weyl’s
theorem hold for an analytic extension T of a class A operator, more generally for f(T)
where f is any analytic function on some neighborhood of ¢ (7).

THEOREM 3.18. If T € £ (2 @& J¢) is an analytic extension of a class A oper-
ator, then
(1) it satisfies Weyl’s theorem, and
(ii) f(0w(T)) = 0,(f(T)) for any analytic function f on some neighborhoodof o(T').
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class A operator, i.e., T} is a class A operator and F(T3) = 0 for some nonconstant
analytic function F on a neighborhood D of ¢(T3).

(i) Note that every class A operator is isoloid and satisfies Weyl’s theorem by
[5]. Furthermore, since every analytic operator is algebraic as noted in section one
or [5], T3 is isoloid and it satisfies Weyl’s theorem by [22]. Since 6,,(T1) N 6,(T3)
has no interior points by Lemma 3.12, Weyl’s theorem holds for 77 ¢ T3 from [20]. If
Ao € 01.(T3) NGy (T3) and Ay € 0.(T3), then T5 — Ay is semi-Fredholm and A € 6(73).
Since T3 is algebraic, Ay is an isolated point of ¢(73). By [7], T3 — Ag is Fredholm and
ind(73 — A9) = 0, which is a contradiction. Thus we have 6,(73) = 07,(T3) N ;. (T3),
which induces 0,(73) = 0j,(T3) = 0, (T3) . Therefore SP(T3) has no pseudoholes, and
so we finally get that Weyl’s theorem holds for 7' by [19].

(i) If f is analytic on some neighborhood of ¢(T'), then o,,(f(71)) = f(ow(T1))
by [5]. Moreover since T is algebraic, we know that o,,(f(73)) = f(0,(T3)) and
0(T1) N o,(T3) is finite and so has no interior points. Since 6,,(77) N G, (T3) is finite,
ow(f(Th))Now(f(T3)) = f(ow(Th)) N f(0w(T3)) also has no interior points. Hence,
we obtain from [20] that

0w (f(T)) = 0w(f(T)) Uou(f(T3)) = f(0w(T1)) U f(0w(T3))
= f(ow(T1) Uow(T3)) = f(ow(T)).

Thus we complete our proof. [J

Proof. Suppose that T = ( ) € L (A ©x) is an analytic extension of a

COROLLARY 3.19. Let T € £ (7 @ %) be an analytic extension of a class A
operator. Then Weyl’s theorem holds for f(7) where f is any analytic function on
some neighborhood of &(T).

Proof. If T is an analytic extension of a class A operator, then T is isoloid by
Theorem 3.13. Let f be an analytic function on some neighborhood of ¢ (7). Then it
follows from [21] that

o (f(T))\ moo(f(T)) = f(a(T)\ 7o0(T))-
Since Weyl’s theorem holds for T and f(0,,(T)) = 6,,(f(T)) by Theorem 3.18,

o (f(T) \moo(f(T)) = f(o(T) \ 7o0(T)) = f(0(T)) = 0 (f(T)).
Accordingly, Weyl’s theorem holds for (7). O
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