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REFINED JENSEN’S OPERATOR INEQUALITY

WITH CONDITION ON SPECTRA

JADRANKA MIĆIĆ, JOSIP PEČARIĆ AND JURICA PERIĆ

(Communicated by C.-K. Li)

Abstract. We give a refinement of Jensen’s inequality for n -tuples of self-adjoint operators,
unital n -tuples of positive linear mappings and real valued continuous convex functions with
condition on the spectra of the operators. The refined Jensen’s inequality is used to obtain a
refinement of inequalities among quasi-arithmetic means under similar conditions. As an appli-
cation of these results we give a refinement of inequalities among power means.

1. Introduction

We recall some notations and definitions. Let B(H) be the C∗ -algebra of all
bounded linear operators on a Hilbert space H and 1H stands for the identity operator.
We define bounds of a self-adjoint operator A ∈ B(H) by

mA = inf
‖x‖=1

〈Ax,x〉 and MA = sup
‖x‖=1

〈Ax,x〉

for x ∈ H . If Sp(A) denotes the spectrum of A , then Sp(A) is real and Sp(A) ⊆
[mA,MA] .

For an operator A ∈ B(H) we define operators |A| , A+ , A− by

|A| = (A∗A)1/2, A+ = (|A|+A)/2, A− = (|A|−A)/2.

Obviously, if A is self-adjoint, then |A|= (A2)1/2 and A+,A− � 0 (called positive and
negative parts of A = A+−A− ).

B. Mond and J. Pečarić in [7] proved the following version of Jensen’s operator
inequality

f

(
n

∑
i=1

wiΦi(Ai)

)
�

n

∑
i=1

wiΦi ( f (Ai)) , (1.1)

for operator convex functions f defined on an interval I, where Φi : B(H) → B(K) ,
i = 1, . . . ,n , are unital positive linear mappings, A1, . . . ,An are self-adjoint operators
with the spectra in I and w1, . . . ,wn are non-negative real numbers with ∑n

i=1 wi = 1.
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F. Hansen, J. Pečarić and I. Perić gave in [1] a generalization of (1.1) for a unital
field of positive linear mappings. Recently, J.Mićić, J.Pečarić and Y.Seo in [5] gave a
generalization of this results for a not-unital field of positive linear mappings.

Very recently, J. Mićić, Z. Pavić and J. Pečarić gave in [3, Theorem 1] Jensen’s
operator inequality without operator convexity as follows.

THEOREM A. Let (A1, . . . ,An) be an n-tuple of self-adjoint operators Ai ∈
B(H) with bounds mi and Mi , mi � Mi , i = 1, . . . ,n. Let (Φ1, . . . ,Φn) be an n-tuple
of positive linear mappings Φi : B(H)→B(K) , i = 1, . . . ,n, such that ∑n

i=1 Φi(1H) =
1K . If

(mA,MA)∩ [mi,Mi] = /0 for i = 1, . . . ,n, (1.2)

where mA and MA , mA � MA , are bounds of the self-adjoint operator A = ∑n
i=1 Φi(Ai) ,

then

f

(
n

∑
i=1

Φi(Ai)

)
�

n

∑
i=1

Φi ( f (Ai)) (1.3)

holds for every continuous convex function f : I → R provided that the interval I con-
tains all mi,Mi .

If f : I → R is concave, then the reverse inequality is valid in (1.3).

In the same paper [3], we study the quasi-arithmetic operator mean

Mϕ(A,�,n) = ϕ−1

(
n

∑
i=1

Φi (ϕ(Ai))

)
, (1.4)

where (A1, . . . ,An) is an n -tuple of self-adjoint operators in B(H) with the spectra in
I , (Φ1, . . . ,Φn) is an n -tuple of positive linear mappings Φi : B(H)→B(K) such that
∑n

i=1 Φi(1H) = 1K , and ϕ : I → R is a continuous strictly monotone function.

The following results about the monotonicity of this mean is proven in [3, Theorem
3].

THEOREM B. Let (A1, . . . ,An) and (Φ1, . . . ,Φn) be as in the definition of the
quasi-arithmetic mean (1.4). Let mi and Mi , mi � Mi be the bounds of Ai , i = 1, . . . ,n.
Let ϕ ,ψ : I →R be continuous strictly monotone functions on an interval I which con-
tains all mi,Mi . Let mϕ and Mϕ , mϕ � Mϕ , be the bounds of the mean Mϕ(A,�,n) ,
such that (

mϕ ,Mϕ
)∩ [mi,Mi] = /0 for i = 1, . . . ,n. (1.5)

If one of the following conditions

(i) ψ ◦ϕ−1 is convex and ψ−1 is operator monotone,

(i’) ψ ◦ϕ−1 is concave and −ψ−1 is operator monotone,

is satisfied, then
Mϕ(A,�,n) � Mψ(A,�,n). (1.6)

If one of the following conditions
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(ii) ψ ◦ϕ−1 is concave and ψ−1 is operator monotone,

(ii’) ψ ◦ϕ−1 is convex and −ψ−1 is operator monotone,

is satisfied, then the reverse inequality is valid in (1.6).

In this paper we study a refinement of Jensen’s inequality given in Theorem A. As
an application of this result, we give a refinement of inequalities order among quasi-
arithmetic means given in Theorem B and inequalities among power means.

2. Jensen’s operator inequality

To obtain our result we need a result given in the following lemma.

LEMMA 1. Let f be a convex function on an interval I , x,y∈ I and p1, p2 ∈ [0,1]
such that p1 + p2 = 1 . Then

min{p1, p2}
[

f (x)+ f (y)−2 f

(
x+ y

2

)]
� p1 f (x)+ p2 f (y)− f (p1x+ p2y). (2.1)

Proof. This results follows from [6, Theorem 1, p. 717]. �

In Theorem A we prove that Jensen’s operator inequality holds for every contin-
uous convex function and for every n− tuple of self-adjoint operators (A1, . . . ,An) , for
every n− tuple of positive linear mappings (Φ1, . . . ,Φn) in the case when the interval
with bounds of the operator A = ∑n

i=1 Φi(Ai) has no intersection points with the interval
with bounds of the operator Ai for each i = 1, . . . ,n . It is interesting to consider can
we make a refinement of this inequality. To achieve this we need the following result,
where we use the idea given in [2, Theorem 12].

LEMMA 2. Let A be a self-adjoint operator A ∈ B(H) with Sp(A) ⊆ [m,M] , for
some scalars m < M. Then

f (A) � M1H −A
M−m

f (m)+
A−m1H

M−m
f (M)− δ f Ã (2.2)

(resp. f (A) � M1H −A
M−m

f (m)+
A−m1H

M−m
f (M)+ δ f Ã )

holds for every continuous convex (resp. concave) function f : [m,M] → R , where

δ f = f (m)+ f (M)−2 f
(

m+M
2

)
(resp. δ f = 2 f

(
m+M

2

)− f (m)− f (M)),

and Ã = 1
21H − 1

M−m

∣∣A− m+M
2 1H

∣∣ .
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Proof. We prove only the convex case. Putting x = m,y = M in (2.1) it follows
that

f (p1m+ p2M) � p1 f (m)+ p2 f (M)
−min{p1, p2}

(
f (m)+ f (M)−2 f

(
m+M

2

)) (2.3)

holds for every p1, p2 ∈ [0,1] such that p1 + p2 = 1 . For any t ∈ [m,M] we can write

f (t) = f

(
M− t
M−m

m+
t−m
M−m

M

)
.

Then by using (2.3) for p1 = M−t
M−m and p2 = t−m

M−m we get

f (t) � M− t
M−m

f (m)+
t−m
M−m

f (M)

−
(

1
2
− 1

M−m

∣∣∣∣t− m+M
2

∣∣∣∣)( f (m)+ f (M)−2 f

(
m+M

2

))
,

(2.4)

since

min

{
M− t
M−m

,
t −m
M−m

}
=

1
2
− 1

M−m

∣∣∣∣t− m+M
2

∣∣∣∣ .
Finally we use the continuous functional calculus for a self-adjoint operator A : f ,g ∈
C (I),Sp(A) ⊆ I and f � g implies f (A) � g(A) ; and h(t) = |t| implies h(A) = |A| .
Then by using (2.4) we obtain the desired inequality (2.2). �

THEOREM 3. Let (A1, . . . ,An) be an n− tuple of self-adjoint operators Ai ∈ B(H)
with the bounds mi and Mi , mi � Mi , i = 1, . . . ,n. Let (Φ1, . . . ,Φn) be an n− tuple of
positive linear mappings Φi : B(H)→ B(K) , i = 1, . . . ,n, such that ∑n

i=1 Φi(1H) = 1K .
Let

(mA,MA)∩ [mi,Mi] = /0 for i = 1, . . . ,n, and m < M,

where mA and MA , mA � MA , are the bounds of the operator A = ∑n
i=1 Φi(Ai) and

m = max{Mi : Mi � mA, i ∈ {1, . . . ,n}} , M = min{mi : mi � MA, i ∈ {1, . . . ,n}} .

If f : I → R is a continuous convex (resp. concave) function provided that the interval
I contains all mi,Mi , then

f

(
n

∑
i=1

Φi(Ai)

)
�

n

∑
i=1

Φi ( f (Ai))− δ f Ã �
n

∑
i=1

Φi ( f (Ai)) (2.5)

(
resp.

f

(
n

∑
i=1

Φi(Ai)

)
�

n

∑
i=1

Φi ( f (Ai))+ δ f Ã �
n

∑
i=1

Φi ( f (Ai))
)

(2.6)

holds, where

δ f ≡ δ f (m,M) = f (m)+ f (M)−2 f
(

m+M
2

)
(resp. δ f ≡ δ f (m,M) = 2 f

(
m+M

2

)
− f (m)− f (M) ),

Ã ≡ ÃA(m,M) = 1
21K − 1

M−m

∣∣∣A− m+M
2 1K

∣∣∣
(2.7)
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and m ∈ [m,mA] , M ∈ [MA,M] , m < M, are arbitrary numbers.

Proof. We prove only the convex case.
Since A = ∑n

i=1 Φi(Ai)∈B(K) is the self-adjoint operator such that m1K � mA1K �
∑n

i=1 Φi(Ai) � MA1K � M1K and f is convex on [m,M] ⊆ I , then by Lemma 2 we ob-
tain

f

(
n

∑
i=1

Φi(Ai)

)
� M1K −∑n

i=1 Φi(Ai)
M−m

f (m)+
∑n

i=1 Φi(Ai)−m1K

M−m
f (M)− δ f Ã, (2.8)

where δ f and Ã are defined by (2.7).
But since f is convex on [mi,Mi] and since (mA,MA) ∩ [mi,Mi] = /0 implies

(m,M)∩ [mi,Mi] = /0 , then

f (Ai) � M1H −Ai

M−m
f (m)+

Ai−m1H

M−m
f (M), i = 1, . . . ,n

holds. Applying a positive linear mapping Φi , summing and adding −δ f Ã , we obtain

n

∑
i=1

Φi ( f (Ai))− δ f Ã � M1K −∑n
i=1 Φi(Ai)

M−m
f (m)+ ∑n

i=1 Φi(Ai)−m1K

M−m
f (M)− δ f Ã,

(2.9)
since ∑n

i=1 Φi(1H) = 1K . Combining the two inequalities (2.8) and (2.9), we have LHS
of (2.5). Since δ f � 0 and Ã � 0 then we have RHS of (2.5). �

REMARK 4. Specially, if mA < MA , then Theorem 3 in the convex case gives

f

(
n

∑
i=1

Φi(Ai)

)
�

n

∑
i=1

Φi ( f (Ai))− δ f A �
n

∑
i=1

Φi ( f (Ai)) ,

where
δ f ≡ δ f (mA,MA) = f (mA)+ f (MA)−2 f

(
mA+MA

2

)
and A ≡ ÃA(mA,MA) = 1

21K − 1
MA−mA

∣∣∣A− mA+MA
2 1K

∣∣∣ .
But if m < M and mA = MA , then the inequality (2.5) holds, but δ f A is not

defined. Some examples of this case are given in Example 5 I) and II).

EXAMPLE 5. We give three examples for the matrix cases and n = 2. Then we
have refined inequalities given in Figure 1.

We put f (t) = t4 which is convex but not operator convex in (2.5). Also, we de-
fine mappings Φ1,Φ2 : M3(C) → M2(C) as follows: Φ1((ai j)1�i, j�3) = 1

2 (ai j)1�i, j�2 ,
Φ2 = Φ1 (then Φ1(I3)+ Φ2(I3) = I2 ).
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Figure 1: Refinement for two operators and a convex function f

I) First, we observe an example when δ f Ã is equal the difference RHS and
LHS of Jensen’s inequality. If A1 = −3I3 and A2 = 2I3 , then A = Φ1(A1)+Φ2(A2) =
−0.5I2 , so m = −3, M = 2. We put also that m = −3 and M = 2. We obtain

(Φ1(A1)+ Φ2(A2))
4 = 0.0625I2 � 48.5I2 = Φ1

(
A4

1

)
+ Φ2

(
A4

2

)
and its improvement

(Φ1(A1)+ Φ2(A2))
4 = 0.0625I2 = Φ1

(
A4

1

)
+ Φ2

(
A4

2

)−48.4375I2,

since δ f = 96.875, Ã = 0.5I2.
II) Next, we observe an example when δ f Ã is not equal the difference RHS and

LHS of Jensen’s inequality. If

A1 =

⎛⎝−1 0 0
0 −2 0
0 0 −1

⎞⎠ and A2 =

⎛⎝2 0 0
0 3 0
0 0 4

⎞⎠ then A =
1
2

(
1 0
0 1

)
,

so m = −1, M = 2. We put also that m = −1 and M = 2. We obtain

(Φ1(A1)+ Φ2(A2))
4 =

1
16

(
1 0
0 1

)
�
( 17

2 0
0 97

2

)
= Φ1

(
A4

1

)
+ Φ2

(
A4

2

)
and its improvement

(Φ1(A1)+ Φ2(A2))
4 =

1
16

(
1 0
0 1

)
� 1

16

(
1 0
0 641

)
= Φ1

(
A4

1

)
+ Φ2

(
A4

2

)− 135
16

(
1 0
0 1

)
,

since δ f = 135/8, Ã = I2/2.
III) Next, we observe an example with matrices that are not special. If

A1 =

⎛⎝−4 1 1
1 −2 −1
1 −1 −1

⎞⎠ and A2 =

⎛⎝ 5 −1 −1
−1 2 1
−1 1 3

⎞⎠ then A =
1
2

(
1 0
0 0

)
,
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so m1 = −4.8662, M1 = −0.3446, m2 = 1.3446, M2 = 5.8662, m = −0.3446, M =
1.3446 and we put m = m , M = M (rounded to four decimal places). We have

(Φ1(A1)+ Φ2(A2))
4 =

1
16

(
1 0
0 0

)
�
( 1283

2 −255
−255 237

2

)
= Φ1

(
A4

1

)
+ Φ2

(
A4

2

)
and its improvement

(Φ1(A1)+ Φ2(A2))
4 =

1
16

(
1 0
0 0

)
�
(

639.9213 −255
−255 117.8559

)
= Φ1

(
A4

1

)
+ Φ2

(
A4

2

)−(1.5787 0
0 0.6441

)
(rounded to four decimal places), since

δ f = 3.1574, Ã =
(

0.5 0
0 0.2040

)
.

But, if we put m = mA = 0, M = MA = 0.5 in the example III), then Ã = 0 , so we
do not have an improvement of Jensen’s inequality. Also, if we put m = 0, M = 1, then

Ã = 0.5

(
1 0
0 1

)
, δ f = 7/8 and δ f Ã = 0.4375

(
1 0
0 1

)
, which is worse than the above

improvement.

We have the following obvious corollary of Theorem 3 with the convex combina-
tion of operators Ai , i = 1, . . . ,n .

COROLLARY 6. Let (A1, . . . ,An) be an n− tuple of self-adjoint operators Ai ∈
B(H) with the bounds mi and Mi , mi � Mi , i = 1, . . . ,n. Let (α1, . . . ,αn) be an
n− tuple of nonnegative real numbers such that ∑n

i=1 αi = 1 . Let

(mA,MA)∩ [mi,Mi] = /0 for i = 1, . . . ,n, and m < M,

where mA and MA , mA � MA , are the bounds of A = ∑n
i=1 αiAi and

m = max{Mi � mA, i ∈ {1, . . . ,n}} , M = min{mi � MA, i ∈ {1, . . . ,n}} .

If f : I → R is a continuous convex (resp. concave) function provided that the interval
I contains all mi,Mi , then

f

(
n

∑
i=1

αiAi

)
� ∑n

i=1 αi f (Ai)− δ f
˜̃A � ∑n

i=1 αi f (Ai)

(resp. f

(
n

∑
i=1

αiAi

)
� ∑n

i=1 αi f (Ai)+ δ f
˜̃A � ∑n

i=1 αi f (Ai) )

holds, where δ f is defined by (2.7), ˜̃A = 1
21H − 1

M−m

∣∣∣∑n
i=1 αiAi − m+M

2 1H

∣∣∣ and m ∈
[m,mA] , M ∈ [MA,M] , m < M, are arbitrary numbers.

Proof. We apply Theorem 3 for positive linear mappings Φi : B(H) → B(H)
determined by Φi : B �→ αiB , i = 1, . . . ,n . �
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3. Quasi-arithmetic means

In this section we will study a refinement of inequalities among quasi-arithmetic
mean defined by (1.4).

For convenience we introduce the following denotations

δϕ,ψ (m,M) = ψ(m)+ ψ(M)−2ψ ◦ϕ−1
(

ϕ(m)+ϕ(M)
2

)
,

Ãϕ(m,M) = 1
21K − 1

|ϕ(M)−ϕ(m)|
∣∣∣∑n

i=1 Φi(ϕ(Ai))− ϕ(M)+ϕ(m)
2 1K

∣∣∣ , (3.1)

where (A1, . . . ,An) is an n -tuple of self-adjoint operators in B(H) with the spectra
in I , (Φ1, . . . ,Φn) is an n -tuple of positive linear mappings Φi : B(H) → B(K) such
that ∑n

i=1 Φi(1H) = 1K , ϕ ,ψ : I → R are continuous strictly monotone functions and
m,M ∈ I , m < M . Of course, we include implicitly that Ãϕ(m,M) ≡ Ãϕ,A(m,M) ,
where A = ∑n

i=1 Φi(ϕ(Ai)) .

In the next theorem we give a refinement of results given in Theorem B.

THEOREM 7. Let (A1, . . . ,An) and (Φ1, . . . ,Φn) be as in the definition of the
quasi-arithmetic mean (1.4). Let ϕ ,ψ : I → R be continuous strictly monotone func-
tions on an interval I which contains all mi,Mi . Let(

mϕ ,Mϕ
)∩ [mi,Mi] = /0 for i = 1, . . . ,n, and m < M,

where mϕ and Mϕ , mϕ � Mϕ , are the bounds of the mean Mϕ(A,�,n) and m =
max

{
Mi : Mi � mϕ , i ∈ {1, . . . ,n}} , M = min

{
mi : mi � Mϕ , i ∈ {1, . . . ,n}} .

(i) If ψ ◦ϕ−1 is convex and ψ−1 is operator monotone, then

Mϕ(A,�,n) � ψ−1

(
n

∑
i=1

Φi (ψ(Ai))− δϕ,ψ Ãϕ

)
� Mψ(A,�,n) (3.2)

holds, where δϕ,ψ � 0 and Ãϕ � 0 .

(i′) If ψ ◦ ϕ−1 is convex and −ψ−1 is operator monotone, then the reverse
inequality is valid in (3.2), where δϕ,ψ � 0 and Ãϕ � 0 .

(ii) If ψ ◦ϕ−1 is concave and −ψ−1 is operator monotone, then (3.2) holds,
where δϕ,ψ � 0 and Ãϕ � 0 .

(ii′) If ψ ◦ ϕ−1 is concave and ψ−1 is operator monotone, then the reverse
inequality is valid in (3.2), where δϕ,ψ � 0 and Ãϕ � 0 .

In all the above cases, we assume that δϕ,ψ ≡ δϕ,ψ (m,M) , Ãϕ ≡ Ãϕ(m,M) are
defined by (3.1) and m ∈ [m,mϕ ] , M ∈ [Mϕ ,M] , m < M, are arbitrary numbers.
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Proof. We only prove the case (i). Suppose that ϕ is a strictly increasing function.
Since mi1H � Ai � Mi1H , i = 1, . . . ,n , and mϕ1K � Mϕ(A,�,n) � Mϕ1K , then

ϕ(mi)1H � ϕ(Ai) � ϕ(Mi)1H , i = 1, . . . ,n,

ϕ(mϕ)1K � ∑n
i=1 Φi(ϕ(Ai)) � ϕ(Mϕ)1K .

Also (
mϕ ,Mϕ

)∩ [mi,Mi] = /0 for i = 1, . . . ,n

implies (
ϕ(mϕ),ϕ(Mϕ )

)∩ [ϕ(mi),ϕ(Mi)] = /0 for i = 1, . . . ,n . (3.3)

Replacing Ai by ϕ(Ai) in (2.5) and taking into account (3.3), we obtain that

f

(
n

∑
i=1

Φi(ϕ(Ai))

)
�

n

∑
i=1

Φi ( f (ϕ(Ai)))− δ f Ãϕ �
n

∑
i=1

Φi ( f (ϕ(Ai))) (3.4)

holds for every convex function f : J → R on an interval J which contains all

[ϕ(mi),ϕ(Mi)] = ϕ([mi,Mi]),

where

δ f = f (ϕ(m))+ f (ϕ(M))−2 f

(
ϕ(m)+ ϕ(M)

2

)
� 0 (3.5)

and Ãϕ = 1
21K − 1

ϕ(M)−ϕ(m)

∣∣∣∑n
i=1 Φi(ϕ(Ai))− ϕ(M)+ϕ(m)

2 1K

∣∣∣� 0.

Also, if ϕ is strictly decreasing, then we check that (3.4) holds for convex f : J →
R on J which contains all [ϕ(Mi),ϕ(mi)] = ϕ([mi,Mi]) , where δ f is defined by (3.5)

and Ãϕ = 1
21K − 1

ϕ(m)−ϕ(M)

∣∣∣∑n
i=1 Φi(ϕ(Ai))− ϕ(M)+ϕ(m)

2 1K

∣∣∣� 0.

Putting f = ψ ◦ϕ−1 in (3.4) and then applying an operator monotone function
ψ−1 , we obtain (3.2).

The proof of the case (ii) is similar to the above case with the inequality (2.6)
instead of (2.5). �

Now, we give a special case of the above theorem. It is a refinement of [3, Corol-
lary 5].

COROLLARY 8. Let (A1, . . . ,An) and (Φ1, . . . ,Φn) be as in the definition of the
quasi-arithmetic mean (1.4). Let mi and Mi , mi � Mi be the bounds of Ai , i = 1, . . . ,n.
Let ϕ ,ψ : I → R be continuous strictly monotone functions on an interval I which
contains all mi,Mi and I be the identity function on I .

(i) If ϕ−1 is convex and(
mϕ ,Mϕ

)∩ [mi,Mi] = /0 for i = 1, . . . ,n, and m[ϕ] < M[ϕ] (3.6)
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is valid, where mϕ and Mϕ , mϕ � Mϕ are the bounds of Mϕ (A,�,n) and m[ϕ] =
max

{
Mi : Mi � mϕ , i ∈ {1, . . . ,n}} , M[ϕ] = min

{
mi : mi � Mϕ , i ∈ {1, . . . ,n}} , then

Mϕ(A,�,n) � MI (A,�,n)− δϕ,I (m,M)Ãϕ (m,M) � MI (A,�,n) (3.7)

holds for every m ∈ [m[ϕ],mϕ ] , M ∈ [Mϕ ,M[ϕ]] , m < M, where δϕ,I (m,M) � 0 and

Ãϕ(m,M) � 0 are defined by (3.1).

(ii) If ϕ−1 is concave and (3.6) is valid, then

Mϕ (A,�,n) � MI (A,�,n)− δϕ,I (m,M)Ãϕ(m,M) � MI (A,�,n), (3.8)

holds for every m ∈ [m[ϕ],mϕ ] , M ∈ [Mϕ ,M[ϕ]] , m < M, where δϕ,I (m,M) � 0 and

Ãϕ(m,M) � 0 are defined by (3.1).

(iii) If ϕ−1 is convex and (3.6) is valid and if ψ−1 is concave, and(
mψ ,Mψ

)∩ [mi,Mi] = /0 for i = 1, . . . ,n, and m[ψ] < M[ψ]

is valid, where mψ and Mψ , mψ � Mψ are the bounds of Mψ (A,�,n) and m[ψ] =
max

{
Mi : Mi � mψ , i ∈ {1, . . . ,n}} , M[ψ] = min

{
mi : mi � Mψ , i ∈ {1, . . . ,n}} , then

Mϕ(A,�,n) � MI (A,�,n)− δϕ,I (m,M)Ãϕ(m,M) � MI (A,�,n)

� MI (A,�,n)− δψ,I (m,M)Ãψ(m,M) � Mψ(A,�,n)
(3.9)

holds for every m ∈ [m[ϕ],mϕ ] , M ∈ [Mϕ ,M[ϕ]] , m < M and every m ∈ [m[ψ],mψ ] ,

M ∈ [Mψ ,M[ψ]] , m < M, where δϕ,I (m,M) � 0 , Ãϕ(m,M) � 0 and δψ,I (m,M) � 0 ,

Ãψ(m,M) � 0 are defined by (3.1).

Proof. (i)-(ii): Putting ψ = I in Theorem 7 (i) and (ii’), we obtain (3.7) and
(3.8), respectively.

(iii): Replacing ψ by ϕ in (ii) and combining this with (i), we obtain the desired
inequality (3.9). �

REMARK 9. Let the assumptions of Corollary 8 (iii) be valid. We get the follow-
ing refinement of inequalities quasi-arithmetic means

Mϕ(A,�,n) � Mϕ (A,�,n)+ Δϕ,ψ(m,M,m,M) � Mψ(A,�,n),

where

Δϕ,ψ(m,M,m,M) = δϕ,I (m,M)Ãϕ(m,M)− δψ,I (m,M)Ãψ(m,M) � 0.

Especially,

Mϕ (A,�,n) � Mϕ(A,�,n)+ δϕ(m,M)Ãϕ(m,M)+ δψ(m,M)Ãψ(m,M)

� Mψ(A,�,n),
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where

δ ϕ(m,M) = m+M−2ϕ−1
(

ϕ(m)+ϕ(M)
2

)
� 0,

δ ψ(m,M) = 2ψ−1
(

ψ(m)+ψ(M)
2

)
−m−M � 0.

It is interesting to study a refinement of (1.6) under the condition placed only on
the bounds of operators whose means we are considering. We study it in the following
corollary. It is a refinement of the result given in [4, Theorem 2.1].

COROLLARY 10. Let Ai , Φi , mi , Mi , i = 1, . . . ,n, and ϕ ,ψ ,I as in the as-
sumptions of Corollary 8.

Let

(mA,MA)∩ [mi,Mi] = /0 for i = 1, . . . ,n, and m < M

be valid, where mA and MA , mA � MA , are the bounds of A = ∑n
i=1 Φi(Ai) and

m = max{Mi : Mi � mA, i ∈ {1, . . . ,n}} , M = min{mi : mi � MA, i ∈ {1, . . . ,n}} .

If ψ is convex, ψ−1 is operator monotone, ϕ is concave, ϕ−1 is operator mono-
tone, then

Mϕ(A,�,n) � ϕ−1
(

∑n
i=1 Φi (ϕ(Ai))+ δϕ Ã

)
� MI (A,�,n)

� ψ−1
(

∑n
i=1 Φi (ψ(Ai))− δψA

)
� Mψ(A,�,n)

(3.10)

holds, where

δϕ = 2ϕ
(

m+M
2

)
−ϕ(m)−ϕ(M) � 0, δψ = ψ(m)+ ψ(M)−2ψ

(
m+M

2

)
� 0,

Ã = 1
21K − 1

M−m

∣∣∣A− m+M
2 1K

∣∣∣ , A = 1
21K − 1

M−m

∣∣∣∣A− m+M
2 1K

∣∣∣∣
and m,m ∈ [m,mA] , M,M ∈ [MA,M] , m < M, m < M are arbitrary numbers.

If ψ is convex, −ψ−1 is operator monotone, ϕ is concave, −ϕ−1 is operator
monotone, then the reverse inequality is valid in (3.10).

Proof. We only prove (3.10). By replacing ϕ by I and next ψ by ϕ in Theo-
rem 7 (ii’) we obtain LHS of (3.10). Also, by replacing ϕ by I in Theorem 7 (i) we
obtain RHS of (3.10). �
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4. Application to the power mean

As an application of results given in the above section we study a refinement of
inequalities among power means.

As a special case of the quasi-arithmetic mean (1.4) we can study the operator
power mean

M
[r]
n (A,�) =

{
(∑n

i=1 Φi (Ar
i ))

1/r , r ∈ R\{0},
exp(∑n

i=1 Φi (ln(Ai))) , r = 0,
(4.1)

where (A1, . . . ,An) is an n− tuple of strictly positive operators in B(H) and (Φ1, . . . ,Φn)
is an n− tuple of positive linear mappings Φi : B(H)→B(K) such that ∑n

i=1 Φi(1H) =
1K .

For convenience we introduce denotations as a special case of (3.1) as follows

δr,s(m,M) =

⎧⎨⎩ms +Ms−2
(

mr+Mr

2

)s/r
, r �= 0,

ms +Ms−2(mM)s/2 , r = 0,

Ãr(m,M) =

⎧⎨⎩
1
21K − 1

|Mr−mr|
∣∣∣∑n

i=1 Φi(Ar
i )− Mr+mr

2 1K

∣∣∣ , r �= 0,

1
21K −| ln(M

m

) |−1
∣∣∑n

i=1 Φi(lnAi)− ln
√

Mm1K
∣∣ , r = 0,

(4.2)

where m,M ∈ R , 0 < m < M and r,s ∈ R , r � s . Of course, we include implicitly that
Ãr(m,M) ≡ Ãr,A(m,M) , where A = ∑n

i=1 Φi(Ar
i ) for r �= 0 and A = ∑n

i=1 Φi(lnAi) for
r = 0.

Applying Theorem 7 on the operator power means we obtain the following refine-
ment of inequalities among power means given in [3, Corollary 7].

COROLLARY 11. Let (A1, . . . ,An) and (Φ1, . . . ,Φn) be as in the definition of the
power mean (4.1). Let mi and Mi , 0 < mi � Mi be the bounds of Ai , i = 1, . . . ,n.

(i) If r � s, s � 1 or r � s � −1 ,(
m[r],M[r]

)
∩ [mi,Mi] = /0, i = 1, . . . ,n, and m < M,

where m[r] and M[r] , m[r] � M[r] are the bounds of M
[r]
n (A,�) and

m = max
{

Mi : Mi � m[r], i ∈ {1, . . . ,n}
}

, M = min
{

mi : mi � M[r], i ∈ {1, . . . ,n}
}

,

then

M
[r]
n (A,�) �

(
n

∑
i=1

Φi (As
i )− δr,sÃr

)1/s

� M
[s]
n (A,�), (4.3)
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holds, where δr,s � 0 for s � 1 , δr,s � 0 for s � −1 and Ãr � 0 . Here we assume that
δr,s ≡ δr,s(m,M) , Ãr ≡ Ãr(m,M) are defined by (4.2) and m ∈ [m,m[r]] , M ∈ [M[r],M] ,
m < M, are arbitrary numbers.

(ii) If r � s, r � −1 or 1 � r � s,(
m[s],M[s]

)
∩ [mi,Mi] = /0, i = 1, . . . ,n, and m < M,

where m[s] and M[s] , m[s] � M[s] are the bounds of M
[s]
n (A,�) and

m = max
{

Mi : Mi � m[s], i ∈ {1, . . . ,n}
}

, M = min
{

mi : mi � M[s], i ∈ {1, . . . ,n}
}

,

then

M
[r]
n (A,�) �

(
n

∑
i=1

Φi (Ar
i )− δs,rÃs

)1/r

� M
[s]
n (A,�),

holds, where δs,r � 0 for r � −1 , δs,r � 0 for r � 1 and Ãs � 0 . Here we assume that
δs,r ≡ δs,r(m,M) , Ãs ≡ Ãs(m,M) are defined by (4.2) and m ∈ [m,m[s]] , M ∈ [M[s],M] ,
m < M, are arbitrary numbers.

Proof. We prove only the case (i). We put ϕ(t) = tr and ψ(t) = ts for t > 0.
Then ψ ◦ϕ−1(t) = ts/r is concave for r � s , s � 0 and r �= 0. Since −ψ−1(t) =

−t1/s is operator monotone for s �−1 and
(
m[r],M[r]

)
∩ [mi,Mi] = /0 is satisfied, then

by applying Theorem 7 (ii) we obtain (4.3) for r � s � −1.
But, ψ ◦ϕ−1(t) = ts/r is convex for r � s , s � 0 and r �= 0. Since ψ−1(t) = t1/s

is operator monotone for s � 1, then by applying Theorem 7 (i) we obtain (4.3) for
r � s , s � 1, r �= 0.

If r = 0 and s � 1, we put ϕ(t) = ln t and ψ(t) = ts , t > 0. Since ψ ◦ϕ−1(t) =
exp(st) is convex, then similarly as above we obtain the desired inequality.

In the case (ii) we put ϕ(t) = ts and ψ(t) = tr for t > 0 and we use the same
technique as in the case (i). �

Figure 2 shows regions (1), (2), (4), (6), (7) in where the monotonicity of the
power mean holds true [3, Corollary 6], also Figure 2 shows regions (1)–(7) which this
holds true with condition on spectra [3, Corollary 7]. We show in [3, Example 2] that
the order among power means does not hold generally without a condition on spectra
in regions (3), (5). Now, by using Corollary 11 we give a refinement of inequalities
among power means in the regions (2)–(6) (see Remark 13).

COROLLARY 12. Let (A1, . . . ,An) and (Φ1, . . . ,Φn) be as in the definition of the
power mean (4.1). Let mi and Mi , 0 < mi � Mi be the bounds of Ai , i = 1, . . . ,n. Let(

m[r],M[r]
)
∩ [mi,Mi] = /0, i = 1, . . . ,n, m[r] < M[r],(

m[s],M[s]
)
∩ [mi,Mi] = /0, i = 1, . . . ,n, m[s] < M[s],
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Figure 2: Regions describing inequalities among power means

where m[r] , M[r] , m[r] � M[r] and m[s] , M[s] , m[s] � M[s] are the bounds of M
[r]
n (A,�)

and M
[s]
n (A,�) , respectively, and

m[r] = max
{

Mi � m[r], i ∈ {1, . . . ,n}
}

, M[r] = min
{

mi � M[r], i ∈ {1, . . . ,n}
}

m[s] = max
{

Mi � m[s], i ∈ {1, . . . ,n}
}

, M[s] = min
{

mi � M[s], i ∈ {1, . . . ,n}
}

.

Let m ∈ [m[r],m
[r]] , M ∈ [M[r],M[r]] , m < M, and m ∈ [m[s],m

[s]] , M ∈ [M[s],M[s]] ,

m < M be arbitrary numbers.

(i) If r � 1 � s, then

M
[r]
n (A,�) � ∑n

i=1 Φi (Ai)− δr,1(m,M)Ãr(m,M) � M
[1]
n (A,�)

� ∑n
i=1 Φi (Ai)− δs,1(m,M)Ãs(m,M) � M

[s]
n (A,�)

(4.4)

holds, where δr,1(m,M) � 0 , Ãr(m,M) � 0 , δs,1(m,M) � 0 and Ãs(m,M) � 0 are
defined by (4.2).

(ii) Furthermore if r � −1 � s, then

M
[r]
n (A,�) �

(
∑n

i=1 Φi
(
A−1

i

)− δr,−1(m,M)Ãr(m,M)
)−1

� M
[−1]
n (A,�)

�
(

∑n
i=1 Φi

(
A−1

i

)− δs,−1(m,M)Ãs(m,M)
)−1

� M
[s]
n (A,�)

(4.5)

holds, where δr,−1(m,M) � 0 , Ãr(m,M) � 0 , δs,−1(m,M) � 0 and Ãs(m,M) � 0 are
defined by (4.2).
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(iii) Furthermore if r � −1 , s � 1 , then

M
[r]
n (A,�) �

(
∑n

i=1 Φi
(
A−1

i

)− δr,−1(m,M)Ãr(m,M)
)−1

� M
[−1]
n (A,�)

� M
[1]
n (A,�) � ∑n

i=1 Φi (Ai)− δs,1(m,M)Ãs(m,M)
� M

[s]
n (A,�)

(4.6)

holds, where δr,−1(m,M)� 0 , Ãr(m,M)� 0 , δs,1(m,M)� 0 , Ãs(m,M)� 0 are defined
by (4.2).

Proof. We prove only (4.4). If r � 1, then putting s = 1 in Corollary 11 (i) we
get LHS of (4.4). Also, if s � 1, then putting r = 1 in Corollary 11 (ii) we get RHS of
(4.4). �

REMARK 13. Let the assumptions of Corollary 12 be valid. We get refinement of
inequalities among power means as follows.

If r � 1 � s , then

M
[r]
n (A,�) � M

[r]
n (A,�)+ δr,1(m,M)Ãr(m,M)− δs,1(m,M)Ãs(m,M)

� M
[s]
n (A,�).

If r � −1 � s , then

M
[r]
n (A,�) � M

[r]
n (A,�)+

(
∑n

i=1 Φi
(
A−1

i

)− δs,−1(m,M)Ãs(m,M)
)−1

−
(

∑n
i=1 Φi

(
A−1

i

)− δr,−1(m,M)Ãr(m,M)
)−1

� M
[s]
n (A,�).

If r � −1, s � 1, then

M
[r]
n (A,�) � M

[r]
n (A,�)+M

[1]
n (A,�)− δs,1(m,M)Ãs(m,M)

−
(

∑n
i=1 Φi

(
A−1

i

)− δr,−1(m,M)Ãr(m,M)
)−1

� M
[s]
n (A,�).
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