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THE NUMERICAL RADII OF WEIGHTED
SHIFT MATRICES AND OPERATORS

MAO-TING CHIEN AND HUE-AN SHEU

(Communicated by C.-K. Li)

Abstract. Let A be an operator on a separable Hilbert space. The numerical range of A is
defined as W(A) = {(Ax,x) : ||x|| = 1}. It is known that the numerical range of a weighted shift
operator is a circular disk. In this paper, we compute and compare the numerical radii of certain
weighted shift matrices and operators.

1. Introduction

Let A be an operator on a separable Hilbert space. The numerical range of A is
defined to be the set
W(A) = {{Ax,x) - [lx] = 1}.

The numerical range is always nonempty, bounded and convex. Further, the range is
compact for a finite-dimensional matrix. The numerical radius w(A) is the supremum
of the modulus of W(A). (For reference on the numerical ranges of matrices and oper-
ators, see, for instance, [6].)

We consider a weighted shift operator on the Hilbert space ¢>(N) with bounded
weights (ay,az,as,...) represented by an infinite matrix of the form

0000O0...
ap 0 00...

A=Ala,ap,..)=| 0@ 00... | L1
( =1 0 a0 ... (1.1)

In finite-dimensional case, an n-by-n weighted shift matrix with weights (ay,as,...,a,-1)
is the matrix

00 - 0

ap 0 0 0
A=A(ay,ay,...,ay-1) = (1.2)

0 ------ an_lo
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It is known that the numerical range of a weighted shift operator is a circular disk about
the origin (cf. [4], [5], [8], [9]), and the numerical range of a weighted shift matrix is
a closed circular disc centered at the origin (cf. [2], [3]). In particular, W(A(1,1,...))
is an open unit circular disk (cf. [9]), and W(A(L,1,...,1)) of A(L,1,...,1) e M, isa
circular disk about the origin with radius cos(r/(n+ 1)), (cf. [7]). Further, Berger and
Stampfli [1] showed that if (1+4) > v/2,

WA+ 11, 0) = 2 (R = )Y (R = 1))

It is easy to see that a weighted shift operator(and matrix) A is unitarily similar
to |A] (cf. [4]). Hence we may assume the weights are nonnegative for the study of
the numerical range. In section 2, we determine the numerical radii of weighted shift
matrices

A =A(1,...,L,r1,....1) e M, (1.3)
with weights (1,...,1,71,...,1), where a; = 1 forall j expectone weight a; =r >0,
1 <k < n—1. Moreover, we compare the numerical radii of weighted shift matrices
Ap,k=1,2,...,n. In section 3, we compute the numerical radius of weighted shift
operator A(1,1+n,1,...) with weights (ai,a2,...), where a; =1 for all j expect the
weight ap = 1 + &, and compare the numerical radius with the weighted shift operator
A(l+h,1,1,..).

2. Weighted shift matrices

Firstly, we determine the numerical radii of weighted shift matrices Ay = Ai(1,..., 1,
rnl,...,1) with weights (1,...,1,n1,...,1).

THEOREM 2.1. Let Ay =Ax(1,...,1,r1,...,1),1 <k<n—1, be ann-by-nweigh-
ted shift matrix in (1.3).

(i) If 0 < r < 1, then w(Ay) = cos 6, where 6 € (0,27) is the minimum root of
k
sin(n+1)0+ (1—r%) Y sin(n+1-2/)8 =0. (2.1)
=1
(ii) If r = 2, then w(Ay) = cosh O, where 0y is the maximum root of

k
sinh(n+1)8+ (1 — ) Y sinh(n+1—2/)0 = 0. (2.2)
j=1

Proof. Let py(t) be the characteristic polynomial of the real part of the shift ma-
trix A(1,1,...,1) € My,. Setting y,(r) =2"p,,(r), then y,(¢) is a Chebyshev poly-
nomial of second kind, and thus

Wu(cos0) =sin(m+1)6/sinb. (2.3)
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Let gx () = det(r] — R(Ay)).

Assume r < 1. Then p(R(Ax)) < [|R(AL) ||me < 1, where ||.|| denotes the ma-
trix norm of maximum column sum. Thus, every eigenvalue of R(A;) can be expressed
as cos 0 for some 6. We claim that, for ] <k<n—1,

sin(n+1)0+ (1— rZ)ZIJ‘-:1 sin(n+1-25)0

Gin(c0s 0) = Mo , (2.4)
by proving that (2.4) holds for k = 1,2, and induction for k > 3.
Suppose k= 1. Then
2
QI,n(Z) = tpnfl(t) - an72(t)7
we have,
2"y a(t) = 2t W 1 (t) — Py _a(t). (2.5)
Substituting (2.3) into (2.5), we have that
sinn® sin(n—1)6
2"y (cos0) =2cosO —r
q1a(c0s6) O Gine sin @
:sin(n—|—1)9—|—(?—rz)sin(n—l)e. 2.6)
sin 0

Suppose k =2. Then g2,(t) =tq1,—1(t) — }lpn,z(t). Using (2.3) and (2.6), we
have that

1 /sinn@

sin(n—2)0 1 Isin(n—1)6
= — 1— 72 _ z
420(c0s6) = cosB 7 ( e ) g ) 2724 sin®
sin(n+1)0+ (1 —r?)sin(n — 1)0+ (1 — r*)sin(n — 3)0
_ : .en
2"sin 0
Suppose k > 3. Then
1
Qrn(t) =1qx—10-1(t) — ZQk—27n—2(Z)~ (2.8)

For k = 3, substituting (2.6) and (2.7) into (2.8), we have that

q3.n(cos0)
cose(sinne+ (1—r)sin(n—2)0 + (1 — r2)sin(n _4)9)

2n—1gin @
1sin(n—1)0+ (1 —r?)sin(n—3)0
4 27-25in O
sin(n+1)0+ (1 —r)sin(n—1)8 + (1 —r?)sin(n —3)0 + (1 — r*)sin(n— 5)6
2"sin O
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Thus (2.4) holds. Suppose (2.4) holds for k < m — 1. When k = m, according to (2.8),
we compute that

Gmn(cos )
= c0s0¢qu—1n—1(cos6) — %qm,zﬁ,z(cos 0)
cos O[sinnd + (1 — r2)sin(n —2)0 4 ---+ (1 — r?)sin((n — 2(m — 1))0)
B 2n-15in@
_Lsin(n—1)0+ (1 r)sin(n—3)0+---+ (1 —r?)sin(((n—1) —2(m —2))0)
4 21=25in O
_sin(n+1)0+ (1—r?)sin(n—1)0+ -+ (1 — ) sin((n+ 1) — 2m)6
B 27sin @ ’

This proves the induction. Hence g ,(cos 0) = 0 if and only if (2.1) holds. Therefore,
the numerical radius w(Ay) = p(R(Ax)) = cos 6, where 6, € (0,27) is the minimum
root of (2.1). Indeed, we will show later that 6, € (0,7/2).

Next, assume r > 2. Then p(R(Ax)) = w(Ax) = r/2 > 1. Thus some roots of
G (t) are greater than or equal to 1 which are expressed as cosh 6. It can be proved in
the same way that for 1 <k <n—1,

sinh(n+1)0+ (1 —r)¥5_ sinh(n+1-2;)0
2"sinh @ '

Hence, g ,(cosh@) = 0 if and only if (2.2) holds, and w(A;) = cosh6; where 6y is
the maximum root of (2.2). [

Gin(coshB) =

It is shown in [4] that W (A(ay,a,...,ay,—1)) = W(A(apn—1,an—2,...,a1)), it suf-
fices to consider k < [n/2] for the numerical range of Ax(1,...,1,r,1,...,1) € M,,. We
compare the numerical radii of the matrices Ax(1,...,1,n1,...,1) eM,, k=1,2,...,

[n/2].
THEOREM 2.2. Let 1 < k< [n/2]—1 and Ay be the weighted shift matrices
definedin (1.3).

(i) If 0 <r < 1 then w(Ay) > w(Agi1).
(i) If r > 2 then w(Ax) < w(Agy1).

Proof. Assume 0 < r < 1. Consider the trigonometric polynomial obtained in (i)
of Theorem 2.1,

k
fi(0) =sin(n+1)0+ (1—7r%) Y sin(n+1—2/)0.
j=1
It is clear that f;(0) > 0 forall 6 € (0,7/(n+1)). On the other hand,

filr/(n—(k—1))) = —sin(k/(n— (k— 1))+ (1 — r*)sin(k/(n — (k—1)))w < 0.
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Since n—(k—1) > 2, wehave n/(n— (k—1)) < /2. Hence, there exists the smallest
O € (m/(n+1),m/(n— (k—1))) such that f;(6;) = 0. Observe that

fir1(8) =sin(n+1)8+ (1 — r2)k+zlsin(n+ 1-2/)6
j=1
= f1(0) 4+ (1 —r*)sin(n — (2k+1))6. (2.9)

Since both f;(0) and (1 — r?)sin(n — (2k + 1))@ are positive for 6 € (0,6;), and
fie1(80) =04 (1 —r?)sin(n— (2k+1))6 > 0,
it follows that fi11(0) > 0 for all 6 € (0, 6;]. Further, we find that
fir1(m/(n—k)) = —sin((k+1)/(n—k))w+ (1 —r?)sin((k+1)/(n—k))m < 0.

Hence, there exists the smallest 6y, € (6, 7/(n—k)) such that fi1(61) =0, we
obtain that cos 6 > cos ;. This proves part (i).

Assume r > 2. Consider the hyperbolic trigonometric polynomial obtained in (i)
of Theorem 2.1,

k

2c(8) =sinh(n41)8 4 (1 — %) Y sinh(n+1-2/)6.
j=1
Substituting sinh @ = (e® —¢79)/2, we have that
k
26(n+1)9gk(9): ( 2(n+1)6 2 (n—j+1) ) ( 26219 ) 2 10)

The second term in the right-hand side of (2.10) is always positive. Concerning the first
term, we have

e2(n+l r _ 1 2 (n—j+1)6 2(n+1)9 —k(r2 _ 1)e2n9 — e2n0(e29 —k(r2 _ 1))

Hence
gx(68) >0 forall 0 > (In(k(r* —1)))/2. (2.11)

Substituting 6 = (In(r*> — 1)) /2 into (2.10), we obtain that

2002 (In(r2 — 1)) /2)

P2 1)k-1
— —(7‘2 _ l)n+2fk( (r2 _1)1) — 1

and thus g¢((In(r?> —1))/2) < 0. Then there exists the largest 6; € ((In(r> —1))/2,
(In(k(r? —1)))/2) such that g(6;) =0
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Since gi11(0) = gx(0) + (1 —r?)sinh((n+1) —2(k+ 1))8, it follows that
Ze(n+l)9gk+l(9) _ Ze(n+1)9gk(9) _ (r2 _ 1) <e2((n+l)—(k+l))9 _ e2(k+1)9> ) (212)

By the hypothesis that k < [n/2] — 1, then 2k < n— 1, and thus 2(*+1)=(k+1)6 _
218 5 0. Then, by(2.12), gis1(6;) < 0, while by (2.11), gx1(8) > 0 for all
0 > (In((k+1)(r>—1)))/2. Hence, there exists the largest 6,1 € (6, (In((k+1)(r* —
1)))/2) such that fii;(6y1) = 0. The assertion w(As;) = coshBy; > cosh6y =
w(Ay) follows. O

REMARK. The result of Theorem 2.2 is restricted to the case 0 <r <1 or r > 2
for the matrix Ay = Ag(1,...,1,r,1,...,1). At present, we have no analogous results if
1 < r < 2. However, the following example proposes a conjecture that for 1 <r <2,
the inequality w(Ax) < w(Agy1) holds.

We consider the 4 x 4 weighted shift matrices Ay = A(1,...,1,r,1,...,1). Direct
computation finds that

w(Ai(r1,1)) = <(1/2+r2/4) + ((1/14—#/4)2 _r2/4)1/2>1/2

and

w(Ax(1,r,1))

((1/2+r2/4) +((1/2+7r2/4)*— 1/4)1/2>1/2
3 .
Itis clear that for 1 <r <2, w(A;) < w(Az).

3. Weighted shift operators

Let A =A(aj,az,...) be a weighted shift operator with weights (aj,as,...) de-
fined in (1.1). The numerical range W (A(ay,az,...)) is a circular disc about the origin.
In particular, when a, = 1 for all n, W(A) is an open unit disc. Berger and Stampfli [1]
showed that

1
w(a) =5 (4P = D3+ (1R =1)72)
if a; = (1+h)>+/2, ay=a3=--- = 1. We compute the numerical radius in the case
a2:1+h,a1:a3:a4:...:1.

THEOREM 3.1. Let A =A(1,1+h,1,1,...) be a weighted shift operator with
weights (1,1+h,1,1,...), and 1+h>/6/2. Then

(S

W(A) = %(((h(2+h)+\/(h(2+h))2+4h(2+h))/2>

+ ((h(z +h)+ \/(h(z +1h)2+4h(2+ h))/z) _%>.

Proof. The weighted shift operator A on H? satisfies

Af(2) =zf(2) +hf (0)2
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for f(z) = ap+aiz+axz* +--- € H>. Suppose that |R(A)|| = & > 1 with R(A)f =
of. Then

(zf(z)+w>+h<f,(0)zz+f—(o)z) =20f(z) (3.1)
2z 2
Compare coordinates-wise of the equation R(A)f = o f, we have
£ (0) =20£(0) (3:2)
and , )
fO)+(1+h)f (0)/2=2af (0) (3:3)

Substitute f (0) and f" (0) of equations (3.2) and (3.3) into (3.1), we have
(22— 207+ 1)f(z) = (1 —2ah? — (42— 1)/(1+ h))hzz> F0) (3.4)
Setting o« = coshx for x > 0, the equation (3.4) yields

(z—€e)(z—e ) f(z) = <l — (" e D — (¥ +e P +1)/(1 +h))hz2>f(0).

(3.5)
Taking z = e in (3.5), we obtain
1— (" +e he ¥ — (¥ +e > +1)/(1+h)he > =0, (3.6)
Simplify equation (3.6), we have
e —h(2+h)e* —h(2+h) = 0. (3.7)
If 1+h>+/6/2, equation (3.7) is solvable by
= (h2+h)+ \/(h(2+h))2+4h(2+h)) /2, (3.8)
and thus
1
w(a) = coshx = > (((h2+h) + \/(h(2+h))2+4h(2+h))/2) :

1

(@4 +Jh@+m)2+an@+m)/2) 7). D

1
2
+

In the following, we compare the numerical radii of two weighted shift operators
A(l+h,1,1,...) and A(1,14h,1,...).

THEOREM 3.2. Let Ay = A (1+h,1,1,...) and Ay = A>(1,1+h,1,...) be two
weighted shift operators. If (1+h) > /2 then w(A;) < w(A).

Proof. Ttis shown in [1],

wiAn) = coshs = (102 = D4+ (102 1)7F) /2,
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where
e =(1+h)?—1=h2+h). (3.9)

By Theorem 3.1, w(A,) = coshx,, where

2 = (h@+h)+ 4/ (h2+1)2+ 402+ 1)) /2. (3.10)

Comparing (3.9) with (3.10), we have x; < x,, and thus w(A;) = coshx; < coshx; =
W(Az). U
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