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REFINED JENSEN’S OPERATOR INEQUALITY
WITH CONDITION ON SPECTRA

JADRANKA MICIC, JOSIP PECARIC AND JURICA PERIC

(Communicated by C.-K. Li)

Abstract. We give a refinement of Jensen’s inequality for n-tuples of self-adjoint operators,
unital n-tuples of positive linear mappings and real valued continuous convex functions with
condition on the spectra of the operators. The refined Jensen’s inequality is used to obtain a
refinement of inequalities among quasi-arithmetic means under similar conditions. As an appli-
cation of these results we give a refinement of inequalities among power means.

1. Introduction

We recall some notations and definitions. Let Z(H) be the C*-algebra of all
bounded linear operators on a Hilbert space H and 1y stands for the identity operator.
We define bounds of a self-adjoint operator A € %(H) by

my = inf (Ax,x) and My = sup (Ax,x)
[lx[|=1 llx||=1

for x € H. If Sp(A) denotes the spectrum of A, then Sp(A) is real and Sp(A) C
[mA,MA} .
For an operator A € %(H) we define operators |A|, AT, A~ by

Al=(A"A)'2, AT =(A]+A4)/2, AT =(A|-A)/2.
Obviously, if A is self-adjoint, then |A| = (A%)'/2 and A*,A~ >0 (called positive and
negative parts of A=AT —A").

B. Mond and J. Pecari¢ in [7] proved the following version of Jensen’s operator
inequality

f iwiq)i(Ai) g iwid),- (f(A,)), (11)
i=1 i=1

for operator convex functions f defined on an interval I, where ®; : Z(H) — #(K),

i=1,...,n, are unital positive linear mappings, Aj,...,A, are self-adjoint operators

with the spectrain / and wy,...,w, are non-negative real numbers with > w; =1.
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F. Hansen, J. Pecari¢ and 1. Peri¢ gave in [1] a generalization of (1.1) for a unital
field of positive linear mappings. Recently, J.Mici¢, J.Pecari¢ and Y.Seo in [5] gave a
generalization of this results for a not-unital field of positive linear mappings.

Very recently, J. Mi¢i¢, Z. Pavi¢ and J. Pecari¢ gave in [3, Theorem 1] Jensen’s
operator inequality without operator convexity as follows.

THEOREM A. Let (Ay,...,A,) be an n-tuple of self-adjoint operators A; €
PB(H) with bounds m; and M;, m; <M;, i=1,....n. Let (®y,...,D,) be an n-tuple
of positive linear mappings ®;: B(H) — B(K), i=1,...,n, such that ¥} | ®;(1y) =
Ig. If

(ma,Mp) N [mi,M;] =0 fori=1,...,n, (1.2)

where my and My, ma < My, are bounds of the self-adjoint operator A =YY" | ®;(A;),
then

! (Z d%-(Az-)) < id%- (f(A) (1.3)
i=1 i=1

holds for every continuous convex function f : 1 — R provided that the interval I con-
tains all m;, M;.
If f 1 — R is concave, then the reverse inequality is valid in (1.3).

In the same paper [3], we study the quasi-arithmetic operator mean

*///(P(Avq)JZ) = q)_l (iq)t((p(Az))> ) (1.4)
i=1

where (Aj,...,A,) is an n-tuple of self-adjoint operators in Z8(H) with the spectra in
I, (®y,...,®,) is an n-tuple of positive linear mappings ®@; : B(H) — H(K) such that
> ®i(1g) =1k, and ¢ : I — R is a continuous strictly monotone function.

The following results about the monotonicity of this mean is proven in [3, Theorem
3]

THEOREM B. Let (Ay,...,A,;) and (®y,...,®,) be as in the definition of the
quasi-arithmetic mean (1.4). Let m; and M;, m; < M; be the bounds of A;, i=1,...,n.
Let ¢,y : 1 — R be continuous strictly monotone functions on an interval I which con-
tains all m;,M;. Let my and My, my < Mgy, be the bounds of the mean M y(A,®,n),
such that

(m(p,M(p)ﬂ[m,-,M,-] =0 fori=1,...,n. (1.5)

If one of the following conditions
(i) wo@ ! isconvexand y~" is operator monotone,
(i’) wo@~ ! isconcave and —y~! is operator monotone,

is satisfied, then
My(A, P.n) < My(A, P,n). (1.6)

If one of the following conditions
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(ii) wo @ ! is concave and w~' is operator monotone,
(ii’) wo ! is convex and —y~" is operator monotone,

is satisfied, then the reverse inequality is valid in (1.6).

In this paper we study a refinement of Jensen’s inequality given in Theorem A. As
an application of this result, we give a refinement of inequalities order among quasi-
arithmetic means given in Theorem B and inequalities among power means.

2. Jensen’s operator inequality

To obtain our result we need a result given in the following lemma.

LEMMA 1. Let f be a convex function on an interval 1, x,y € I and py,p> € [0,1]
such that py+ pa = 1. Then

min{pi,p>} [f(x) +f0)-2f <xzﬂﬂ

< pif(x) +paf(y) — f(p1x+pay). (2.1)

Proof. This results follows from [6, Theorem 1, p. 717]. O

In Theorem A we prove that Jensen’s operator inequality holds for every contin-
uous convex function and for every n— tuple of self-adjoint operators (A1,...,A,), for

every n— tuple of positive linear mappings (®,...,®,) in the case when the interval
with bounds of the operator A =Y/ | ®;(4;) has no intersection points with the interval
with bounds of the operator A; for each i = 1,...,n. It is interesting to consider can

we make a refinement of this inequality. To achieve this we need the following result,
where we use the idea given in [2, Theorem 12].

LEMMA 2. Let A be a self-adjoint operator A € B(H) with Sp(A) C [m,M], for
some scalars m < M. Then

F(4) < T o)+ S () - 5, @2
lg—A A—ml ~
(resp. F4) > S )+ S () 48, )

holds for every continuous convex (resp. concave) function f : [m,M] — R, where

(resp. 8¢ =2f ("5M) — f(m) — f(M)),

)
L g 14— 21

8¢ = f(m)+ f(M) —2f ("5

1
and A 3
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Proof. We prove only the convex case. Putting x =m,y =M in (2.1) it follows
that
f(pim+paM) < p1f(m)+p2f(M) y (2.3)
—min{py,pa} (f(m)+ f(M) —2f ("54))

holds for every pi,p2 € [0,1] such that p; + p» =1 . For any ¢ € [m,M] we can write

M—t t—m
f(t)zf(M_mm+M_mM).
Then by using (2.3) for p; = A]‘ll:riz and pp =
M—t t—m
70 < M2 oy 4 L2 poan

(2.4)

(2 - m% m+MD<ﬂm+f() f(m+M))

M=t t—m 1 1 m+M
min S == — r— .
M—m M—m 2 M-—m
Finally we use the continuous functional calculus for a self-adjoint operator A: f,g €

€(I),Sp(A) CI and f > g implies f(A) > g(A); and h(r) = [t| implies h(A) = |A|.
Then by using (2.4) we obtain the desired inequality (2.2). [

since

THEOREM 3. Let (Ay,...,A,) be an n—tuple of self-adjoint operators A; € B(H)
with the bounds m; and M;, m; < M;, i=1,...,n. Let (®y,...,®,) be an n—tuple of
positive linear mappings ®;: B(H) — B(K), i=1,...,n, suchthat ¥} ®;(1y) = lg.
Let

(ma,Mp) N [mi,M;] =0 fori=1,. and m<M,

where my and My, my < My, are the bounds ofthe operator A =YY" | ®;(A;) and
m=max{M;: M; <mp,i€{l,...;n}}, M=min{m;: m; > My,i € {1,...,n}}.

If f:1— R is a continuous convex (resp. concave ) function provided that the interval
I contains all m;,M;, then

(o

f(id), ) Zdn )+ A > i@l ) (2.6)

=1

=

M=

D;(A ) D; (f(Ar) — §A < Y D (f(A)) (2.5)
i=1

1 i=1

( resp.

holds, where

6= 8y, M) = fom)+ /() ~2f ()
(resp. 8= 8¢(m, 1) = 2 (24 ) — f o) — (M) ), @)
A=Ay(m, M) = L1 ——‘A m+M1K‘
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and i € [m,my), M € [Ma,M], m < M, are arbitrary numbers.

Proof. We prove only the convex case.
Since A =3, ®;(A;) € B(K) is the self-adjoint operator such that 71l x <miglg <
"L @A) < MAIK < Mlg and f is convex on [in,M] C I, then by Lemma 2 we ob-
tain

f (2 a>l-<A,->> o M 2 P )y D PR )57, (28)
i=1

M—m M—m

where 8¢ and A are defined by (2.7).
But since f is convex on [m;,M;] and since (ma,My) N [m;,M;] = 0 implies
(m,M) N [m;,M;] = 0, then

Fa > M A (AU iy

M—m M—m
holds. Applying a positive linear mapping ®;, summing and adding —SfX , we obtain

S @ () — 54 > MK T PlAD 5 T DilA) il
i=1 M—m M—m

F(M) — 54A,
(2.9)

since Y7 | ®;(1y) = lx. Combining the two inequalities (2.8) and (2.9), we have LHS

of (2.5). Since 8¢ > 0 and A > 0 then we have RHS of (2.5). O

REMARK 4. Specially, if myq < My, then Theorem 3 in the convex case gives

f(E ) Zcb 8/ A< Y i (F(A)

i=1

where B
8= 8p(ma,Ma) = f(ma)+ f(Ma) = 2f (%MA)

and A EXA(mA,MA) = %1[{— MAl

—my

A matha 1,().

But if m < M and my = My, then the inequality (2.5) holds, but gfﬁ is not
defined. Some examples of this case are given in Example 5 I) and II).

EXAMPLE 5. We give three examples for the matrix cases and n = 2. Then we
have refined inequalities given in Figure 1.

We put f(r) = t* which is convex but not operator convex in (2.5). Also, we de-
fine mappings @, P, : M3(C) — M(C) as follows: @y ((aij)i<i j<3) = %(a,-j)lgi’jgz,
®; = @y (then @ (L) + Do () = D).
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F(@,(A)+ 0, (4,))< @, (F(A,))+ 0, (F(4, )-8, A,
where
5, = f(m)+ F(M)—2f((M +m)/2),

~ 1 1
A:§1K “WM-m D, (A)+ D, (A,) -

M+m
2 R

Figure 1: Refinement for two operators and a convex function f

I)  First, we observe an example when 5.7‘12{ is equal the difference RHS and
LHS of Jensen’s inequality. If Aj = —3/; and Ay =213, then A = @ (A;) + D2 (Az) =
—0.5,s0 m=—3, M = 2. We put also that m = —3 and M = 2. We obtain

(@1 (A1) + DP2(A2))* = 0.06251, < 48.51, = @y (A}) + D, (A3)
and its improvement
(@1 (A1) + D2 (A2))* = 0.06255 = @ (A}) + D, (A3) — 48.4375D,

since 87 = 96.875, A = 0.51,.
II) Next, we observe an example when A is not equal the difference RHS and
LHS of Jensen’s inequality. If

-1 0 0 200 1 /10
A= 0 =2 0 and A, =1[030 then A:§<01>7
0 0 —1 004

som=—1, M =2. We put also that m = —1 and M = 2. We obtain

17
(q)l(Al) —|—(I)2(A2))4 = 11_6 <(1) (1)> < (6 %) =, (Aélt) + ®, (Ag)

and its improvement

R )

135 (10
= @y (A7) + @2 (A7) - <~ (0 1) :

since 8y = 135/8, A=1/2.

III) Next, we observe an example with matrices that are not special. If

41 1 5 —1-1 /1o
Ar=( 1 —2-1] and Ar=[-12 1 then A:§<00),
1 —1-1 11 3
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so my = —4.8662, My = —0.3446, my = 1.3446, M, = 5.8662, m = —0.3446, M =
1.3446 and we put m = m, M = M (rounded to four decimal places). We have

s 1 /10 1283 255 4 4
(q)l(Al)+q)2(A2)) :E 00 < —255 % = (Al)+q)2(A2)

and its improvement
1 (10) _ [639.9213 —255
4 _ J—
(®1(d)+P2(42))" = 1g (o 0) S ( 255 117.8559)
. o (15787 0
= (A1)+¢2(A2)_< 0 0.6441

(rounded to four decimal places), since

~ (05 0
8, =3.1574, A= ( 0 0'2040).

But, if we put m =my =0, M= My = 0.5 in the example III), then A_: 0, sowe
do not have an improvement of Jensen’s inequality. Also, if we put m =0, M =1, then
A=05 <(1) ?) , 0 =7/8 and SfA =0.4375 <(l) (1)) , which is worse than the above
improvement.

We have the following obvious corollary of Theorem 3 with the convex combina-
tion of operators A;, i=1,...,n.

COROLLARY 6. Let (Ay,...,Ay) be an n—tuple of self-adjoint operators A; €
B(H) with the bounds m; and M;, mi < M;, i =1,...,n. Let (ot,...,0,) be an
n—tuple of nonnegative real numbers such that ¥} 0; = 1. Let

(ma,Mp) N [mi,M;] =0 fori=1,...,n, and m<M,
where my and My, ma < My, are the bounds of A =Y, a;A; and
m=max{M; <ma,i€{1,...,n}}, M =min{m; > My,i € {1,...,n}}.
If f:1— R is a continuous convex (resp. concave ) function provided that the interval
I contains all m;,M;, then
Fl Y A | < T 0if(A) —8A <31 aif (Ar)
i=1
n ~
(resp. [ Y ouAi | =30 0if(Ai)+8:A > 30 0if (A) )
i=1

holds, where Oy is defined by (2.7), A= %IH — ﬁ S 0GA; — ’ﬁ;M ly| and m €

[m,ma], M € [My,M], m < M, are arbitrary numbers.

Proof. We apply Theorem 3 for positive linear mappings ®; : Z(H) — #(H)
determined by ®; : B— o;B, i=1,...,n. U
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3. Quasi-arithmetic means
In this section we will study a refinement of inequalities among quasi-arithmetic

mean defined by (1.4).
For convenience we introduce the following denotations

Sp.y (m,M) = y(m)+y(M) —2yo ! <w> 7

;{(P(maM) = %IK_

(3.1)

)

S @i (an) - 25

1
lo(M)—¢(m)

where (Aj,...,A,) is an n-tuple of self-adjoint operators in % (H) with the spectra
in 1, (®,...,D,) is an n-tuple of positive linear mappings ®@; : Z(H) — #(K) such
that Y7, ®;(1y) =1k, @,y : I — R are continuous strictly monotone functions and
mM €1, m <M. Of course, we include implicitly that g(p(m,M) = gqm(m,M),
where A = 7, @;(p(A).

In the next theorem we give a refinement of results given in Theorem B.

THEOREM 7. Let (Ay,...,Ay) and (®y,...,Dy,) be as in the definition of the
quasi-arithmetic mean (1.4). Let @,y : I — R be continuous strictly monotone func-
tions on an interval 1 which contains all m;,M;. Let

(mq,,M(p)ﬂ[m,-,M,-] =0 fori=1,...,n, and m<M,
where mgy and My, my < My, are the bounds of the mean g///q,(A,(Ihn) and m =
max {M;: M; <mg,i€{l,...,n}}, M =min{m;: mi > Mgy,i € {1,...,n}}.

(i) If yoo ! isconvexand y=! is operator monotone, then

My(A, P ,n) (Zcb — 8, l,,A(,,> My(A, B .n) (3.2)

holds, where 8¢ > 0 and X(p > 0.

(i) If woo ! is convex and —y~! is operator monotone, then the reverse
inequality is valid in (3.2), where 5(/,7“, > 0and Ap = 0.

(i) If woo~! is concave and —y~" is operator monotone, then (3.2) holds,
where 8gy <0 and Ay > 0.

(ii") If woo~! is concave and y~" is ooperator monotone, then the reverse
inequality is valid in (3.2), where 8¢y < 0 and A(p 0.

In all the above cases, we assume that Oy y = 5¢, w(m,M), Aq, Eg(l, (m,M) are
defined by (3.1) and 1i € [m,my|, M € [My,M], 1 < M, are arbitrary numbers.
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Proof. We only prove the case (i). Suppose that ¢ is a strictly increasing function.
Since mily <A; <Mily,i=1,....n,and mylg < #y(A, ®,n) < Mylk, then

(p(m,)lyé(p( ) (p(M,')lH, i:l,...,n,
@(me) 1k < XL Pi(@(Ai) < @(My)1x.
Also
(m(p,M(p) N[m;,M;]=0 fori=1,...,n
implies
(o(mg), (Mp)) N[@(m;),@(M;)] =0 fori=1,...,n. (3.3)
Replacing A; by ¢(A;) in (2.5) and taking into account (3.3), we obtain that

f(iﬂbi(w( ) 2q> 5fA<p iq)z Aj) (3.4)
-1

i=1

holds for every convex function f :J — R on an interval J which contains all

[ (mi), o(M;)] = @([mi, Mi]),

where

5f=f(¢(m))+f(¢(M))—2f<w> >0 65

1 n D ) — e +e(m) ¢ |
o(M)—q(m) i=1 q)l((p(Al)) 2 IK’ = 0.

Also, if ¢ is strictly decreasing, then we check that (3.4) holds for convex f:J —
R on J which contains all [@(M;), @(m;)] = @([m;,M;]), where & is defined by (3.5)
1 n (M) +¢(m)
o | S () — 22 1 > 0.
Putting f = wo ¢! in (3.4) and then applying an operator monotone function
vy~ !, we obtain (3.2).
The proof of the case (ii) is similar to the above case with the inequality (2.6)
instead of (2.5). [

andg(p: Mg -

andg(p: Mg -

Now, we give a special case of the above theorem. It is a refinement of [3, Corol-
lary 5].

COROLLARY 8. Let (Ay,...,A,) and (®@y,...,®,) be as in the definition of the
quasi-arithmetic mean (1.4). Let m; and M;, m; < M; be the bounds of A;, i=1,...,n
Let @,y :1 — R be continuous strictly monotone functions on an interval I which
contains all m;,M; and % be the identity function on 1.

(i) If o~ is convex and

(m(p,M(p) N [m,-,M,-} =0 fori=1,....n, and mg) < M[(p] (3.6)
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is valid, where mgy and My, my < My are the bounds of My(A,®,n) and my, =
max {M;: M; <mg,i€{1,...,n}}, Mg =min{m;: m; >My,ic{1,....n}}, then

M¢(A7 @7’1) < M/(Av @7’1) - 6¢7](M7M)g¢(rﬁ7M) < Mf(Av @7’1) (3.7
holds for every m € [myg),mg], M € [My,My)], m < M, where 8 s (m,M) >0 and
A},, (111,M) > 0 are defined by (3.1).

(ii) If ¢! is concave and (3.6) is valid, then

Mo(A, ®,n) > My (A, ®,n) — 8y s (11, M)Ay (11, M) > M+ (A, ®,n), (3.8)

holds for every m € [myy),mg], M € [Mp, M), 1 < M, where 8, 4 (i,M) <0 and
Ag(m,M) > 0 are defined by (3.1).

(iii) If @~ is convex and (3.6) is valid and if w~' is concave, and
(ml,,,M,,,) N[miy,M)=0  fori=1,...,n, and mpy) < Mpy,

is valid, where my, and My, my < Ml,, are the bounds of My(A,®,n) and my, =
max {M;: M; <my,i€{1,....,n}}, M) =min{m;: m; >My,i€{1,...,n}}, then

My(A, B,n) < M (A, B,n) —5(,,4(@
< M](Aa (}7’1) - 614/,/(”:17

)Ay (1, M) < My (A, ®,n)

- _ = (3.9)
JAy (m,M) < My (A, ®,n)

NI

holds for every m € [m Mg, ,mg), M € [My,Myy)], m <M and every me [m[u,] My,
Me My, M|, m n <M, where 8p.7 (M,M) >0, A o(m,M) >0 and SW/(m M) <0,
gw(n%,l\fl) > 0 are defined by (3.1).

Proof. (1)-(ii): Putting v = . in Theorem 7 (i) and (ii’), we obtain (3.7) and
(3.8), respectively.

(ii1): Replacing y by ¢ in (ii) and combining this with (i), we obtain the desired
inequality (3.9). O

REMARK 9. Let the assumptions of Corollary 8 (iii) be valid. We get the follow-
ing refinement of inequalities quasi-arithmetic means

My(A, ®.n) < My(A, 1)+ Ag.y (7, M, 1, M) < My (A, ®,n),
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where

It is interesting to study a refinement of (1.6) under the condition placed only on
the bounds of operators whose means we are considering. We study it in the following
corollary. It is a refinement of the result given in [4, Theorem 2.1].

COROLLARY 10. Let A;, ®;, mj, M;, i=1,...,n, and ¢,y,.7 as in the as-
sumptions of Corollary 8.
Let
(ma,Mp) N [mi,M;] =0 fori=1,...,n, and m<M
be valid, where my and My, ma < My, are the bounds of A =Y ®;(A;) and

m=max{M;: M; <mg,i€{1,...,n}}, M =min{m;: m; > Myu,i € {1,...,n}}.

If v is convex, y~! is operator monotone, ¢ is concave, ¢~ is operator mono-
tone, then

Mo(A,B,n) < 97 (T, @i (p(4)) + 894 ) < M5 (A, 1)
/ (3.10)
<y (T @ (w(A4) ~ 8yA) < Ay (A Do)

holds, where

=

8 =20 (E42) — glm)— 0(4) > 0.8, = vlm) + y(o1) ~2y (55 >0

S

M—m

and  ,m € [m,my), M\M € [Mp,M], i <M, m <M  are arbitrary numbers.
If v is convex, —y~! is operator monotone, @ is concave, —¢@~!
monotone, then the reverse inequality is valid in (3.10).

is operator

Proof. We only prove (3.10). By replacing ¢ by .# and next ¥ by ¢ in Theo-
rem 7 (ii’) we obtain LHS of (3.10). Also, by replacing ¢ by .# in Theorem 7 (i) we
obtain RHS of (3.10). [
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4. Application to the power mean

As an application of results given in the above section we study a refinement of
inequalities among power means.

As a special case of the quasi-arithmetic mean (1.4) we can study the operator
power mean

n ary 1/ p
///,E’](A,{)): { ( i=1q)l( 1)) ’ GR\{O}v (4.1)
GXP(Z?:I@,' (IH(A,'))), r=0,

where (Aj,...,Ay) is an n—tuple of strictly positive operatorsin A(H) and (®y,...,D,)
is an n— tuple of positive linear mappings @; : B(H) — Z#(K) such that Y, ®;(1y) =
1.

For convenience we introduce denotations as a special case of (3.1) as follows

m‘Y+MS—2< Uer) ,r#£0,

(Sr,s(m:M) =
m‘Y+MS—2(mM)S/2, r=0,

4.2)

1 1 M"+m"
_ V- 50 oA ——1K|, r£0,
A (m,M) = 2 [MT—m"] =1 ) 2

g —|In (X)) |71 2L, @;(InA;) —Inv/M

where m,M € R, 0 <m <M and r,s € R, r <s. Of course, we include implicitly that
A (m, M) Am(m M), where A =3 | @;(A}) for r #0 and A =3 | ®;(InA;) for
r=0.

Applying Theorem 7 on the operator power means we obtain the following refine-
ment of inequalities among power means given in [3, Corollary 7].

COROLLARY 11. Let (Ay,...,A,) and (®@y,...,®,) be as in the definition of the
power mean (4.1). Let m; and M;, 0 < m; < M; be the bounds of A;, i=1,....n

(i) Ifr<s, s=zlorr<s<-—1,

(m[r]7M[r]>ﬁ[mi,Mi]:(D, i=1,...,n, and m<M,

where m"l and M, ml" < MU are the bounds of ///,Er] (A, ®) and
m:max{M,-: M;<mlie {1,...,n}}, M:min{mi: m; =M ie {1,...,n}},

then

n

1/s
(AL ®) < (2 ®; (A7) —5,7;{,) <A P), (43)

i=1
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holds, where 8,5 > Z Ofor s=1, 8,5 <0 for s<—1 and A > 0. Here we assume that
85 = &,5(,M), A, _A,(m,M) are defined by (4.2) and m € [m,m[’]}, Me [M[’],M},

m < M, are arbitrary numbers.

(i) Ifr<s, r<—lorl<r<s,

(m[s],M[s]>ﬂ[mi,Mi}:0, i=1,...,n, and m<M,

where mbl and MB!, mbs! < M) are the bounds of Q///,ES] (A, ®) and
m:max{M,-: M;<mbie {17...,n}}7 M:min{mi: m; > MV ie {17...,n}}7
then

n 1/r
MY(A, D) (2 — 8,4, ) <M (A, D),

holds, where SSJ >0 forr<—1, & +<0forr>1and A > 0. Here we assume that
8. = 8,(m,M), Ay = Ay(m,M) are defined by (4.2) and m € [m,m")], M € M) M],
m < M, are arbitrary numbers.

Proof. We prove only the case (i). We put ¢(¢) =¢" and y(r) =¢° for t > 0.
Then yo @ '(r) =r¥/" is concave for r <s, s <0 and r #0. Since —y (1) =

—t1/5 s operator monotone for s < —1 and (m[ ],M[’]> [mi,M;] = 0 is satisfied, then

by applying Theorem 7 (ii) we obtain (4.3) for r <s < —1.

But, yo @ (1) =¢/" is convex for r < s, s >0 and r# 0. Since y~!(r) =1/5
is operator monotone for s > 1, then by applying Theorem 7 (i) we obtain (4.3) for
r<s, s>1,r#0.

If r— 0 and s>1,weput @(t) =1Inz and y(t) =¢*, ¢ > 0. Since yoo (1) =
exp(st) is convex, then similarly as above we obtain the desired inequality.

In the case (ii) we put @(¢r) =¢* and y(z) =¢" for r > 0 and we use the same
technique as in the case (i). [

Figure 2 shows regions (1), (2), (4), (6), (7) in where the monotonicity of the
power mean holds true [3, Corollary 6], also Figure 2 shows regions (1)—(7) which this
holds true with condition on spectra [3, Corollary 7]. We show in [3, Example 2] that
the order among power means does not hold generally without a condition on spectra
in regions (3), (5). Now, by using Corollary 11 we give a refinement of inequalities
among power means in the regions (2)—(6) (see Remark 13).

COROLLARY 12. Let (Ay,...,A,) and (®@y,...,®,) be as in the definition of the
power mean (4.1). Let m; and M;, 0 < m; < M; be the bounds of A;, i=1,...,n. Let

m[r],M[r] N[m;,M;]=0, i=1,...,n, m) < Mpy,
m[s],M[s] N [mi,Mi} =0, i=1,...,n, mig < M[s]7
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S
N =il
// 1 M (A0) <M, AD) in (1), (2), (4). 6), (7)
jﬂ é WITHOUT CONDITION ON SPECTRA
iy o b/ S > M a0) <M A0) +Ars.A) <M T A)
( ?"” i (2), (3), (4) or (4), (5), (6)
(7) 4; -1 WITH CONDITION ON SPECTRA

Figure 2: Regions describing inequalities among power means

where ml", MU, mlh <M and mls), M), mls) < MU are the bounds of //nm (A, ®)
and ///n['y] (A, @), respectively, and

mpy =max{M; <mlie{1,....n}t, My =min{m; >Mie{l,. . n}

My = max Migm[‘],ie{l,...,n} , Mg = min m,-}M["'],ie{l,...,n} )

Let m € [m[,],mm], M c [MM,M[,]], <M, and m € [m[_s.],m[“']], M e [M[“'],M[S]],
m <M be arbitrary numbers.

(i) Ifr<1<s, then

M(A,®) <
<

holds, where &,(m,M) >0, A,(i,M) >0, §v71(n:1,1\2) <0 and gs(ri,ﬁfl) >0 are
defined by (4.2).

(ii) Furthermore if r < —1 < s, then

1

AAB) < (S, @i (A7) = 5 (o

B
2=
Q)
=

N

|
N
N
L
£
®

él |
~—
[
N
Y
>
=

< (z;;l ®; (A7) = 81 (m, M)A (m

defined by (4.2).
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(iii) Furthermoreif r < —1, s > 1, then

A B) < (S @ (A7) = 8,1 (m MDA (M) ) <.y (AL @)
<A (A, ®) < TI Di (A1) — 8,1 (7, M)A, (m, M) 0
<M (A, D)

by (4.2).

Proof. We prove only (4.4). If r < 1, then putting s = 1 in Corollary 11 (i) w
get LHS of (4.4). Also, if s > 1, then putting r = 1 in Corollary 11 (ii) we get RHS 0f
44). O

REMARK 13. Let the assumptions of Corollary 12 be valid. We get refinement of
inequalities among power means as follows.
If r <1<s,then

MDA, ®) <.
< MNAB).
If r<—1<s, then
_ RN
MDA ®) < ) A, ®) + <2flc1)i (A7) - 6Y71(m7]l71)A5(m7M)>

o _ —1
- QZELI ®; (A7) = &1 (m, M)A, (. M)
(A, ).
If r<-1,s>1,then
M ®) < VA B)+ .4 (A, B) -5, (
- @1 @ (A7) — 8,1 (m. DA,
< MP(ALB).
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