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SUCCESSIVE ITERATIONS AND LOGARITHMIC MEANS

ÁDÁM BESENYEI, DÉNES PETZ

(Communicated by D. R. Larson)

Abstract. The successive iteration (started by Lagrange and Gauss) produces a new mean from
two given ones. Several examples of matrix means are given that require the proof of the matrix
monotonicity of the corresponding representing function. The paper contains extensions of the
logarithmic mean and it is obtained that the Stolarsky mean can be used also for matrices.

A continuous function m : R+ ×R+ → R+ is called a mean if

min(x,y) � m(x,y) � max(x,y) (x,y ∈ R
+). (1)

A mean is symmetric if m(x,y) = m(y,x) for x,y ∈ R+ and it is strict if both inequali-
ties in (1) are strict for x �= y . Means may be obtained also from the recursively defined
double sequence which is a successive iteration of two means. In the paper we consider
these iterations and some corresponding means, such as the logarithmic and the Sto-
larsky mean, for matrices. The theory of successive iteration of means began at the end
of the 18th century by the works of J.-L. Lagrange and C. F. Gauss.

If we consider the iteration

a0 := a, b0 := b,

an+1 :=
an +bn

2
, bn+1 :=

√
anbn,

(2)

then the sequences (an) , (bn) converge to a common limit which is the so-called
Gauss’s arithmetic-geometric mean AG(a,b) with the characterization

1
AG(a,b)

=
2
π

∫ ∞

0

dt√
(a2 + t2)(b2 + t2)

, (3)

see [7, 4]. The recurrence (2) was first considered by Lagrange in 1785 and later by
Gauss in 1791 at the age of 14 who discovered the formula (3) in 1799, see [6, 7].
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1. Gaussian matrix mean process

The mean of numbers can be extended to matrices if f (x) = m(1,x) is a matrix
monotone function, that is, 0 < A � B implies f (A) � f (B) for every positive matrices
A,B . If f : R+ → R+ is a matrix monotone function with the property f (1) = 1, then

mf (A,B) = A1/2 f (A−1/2BA−1/2)A1/2

is a matrix mean for A,B > 0 and f is called the representing function of mf , see [8].
The following conditions give an axiomatic approach:

(i) mf (A,A) = A for every A ,

(ii) if A � A′ and B � B′ , then mf (A,B) � mf (A′,B′) (joint monotonicity),

(iii) m is continuous,

(iv) Cmf (A,B)C∗ � mf
(
CAC∗,CBC∗) (transformer inequality).

Obviously, condition (i) is equivalent to f (1) = 1. Furthermore, it is easily seen that
the symmetry of the mean is equivalent to the condition x f (x−1) = f (x) . From the
symmetry property after differentiation it follows that

f ′(x) = f (x−1)− x−1 f ′(x−1)

hence by substituting x = 1 one obtains f ′(1) = 1/2. It was proved in [8] that if f is
a representing function of a symmetric matrix mean then

2x
x+1

� f (x) � x+1
2

,

that is, a matrix mean is between the arithmetic and harmonic means.
The arithmetic-geometric mean can be generalized even for matrix means. If

f (x) = AG(1,x) then from (3) the matrix monotonicity is not clear, however the suc-
cessive iteration gives a matrix mean and this fact implies the matrix monotonicity of
f (x) .

For positive numbers the Gaussian double-mean process is the following:

a0 := a, b0 := b,

an+1 := m1(an,bn), bn+1 := m2(an,bn)
(4)

where m1 and m2 are means. In [6] the convergence is proved if the means are strict.
The characterization of the limit is the following.

THEOREM 1.1. (Invariance principle) Suppose that for every a,b > 0 the recur-
rences (4) converge. Then the limit Φ(a,b) is the unique mean satisfying the so-called
invariance equation

Φ(m1(a,b),m2(a,b)) = Φ(a,b) (a,b > 0).
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In the paper [8] the convergence of (4) is proved also for positive matrices, if m1

and m2 are matrix means. If m1 and m2 are symmetric we have a simple proof.

THEOREM 1.2. Let m1 and m2 be symmetric matrix means. For positive matrices
A and B set a recursion

A0 = A, B0 = B, An+1 = m1(An,Bn), Bn+1 = m2(An,Bn). (5)

Then (An) and (Bn) converge to the same operator mean m(A,B) .

Proof. From the inequality

mi(X ,Y ) � X +Y
2

(6)

we have
An+1 +Bn+1 = m1(An,Bn)+m2(An,Bn) � An +Bn.

Therefore, the decreasing positive sequence has a limit:

An +Bn → X as n → ∞. (7)

Moreover,

cn+1 := ‖An+1‖2
2 +‖Bn+1‖2

2 � ‖An‖2
2 +‖Bn‖2

2−
1
2
‖An−Bn‖2

2 � cn.

Thus the numerical sequence (cn) is decreasing, it has a limit and it follows that

‖An−Bn‖2
2 → 0

and (An),(Bn) → X/2 as n → ∞ . �
We can also study the rate of convergence. Suppose that A and B are strictly

positive, m1 , m2 are symmetric means and fi(x) = mi(1,x) are twice differentiable.
Then f ′i (1) = 1/2 so that the Taylor expansion around x = 1 yields

fi(Y ) = I +
1
2
(Y − I)+

f ′′i (1)
2

(Y − I)2 +o(‖Y − I‖2).

Whence

An+1−Bn+1 =
f ′′1 (1)− f ′′2 (1)

2
A1/2

n (A−1/2
n BnA

−1/2
n − I)2A1/2

n

+A−1/2
n o(‖A−1/2

n BnA
−1/2
n − I‖2)A−1/2

n

and

‖An+1−Bn+1‖ � | f ′′1 (1)− f ′′2 (1)|
2

‖A1/2
n ‖2 ‖A−1/2

n BnA
−1/2
n − I‖2

+‖A−1/2
n ‖2o(‖A−1/2

n BnA
−1/2
n − I‖2).
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Thus

limsup
n→∞

‖An+1−Bn+1‖
‖An−Bn‖2 < ∞

which means that the convergence is quadratic.

EXAMPLE 1.3. If m1 is the arithmetic mean and m2 is the geometric mean, then
we can present another formulation of the arithmetic-geometric mean with block ma-
trices. Let A,B > 0,

X0 :=
[
A B
B A

]
and

Xn+1 :=
1
2
(Xn)

1/2
11

(
∗
√

(Xn)
−1/2
11 Xn(Xn)

−1/2
11

)2
(Xn)

1/2
11 ,

where ∗√X of the block matrix is defined in the following form:

∗√X :=
[√

X11
√

X12√
X21

√
X22

]
.

Then

Xn+1 =
[
((Xn)11 +(Xn)12)/2 (Xn)11#(Xn)12

(Xn)21#(Xn)22 ((Xn)21 +(Xn)22)/2

]
and the limit of Xn as n → ∞ is[

AG(A,B) AG(A,B)
AG(A,B) AG(A,B)

]
. �

2. Archimedean double-mean process

If an+1 = m1(an,bn) and bn+1 = m2(an+1,bn) , then this is called an Archimedean
double-mean process [6, 13]. Since bn+1 = m2(m1(an,bn),bn) , it is also a Gaussian
process with means m1 and m3(x,y) = m2(m1(x,y),y) where m3 is non-symmetric in
general. The proof of Theorem 1.2 can be easily modified to accomodate the Archime-
dean process.

We study the recurrence

an+1 =
an +bn

2
, bn+1 =

√
an+1bn (8)

which is in the next theorem. The proof can be found in [6] but we present it here for
convenience. The functions

arcoshx = log(x+
√

x2 −1) (x � 1)

and
arccosx = −i log(z+ i

√
1− x2) (0 < x < 1)

will appear.
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THEOREM 2.1. If a0 = a and b0 = b, then the sequences (an) , (bn) defined in
(8) are convergent and

lim
n→∞

an = lim
n→∞

bn =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
b2−a2

arccos(a/b)
, if 0 � a < b,

a, if a = b,√
a2−b2

arcosh(a/b)
, if 0 < b < a.

Proof. Suppose a � b . Then by induction it follows that an � an+1 � bn+1 � bn so
that (an) is monotone decreasing and (bn) is monotone increasing thus the sequences
converge. If limn→∞ an = α and limn→∞ bn = β , then by passing to the limit in the
recurrence (8) we obtain that α = (α + β )/2 hence α = β . Now denote

Φ(x,y) :=

√
x2 − y2

arcosh(x/y)
.

From L’Hospital’s rule it follows Φ(x,x) = x for x > 0. Therefore, if we show that
Φ(an+1,bn+1) = Φ(an,bn) for every n∈N , then passing to the limit will imply Φ(a,b)
= Φ(limn→∞ an, limn→∞ bn) = limn→∞ an , in other words, we apply the invariance prin-
ciple for Φ . By simple calculation

Φ(an+1,bn+1) =

√(
an+bn

2

)2 − an+bn
2 bn

arcosh
√

an+bn
2bn

=

√
a2

n−b2
n

2arcosh
√

an
bn

+1
2

=

√
a2

n−b2
n

arcosh an
bn

= Φ(an,bn)

where we used the well-known identity 2arcosh
√

x+1
2 = arcoshx .

The proof of the case a � b is analogous. �

EXAMPLE 2.2. A few applications appeared in the paper [11]. First

a0 =
√

x =
1+ x

2
2
√

x
x+1

and b0 =
2x

x+1
=
√

x
2
√

x
x+1

,

then the limit is
x−1
logx

2
√

x
x+1

.

Since we started with matrix monotone functions, this is matrix monotone as well. Next

a0 =
x−1
logx

and b0 =
x−1
logx

2
√

x
1+ x

,
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then the limit is the matrix monotone function(x−1
logx

)2 2
1+ x

.

The above function looks unusual but it corresponds to a monotone metric. This func-
tions was conjectured in a paper of Morozova and Chentsov [9] as use for quantum
Fisher information, and the matrix monotonicity was proved by Petz, see [11]. �

3. Logarithmic mean

The logarithmic mean of positive numbers a,b is defined as

L(a,b) =
b−a

logb− loga

with representing function f (x) = (x−1)/ logx . Since

1
L(a,b)

=
∫ ∞

0

dt
(t +a)(t +b)

=
∫ ∞

0

dt
(ta+b)(t +1)

, (9)

we have for matrices

L(A,B)−1 =
∫ ∞

0

(tA+B)−1

t +1
dt. (10)

EXAMPLE 3.1. If we choose

a0 =
a+b

2
, b0 =

√
ab

in the Archimedean double-mean process in Theorem 2.1, then the limit is the logarith-
mic mean L(a,b) . �

If a mean is determined by a matrix monotone function f (x) , then sometimes
f (xp)1/p gives another mean for some p > 0.

PROPOSITION 3.2. Let 0 < p � 2 and suppose that f : R+ →R+ is real analytic
and has a holomorphic continuation to the sector {0 < argz < pπ} such that this sector
is mapped into itself by f . Then f (xp)1/p is matrix monotone.

Proof. By Löwner’s theorem (see [3]) f (xp)1/p is matrix monotone if and only
if it is real analytic and admits a holomorphic continuation to the open upper half-
plane such that the open upper half-plane is mapped into itself by f (xp)1/p . By using
complex logarithm we can define the function xp holomorphically in the upper half-
plane mapping the upper half-plane into the sector {0 < argz < pπ} thus we can define
f (xp) holomorphically mapping the upper half-plane into this sector and so f (xp)1/p

mapping the upper half-plane into itself. �
Since x−1 is matrix monotone decreasing we obtain the following property.
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PROPOSITION 3.3. If f (xp)1/p is matrix monotone, then f (x−p)−1/p is also ma-
trix monotone.

The matrix monotonicity of the limiting case p = 0 follows from the next propo-
sition.

PROPOSITION 3.4. Let the continuously differentiable function f : R
+ → R

+ be
the representing function of a symmetric mean. Then limp→0 f (xp)1/p =

√
x.

Proof. By the symmetry we have f ′(1) = 1/2 so that L’Hospital’s rule implies

lim
p→0

f (xp)1/p = lim
p→0

exp

(
f (xp)

p

)
= lim

p→0
exp

(
f ′(xp) logx

1

)
=
√

x. �

In view of the above results, we consider the following generalization of the loga-
rithmic mean:

Lp(a,b) =
(

bp−ap

logbp− logap

)1/p

=
(

bp−ap

p(logb− loga)

)1/p

with representing function

fp(x) = f (xp)1/p =
(xp−1

logxp

)1/p
(11)

where p ∈ R and f (x) = (x−1)/ logx is the representing function of the logarithmic
mean.

Some properties of Lp is discussed below.

PROPOSITION 3.5. For every fixed 0 < x �= 1 the function fp(x) given by (11) is
strictly monotone increasing in p ∈ R .

Proof. By simple calculation we have

d
dp

fp(x) =
1
p2 fp(x)

(
xp logxp

xp −1
+ log

logxp

xp−1
−1

)
.

Let

h(y) := y
logy
y−1

+ log
logy
y−1

−1.

Clearly, h(1) = 0. We show that h′(y) < 0 for 0 < y < 1 and h′(y) > 0 for y > 1 then
d
dp fp(x) > 0 follows for p �= 0, x �= 1 hence fp is strictly increasing. Since

h′(y) =
(

(y−1)2

log2 y
− y

)
logy

(y−1)2y

and the logarithmic mean is greater than the geometric mean, i.e.,

y−1
logy

� √
y (y �= 1),

therefore, h′(y) < 0 for 0 < y < 1 and h′(y) > 0 for y > 1. �
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THEOREM 3.6. The function fp : R+ → R+ defined by (11) is matrix monotone
for −2 � p � 2 .

We need a technical lemma.

LEMMA 3.7. For fixed r > 0 , 0 < ϕ < π the function

q 	→ rq− cos(qϕ)
sin(qϕ)

is strictly monotone increasing in [0,π/ϕ) .

Proof. First note that for q = 0 by L’Hospital’s rule we find that

lim
q→0

rq − cos(qϕ)
sin(qϕ)

=
logr

ϕ
.

By simple calculation we obtain

d
dq

(
rq − cos(qϕ)

sin(qϕ)

)
=

rq logr sin(qϕ)− rqϕ cos(qϕ)+ ϕ
sin2(qϕ)

.

We show that for r > 0, 0 < ϕ < π and 0 < q < π/ϕ ,

rq logr sin(qϕ)− rqϕ cos(qϕ)+ ϕ > 0

which yields the monotonicity. Indeed, by the well-known inequality

logx � 1− 1
x

(x > 0)

it follows that

logr =
1
q

logrq � 1
q

(
1− 1

rq

)
thus

rq logr sin(qϕ)− rqϕ cos(qϕ)+ ϕ

� rq 1
q

(
1− 1

rq

)
sin(qϕ)− rqϕ cos(qϕ)+ ϕ

=
1
q

(qϕ − sin(qϕ)+ rq(sin(qϕ)−qϕ cos(qϕ)) > 0

where the last estimate is due to the well-known inequalities sinx < x and xcosx < sinx
for 0 < x < π . �

Proof of Theorem 3.6. Due to Propositions 3.4 and 3.3 we may suppose 0< p < 2.
By defining the complex logarithm as logz = log |z|+ iargz (0 � argz < 2π ) we can
extend f holomorphically to the upper half-plane. We show that f maps the sector
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{0 < argz < pπ} into itself then by Proposition 3.2 it follows that fp is matrix mono-
tone. Clearly, it suffices to verify that 0 < arg f (z) � argz for all z ∈ C\R

+
0 .

Let z = r(cosϕ + i sinϕ) and suppose first that 0 < ϕ < π . Denote α := arg(z−1)
and β := arglogz then obviously 0 < α,β < π and arg f (z) = α −β . We first show
that α > β . It is easily seen that

cotα =
rcosϕ −1

r sinϕ
, cotβ =

logr
ϕ

.

By applying Lemma 3.7 with q = 0 and q = 1 it follows that

1
r − cosϕ

sinϕ
>

log 1
r

ϕ

thus cotα < cotβ hence α > β .
We verify α − β < ϕ . The well-known trigonometric addition formula for the

cotangent function yields

cot(α −ϕ) =
1+ cotα cotϕ
cotϕ − cotα

=
r− cosϕ

sinϕ
.

Lemma 3.7 with q = 0 and q = 1 implies that

cot(α −ϕ) =
r− cosϕ

sinϕ
>

logr
ϕ

= cotβ

whence α −ϕ < β .
Assume now π � ϕ < 2π then π � α < ϕ < 2π , 0 < β < π hence α > β and

α −β < ϕ . �
Now we show that Lp can be obtained also as the limit of a Gaussian double mean

iteration. Define the sequences (an) , (bn) by the following recurrence:

a0 := a, b0 := b,

an+1 :=

√√√√an

(
ap/2

n +bp/2
n

2

)2/p

, bn+1 :=

√√√√bn

(
ap/2

n +bp/2
n

2

)2/p

.
(12)

THEOREM 3.8. The sequences (an) , (bn) converge to a common limit:

lim
n→∞

an = lim
n→∞

bn =
(

ap−bp

p(loga− logb)

)1/p

.

Proof. The convergence to a common limit follows from the general theorem on
Gaussian double mean iterations (analogously to the proof of Theorem 2.1) since the
above recurrence can be written in the form

an+1 = m(an,bn), bn+1 = m(bn,an)
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where
m(x,y) = G(x,Hp/2(x,y)),

G being the geometric mean and

Hp/2(x,y) =

(
xp/2 + yp/2

2

)2/p

the power mean with exponent p/2. We apply the invariance principle. Denote

Φ(x,y) =
(

yp− xp

logyp− logxp

)1/p

.

Then Φ(x,x) = x , on the other hand

Φ(an+1,bn+1) =

⎛
⎝bp/2

n
ap/2
n +bp/2

n
2 −ap/2

n
ap/2
n +bp/2

n
2

1
2 p(logbn− logan)

⎞
⎠

1/p

=
(

bp
n −ap

n

p(logan− logbn)

)1/p

= Φ(an,bn).

Thus limn→∞ an = limn→∞ bn = Φ(limn→∞ an, limn→∞ bn) = Φ(a,b) . �
Below we prove that the function

gp(x) =
(

xp +1
2

)1/p

is matrix monotone if and only if −1 � p � 1. Thus Hp/2 is a matrix mean if and only
if −2 � p � 2. Therefore, the iteration (12) is also convergent for positive matrices if
−2 � p � 2 and the limit is also a matrix mean so that we obtained a different proof
for Theorem 3.6.

PROPOSITION 3.9. For every t > 0 the function

x 	→
(

xp + t
2

)1/p

is matrix monotone if and only if −1 � p � 1 .

Proof. Since arg((z+ t)/2) < argz in the upper half-plane, therefore, the function
x 	→ (x+ t)/2 has a holomorphic continuation to the sector {0 < argz < pπ} mapping
this sector into itself. So that by Proposition 3.2 the function x 	→ ((xp + t)/2)1/p is
matrix monotone for −1 � p � 1.

On the other hand, ((xp + t)/2)1/p = t((yp + 1)/2)1/p where y = x/t1/p . The
function y 	→ ((yp + 1)/2)1/p is symmetric so it can be matrix monotone only if it is
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between the representing function of the arithmetic and geometric means thus −1 �
p � 1. Hence ((xp + t)/2)1/p can be matrix monotone only if 1 � p � 1. �

If p = 1, then the iteration (12) has the form

a0 := a, b0 := b,

an+1 :=
an +

√
anbn

2
, bn+1 :=

bn +
√

anbn

2

and the sequences (an) , (bn) converge to L(a,b) . This algorithm can be written in a
block matrix form.

EXAMPLE 3.10. This example is an analogue of Example 1.3. For A,B > 0 let

X0 :=
[
A A
B B

]

and

Xn+1 :=
1
2
(Xn)

1/2
11

(
∗
√

(Xn)
−1/2
11 Xn(Xn)

−1/2
11

)2
(Xn)

1/2
11 .

Then

Xn+1 =
[
((Xn)11 +(Xn)11#(Xn)21)/2 ((Xn)11 +(Xn)11#(Xn)21)/2
((Xn)21 +(Xn)11#(Xn)21)/2 ((Xn)21 +(Xn)11#(Xn)21)/2

]

and the limit of Xn as n → ∞ is[
L(A,B) L(A,B)
L(A,B) L(A,B)

]
. �

EXAMPLE 3.11. A recent generalization of the arithmetic-geometric mean is
Mp(a,b) which is defined as

1
Mp(a,b)

= cp

∫ ∞

0

dt

((ap + t p)(bp + t p))1/p
,

where 0 < p < ∞ and
1
cp

=
∫ ∞

0

dt

(t p +1)2/p

is for normalization [5]. Clearly, M1(a,b) = L(a,b) by (9), M2(a,b) = AG(a,b) and
M0(a,b) = G(a,b) by Proposition 3.4. For 0 � p � 1, Mp makes also matrix mean
since (xp + t p)1/p is a matrix monotone function due to Proposition 3.9. However,
numerical computation shows that Mp is a matrix mean for 0 � p � 2. �

EXAMPLE 3.12. In 1975 K. Stolarsky [14] introduced the mean

Sp,q(a,b) :=
(

q(ap−bp)
p(aq−bq)

)1/(p−q)

,
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with representing function

hp,q(x) =
(

q(xp−1)
p(xq−1)

)1/(p−q)

(13)

see [14, 10]. We have

lim
q→0

Sp,q(a,b) =
(

ap−bp

p(loga− logb)

)1/p

= Lp(a,b)

and

lim
q→p

Sp,q =
(

exp

(
ap logap−bp logbp

ap−bp −1

))1/p

= I(ap,bp)1/p

where I is the so-called identric mean with representing function

x 	→ exp

(
x logx
x−1

−1

)
.

Observe that in general hp,q(x) = hq,p(x) , h−p,−q(x) = hp,q(x−1)−1 and

hp,q(x) =

⎛
⎝
(

xp−1
q
p((xp)q/p−1)

)1/(1−(q/p))
⎞
⎠

1/p

= h1,q/p(x
p)1/p. �

The matrix monotonicity of h1,q was studied in [2]. Now we show the matrix
monotonicity of hp,q for certain values of p and q .

THEOREM 3.13. The function hp,q : R
+ → R

+ is matrix monotone if −2 � p �
2 , −1 � q � 1 or symmetrically −2 � q � 2 , −1 � p � 1 .

Proof. The case when p = 0 or q = 0 follows from Theorem 3.6 or by passing
to the limit, further, the case p = q follows by passing to the limit since the point-
wise limit of matrix monotone functions is also matrix monotone. Moreover, since
hp,q(x) = hq,p(x) , h−p,−q(x) = hp,q(x−1)−1 and x−1 is matrix monotone decreasing
we only have to consider the cases 0 < q < p � 2 and −1 � q < 0 < |q| < p � 2. For
these values of p and q by Löwner’s theorem we have to show that the function hp,q

has a holomorphic continuation to the upper half-plane mapping the upper half-plane
into itself. The holomorphic continuation of the function (zp − 1)/(zq − 1) is easily
defined by using the complex logarithm logz = log |z|+ iargz (0 � argz < 2π ). Be-
low we show that for 0 < q < p � 2, this function maps holomorphically the upper
half-plane into the sector {0 < argz < (p−q)π} ⊂ C\R

+
0 . Therefore, the 1/(p−q)-

th power of (zp − 1)/(zq − 1) may be defined holomorphically and thus hp,q has a
holomorphic continuation to a mapping of the upper half-plane into itself. The case
−1 � q < 0 < |q| < p � 2 will follow from the previous one.
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Assume first 0 < q < p � 2 (hence q � 1). Let z = r(cosϕ + i sinϕ) where
0 < ϕ < π and denote α := arg(zp − 1) , β := arg(zq − 1) . If pϕ < π , then clearly
0 < pϕ < α < π , 0 < qϕ < β < π . It is easy to see that

cotα =
rp cos(pϕ)−1

rp sin(pϕ)
, cotβ =

rq cos(qϕ)−1
rq sin(qϕ)

.

Lemma 3.7 implies that

1
rp − cos(pϕ)

sin(pϕ)
>

1
rq − cos(qϕ)

sin(qϕ)

thus cotα < cotβ hence α > β . Further, by using addition formula for the cotangent
function we obtain

cot(α − pϕ) =
rp− cos(pϕ)

sin(pϕ)
, cot(β −qϕ) =

rq − cosqϕ
sinqϕ

,

therefore, Lemma 3.7 implies cot(α − pϕ) > cot(β − qϕ) thus α − β < (p− q)π .
Otherwise α � π and then β < π � α , on the other hand, α < pϕ < 2π thus α −β <
(p−q)π . Whence

0 < arg

(
zp−1
zq −1

) 1
p−q

=
1

p−q
(α −β ) < π .

In case −1 � q < 0 < |q| < p � 2 we have

(
q(zp−1)
p(zq−1)

) 1
p−q

=
(

z|q|
|q|(zp−1)
p(z|q| −1)

) 1
p+|q|

.

Since, by the previous case,

0 < arg

(
z|q|

|q|(zp−1)
p(z|q| −1)

)
< |q|π +(p−|q|)π ,

it follows
0 < arghp,q(z) <

p
p+ |q|π < π . �

Numerical compuations show that the Stolarsky function hp,q is not matrix mono-
tone outside the intervals given in Theorem 3.13.

REMARK 3.14. Observe that S2p,p = Hp thus Theorem 3.13 implies that the rep-
resenting function of the power mean is matrix monotone for −1 � p � 1 which is in
accordance with Proposition 3.9.
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