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Abstract. Let A be an operator on a separable Hilbert space. The numerical range of A is
defined as W(A) = {〈Ax,x〉 : ‖x‖ = 1}. It is known that the numerical range of a weighted shift
operator is a circular disk. In this paper, we compute and compare the numerical radii of certain
weighted shift matrices and operators.

1. Introduction

Let A be an operator on a separable Hilbert space. The numerical range of A is
defined to be the set

W (A) = {〈Ax,x〉 : ‖x‖ = 1}.
The numerical range is always nonempty, bounded and convex. Further, the range is
compact for a finite-dimensional matrix. The numerical radius w(A) is the supremum
of the modulus of W (A) . (For reference on the numerical ranges of matrices and oper-
ators, see, for instance, [6].)

We consider a weighted shift operator on the Hilbert space �2(N) with bounded
weights (a1,a2,a3, . . .) represented by an infinite matrix of the form

A = A(a1,a2, . . .) =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 . . .
a1 0 0 0 . . .
0 a2 0 0 . . .
0 0 a3 0 . . .
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠

, (1.1)

In finite-dimensional case, an n-by-nweighted shift matrix with weights (a1,a2, . . . ,an−1)
is the matrix

A = A(a1,a2, . . . ,an−1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 · · · · · · 0
a1 0 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . .
...

0 · · · · · · an−1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (1.2)
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It is known that the numerical range of a weighted shift operator is a circular disk about
the origin (cf. [4], [5], [8], [9]), and the numerical range of a weighted shift matrix is
a closed circular disc centered at the origin (cf. [2], [3]). In particular, W (A(1,1, . . .))
is an open unit circular disk (cf. [9]), and W (A(1,1, . . . ,1)) of A(1,1, . . . ,1) ∈ Mn is a
circular disk about the origin with radius cos(π/(n+1)) , (cf. [7]). Further, Berger and
Stampfli [1] showed that if (1+h) >

√
2,

w(A(1+h,1,1, . . .)) =
1
2

(
((1+h)2−1)1/2 +((1+h)2−1)−1/2

)
.

It is easy to see that a weighted shift operator(and matrix) A is unitarily similar
to |A| (cf. [4]). Hence we may assume the weights are nonnegative for the study of
the numerical range. In section 2, we determine the numerical radii of weighted shift
matrices

Ak = Ak(1, . . . ,1,r,1, . . . ,1) ∈ Mn (1.3)

with weights (1, . . . ,1,r,1, . . . ,1) , where a j = 1 for all j expect one weight ak = r > 0,
1 � k � n− 1. Moreover, we compare the numerical radii of weighted shift matrices
Ak,k = 1,2, . . . ,n . In section 3, we compute the numerical radius of weighted shift
operator A(1,1+h,1, . . .) with weights (a1,a2, . . .) , where a j = 1 for all j expect the
weight a2 = 1+h , and compare the numerical radius with the weighted shift operator
A(1+h,1,1, . . .) .

2. Weighted shift matrices

Firstly, we determine the numerical radii of weighted shift matrices Ak = Ak(1, . . . ,1,
r,1, . . . ,1) with weights (1, . . . ,1,r,1, . . . ,1) .

THEOREM 2.1. Let Ak = Ak(1, . . . ,1,r,1, . . . ,1),1 � k � n−1, be an n-by-nweigh-
ted shift matrix in (1.3).

(i) If 0 < r � 1 , then w(Ak) = cosθk , where θk ∈ (0,2π) is the minimum root of

sin(n+1)θ +(1− r2)
k

∑
j=1

sin(n+1−2 j)θ = 0. (2.1)

(ii) If r � 2 , then w(Ak) = coshθk , where θk is the maximum root of

sinh(n+1)θ +(1− r2)
k

∑
j=1

sinh(n+1−2 j)θ = 0. (2.2)

Proof. Let pm(t) be the characteristic polynomial of the real part of the shift ma-
trix A(1,1, . . . ,1) ∈ Mm . Setting ψm(t) = 2mpm(t) , then ψm(t) is a Chebyshev poly-
nomial of second kind, and thus

ψm(cosθ ) = sin(m+1)θ/sinθ . (2.3)
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Let qk,n(t) = det(tI−ℜ(Ak)) .
Assume r � 1. Then ρ(ℜ(Ak)) � ‖ℜ(Ak)‖mc � 1, where ‖.‖mc denotes the ma-

trix norm of maximum column sum. Thus, every eigenvalue of ℜ(Ak) can be expressed
as cosθ for some θ . We claim that, for 1 � k � n−1,

qk,n(cosθ ) =
sin(n+1)θ +(1− r2)∑k

j=1 sin(n+1−2 j)θ
2n sinθ

, (2.4)

by proving that (2.4) holds for k = 1,2, and induction for k � 3.
Suppose k = 1. Then

q1,n(t) = t pn−1(t)− r2

4
pn−2(t),

we have,
2nq1,n(t) = 2tψn−1(t)− r2ψn−2(t). (2.5)

Substituting (2.3) into (2.5), we have that

2nq1,n(cosθ ) = 2cosθ
sinnθ
sinθ

− r2 sin(n−1)θ
sinθ

=
sin(n+1)θ +(1− r2)sin(n−1)θ

sinθ
. (2.6)

Suppose k = 2. Then q2,n(t) = tq1,n−1(t)− 1
4 pn−2(t) . Using (2.3) and (2.6), we

have that

q2,n(cosθ ) = cosθ
1

2n−1

(sinnθ
sinθ

+(1− r2)
sin(n−2)θ

sinθ

)
− 1

2n−2

1
4

sin(n−1)θ
sinθ

=
sin(n+1)θ +(1− r2)sin(n−1)θ +(1− r2)sin(n−3)θ

2n sinθ
. (2.7)

Suppose k � 3. Then

qk,n(t) = tqk−1,n−1(t)− 1
4
qk−2,n−2(t). (2.8)

For k = 3, substituting (2.6) and (2.7) into (2.8), we have that

q3,n(cosθ )

=
cosθ

(
sinnθ +(1− r2)sin(n−2)θ +(1− r2)sin(n−4)θ

)

2n−1 sinθ

−1
4

sin(n−1)θ +(1− r2)sin(n−3)θ
2n−2 sinθ

=
sin(n+1)θ +(1− r2)sin(n−1)θ +(1− r2)sin(n−3)θ +(1− r2)sin(n−5)θ

2n sinθ
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Thus (2.4) holds. Suppose (2.4) holds for k � m−1. When k = m , according to (2.8),
we compute that

qm,n(cosθ )

= cosθqm−1,n−1(cosθ )− 1
4

qm−2,n−2(cosθ )

=
cosθ [sinnθ +(1− r2)sin(n−2)θ + · · ·+(1− r2)sin((n−2(m−1))θ )

2n−1 sinθ

−1
4

sin(n−1)θ +(1− r2)sin(n−3)θ + · · ·+(1− r2)sin(((n−1)−2(m−2))θ )
2n−2 sinθ

=
sin(n+1)θ +(1− r2)sin(n−1)θ + · · ·+(1− r2)sin((n+1)−2m)θ

2n sinθ
.

This proves the induction. Hence qk,n(cosθ ) = 0 if and only if (2.1) holds. Therefore,
the numerical radius w(Ak) = ρ(ℜ(Ak)) = cosθk , where θk ∈ (0,2π) is the minimum
root of (2.1). Indeed, we will show later that θk ∈ (0,π/2) .

Next, assume r � 2. Then ρ(ℜ(Ak)) = w(Ak) � r/2 � 1. Thus some roots of
qk,n(t) are greater than or equal to 1 which are expressed as coshθ . It can be proved in
the same way that for 1 � k � n−1,

qk,n(coshθ ) =
sinh(n+1)θ +(1− r2)∑k

j=1 sinh(n+1−2 j)θ
2n sinhθ

.

Hence, qk,n(coshθ ) = 0 if and only if (2.2) holds, and w(Ak) = coshθk where θk is
the maximum root of (2.2). �

It is shown in [4] that W (A(a1,a2, . . . ,an−1)) = W (A(an−1,an−2, . . . ,a1)) , it suf-
fices to consider k � [n/2] for the numerical range of Ak(1, . . . ,1,r,1, . . . ,1) ∈ Mn . We
compare the numerical radii of the matrices Ak(1, . . . ,1,r,1, . . . ,1) ∈ Mn, k = 1,2, . . . ,
[n/2].

THEOREM 2.2. Let 1 � k � [n/2]− 1 and Ak be the weighted shift matrices
defined in (1.3).

(i) If 0 < r < 1 then w(Ak) > w(Ak+1) .

(ii) If r � 2 then w(Ak) < w(Ak+1) .

Proof. Assume 0 < r < 1. Consider the trigonometric polynomial obtained in (i)
of Theorem 2.1,

fk(θ ) = sin(n+1)θ +(1− r2)
k

∑
j=1

sin(n+1−2 j)θ .

It is clear that fk(θ ) > 0 for all θ ∈ (0,π/(n+1)) . On the other hand,

fk(π/(n− (k−1))) = −sin(k/(n− (k−1)))π +(1− r2)sin(k/(n− (k−1)))π < 0.
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Since n−(k−1) > 2, we have π/(n−(k−1)) < π/2. Hence, there exists the smallest
θk ∈ (π/(n+1),π/(n− (k−1))) such that fk(θk) = 0. Observe that

fk+1(θ ) = sin(n+1)θ +(1− r2)
k+1

∑
j=1

sin(n+1−2 j)θ

= fk(θ )+ (1− r2)sin(n− (2k+1))θ . (2.9)

Since both fk(θ ) and (1− r2)sin(n− (2k+1))θ are positive for θ ∈ (0,θk) , and

fk+1(θk) = 0+(1− r2)sin(n− (2k+1))θk > 0,

it follows that fk+1(θ ) > 0 for all θ ∈ (0,θk]. Further, we find that

fk+1(π/(n− k)) = −sin((k+1)/(n− k))π +(1− r2)sin((k+1)/(n− k))π < 0.

Hence, there exists the smallest θk+1 ∈ (θk,π/(n− k)) such that fk+1(θk+1) = 0, we
obtain that cosθk > cosθk+1. This proves part (i) .

Assume r � 2. Consider the hyperbolic trigonometric polynomial obtained in (ii)
of Theorem 2.1,

gk(θ ) = sinh(n+1)θ +(1− r2)
k

∑
j=1

sinh(n+1−2 j)θ .

Substituting sinhθ = (eθ − e−θ )/2, we have that

2e(n+1)θgk(θ ) =
(
e2(n+1)θ −(r2−1)

k

∑
j=1

e2(n− j+1)θ
)

+
(
(r2−1)

k

∑
j=1

e2 jθ −1
)
. (2.10)

The second term in the right-hand side of (2.10) is always positive. Concerning the first
term, we have

e2(n+1)θ − (r2−1)
k

∑
j=1

e2(n− j+1)θ > e2(n+1)θ − k(r2−1)e2nθ = e2nθ (e2θ − k(r2−1)).

Hence
gk(θ ) > 0 for all θ � (ln(k(r2 −1)))/2. (2.11)

Substituting θ = (ln(r2 −1))/2 into (2.10), we obtain that

2e(n+1)(ln(r2−1))/2gk((ln(r2 −1))/2)

= −(r2−1)n+2−k (r2 −1)k−1−1
(r2 −1)−1

+(r2−1)2 (r2 −1)k −1
(r2 −1)−1

−1 < 0,

and thus gk((ln(r2 − 1))/2) < 0. Then there exists the largest θk ∈ ((ln(r2 − 1))/2,
(ln(k(r2 −1)))/2) such that gk(θk) = 0.
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Since gk+1(θ ) = gk(θ )+ (1− r2)sinh((n+1)−2(k+1))θ , it follows that

2e(n+1)θgk+1(θ ) = 2e(n+1)θgk(θ )− (r2−1)
(
e2((n+1)−(k+1))θ − e2(k+1)θ

)
. (2.12)

By the hypothesis that k � [n/2]− 1, then 2k < n− 1, and thus e2((n+1)−(k+1))θ −
e2(k+1)θ > 0. Then, by(2.12), gk+1(θk) < 0, while by (2.11), gk+1(θ ) > 0 for all
θ � (ln((k+1)(r2−1)))/2. Hence, there exists the largest θk+1 ∈ (θk,(ln((k+1)(r2−
1)))/2) such that fk+1(θk+1) = 0. The assertion w(Ak+1) = coshθk+1 > coshθk =
w(Ak) follows. �

REMARK. The result of Theorem 2.2 is restricted to the case 0 < r < 1 or r � 2
for the matrix Ak = Ak(1, . . . ,1,r,1, . . . ,1) . At present, we have no analogous results if
1 < r < 2. However, the following example proposes a conjecture that for 1 < r < 2,
the inequality w(Ak) < w(Ak+1) holds.

We consider the 4×4 weighted shift matrices Ak = Ak(1, . . . ,1,r,1, . . . ,1) . Direct
computation finds that

w(A1(r,1,1)) =
( (1/2+ r2/4)+ ((1/2+ r2/4)2− r2/4)1/2

2

)1/2

and

w(A2(1,r,1)) =
( (1/2+ r2/4)+ ((1/2+ r2/4)2−1/4)1/2

2

)1/2
.

It is clear that for 1 < r < 2, w(A1) < w(A2) .

3. Weighted shift operators

Let A = A(a1,a2, . . .) be a weighted shift operator with weights (a1,a2, . . .) de-
fined in (1.1). The numerical range W (A(a1,a2, . . .)) is a circular disc about the origin.
In particular, when an = 1 for all n, W (A) is an open unit disc. Berger and Stampfli [1]
showed that

w(A) =
1
2

(
((1+h)2−1)

1
2 +((1+h)2−1)−

1
2

)

if a1 = (1+h) >
√

2, a2 = a3 = · · · = 1. We compute the numerical radius in the case
a2 = 1+h , a1 = a3 = a4 = · · · = 1.

THEOREM 3.1. Let A = A(1,1 + h,1,1, . . .) be a weighted shift operator with
weights (1,1+h,1,1, . . .) , and 1+h >

√
6/2 . Then

w(A) =
1
2

((
(h(2+h)+

√
(h(2+h))2 +4h(2+h))/2

) 1
2

+
(
(h(2+h)+

√
(h(2+h))2 +4h(2+h))/2

)− 1
2
)
.

Proof. The weighted shift operator A on H2 satisfies

A f (z) = z f (z)+h f
′
(0)z2
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for f (z) = a0 +a1z+a2z2 + · · · ∈ H2 . Suppose that ‖ℜ(A)‖ = α > 1 with ℜ(A) f =
α f . Then

(
z f (z)+

f (z)− f (0)
z

)
+h

(
f
′
(0)z2 +

f
′′
(0)
2

z
)

= 2α f (z) (3.1)

Compare coordinates-wise of the equation ℜ(A) f = α f , we have

f
′
(0) = 2α f (0) (3.2)

and
f (0)+ (1+h) f

′′
(0)/2 = 2α f

′
(0) (3.3)

Substitute f
′
(0) and f

′′
(0) of equations (3.2) and (3.3) into (3.1), we have

(z2−2αz+1) f (z) =
(
1−2αhz3− ((4α2−1)/(1+h))hz2

)
f (0) (3.4)

Setting α = coshx for x > 0, the equation (3.4) yields

(z− ex)(z− e−z) f (z) =
(
1− (ex + e−x)hz3 − ((e2x + e−2x +1)/(1+h))hz2

)
f (0).

(3.5)
Taking z = e−x in (3.5), we obtain

1− (ex + e−x)he−3x− ((e2x + e−2x +1)/(1+h))he−2x = 0, (3.6)

Simplify equation (3.6), we have

e4x−h(2+h)e2x−h(2+h) = 0. (3.7)

If 1+h >
√

6/2, equation (3.7) is solvable by

e2x =
(
h(2+h)+

√
(h(2+h))2 +4h(2+h)

)
/2, (3.8)

and thus

w(A) = coshx =
1
2

((
(h(2+h)+

√
(h(2+h))2 +4h(2+h))/2

) 1
2

+
(
(h(2+h)+

√
(h(2+h))2 +4h(2+h))/2

)− 1
2
)
. �

In the following, we compare the numerical radii of two weighted shift operators
A(1+h,1,1, . . .) and A(1,1+h,1, . . .) .

THEOREM 3.2. Let A1 = A1(1+ h,1,1, . . .) and A2 = A2(1,1+ h,1, . . .) be two
weighted shift operators. If (1+h) >

√
2 then w(A1) < w(A2).

Proof. It is shown in [1],

w(A1) = coshx1 =
(
((1+h)2−1)

1
2 +((1+h)2−1)−

1
2

)
/2,



204 M.-T. CHIEN AND H.-A. SHEU

where
e2x1 = (1+h)2−1 = h(2+h). (3.9)

By Theorem 3.1, w(A2) = coshx2 , where

e2x2 =
(
h(2+h)+

√
(h(2+h))2 +4h(2+h)

)
/2. (3.10)

Comparing (3.9) with (3.10), we have x1 < x2 , and thus w(A1) = coshx1 < coshx2 =
w(A2). �
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