
Operators
and

Matrices

Volume 7, Number 2 (2013), 241–283 doi:10.7153/oam-07-15

INITIAL VALUE PROBLEMS AND WEYL–TITCHMARSH THEORY

FOR SCHRÖDINGER OPERATORS WITH

OPERATOR–VALUED POTENTIALS

FRITZ GESZTESY, RUDI WEIKARD AND MAXIM ZINCHENKO

Abstract. We develop Weyl–Titchmarsh theory for self-adjoint Schrödinger operators Hα in
L2((a,b);dx;H ) associated with the operator-valued differential expression τ = −(d2/dx2)+
V (·) , with V : (a,b) → B(H ) , and H a complex, separable Hilbert space. We assume reg-
ularity of the left endpoint a and the limit point case at the right endpoint b . In addition, the
bounded self-adjoint operator α = α∗ ∈B(H ) is used to parametrize the self-adjoint boundary
condition at the left endpoint a of the type

sin(α)u′(a)+ cos(α)u(a) = 0,

with u lying in the domain of the underlying maximal operator Hmax in L2((a,b);dx;H ) as-
sociated with τ . More precisely, we establish the existence of the Weyl–Titchmarsh solution of
Hα , the corresponding Weyl–Titchmarsh m -function mα and its Herglotz property, and deter-
mine the structure of the Green’s function of Hα .

Developing Weyl–Titchmarsh theory requires control over certain (operator-valued) so-
lutions of appropriate initial value problems. Thus, we consider existence and uniqueness of
solutions of 2nd-order differential equations with the operator coefficient V ,{

−y′′ +(V − z)y = f on (a,b),
y(x0) = h0, y′(x0) = h1,

under the following general assumptions: (a,b) ⊆ R is a finite or infinite interval, x0 ∈ (a,b) ,
z∈C , V : (a,b)→B(H ) is a weakly measurable operator-valued function with ‖V (·)‖B(H ) ∈
L1

loc((a,b);dx) , and f ∈ L1
loc((a,b);dx;H ) . We also study the analog of this initial value prob-

lem with y and f replaced by operator-valued functions Y,F ∈ B(H ) .
Our hypotheses on the local behavior of V appear to be the most general ones to date.
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