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Abstract. Let G be a simple undirected connected graph on n vertices. Suppose that the vertices
of G are labelled 1,2, . . . ,n. Let di be the degree of the vertex i. The Randić matrix of G ,
denoted by R, is the n× n matrix whose (i, j)−entry is 1√

did j
if the vertices i and j are

adjacent and 0 otherwise. The normalized Laplacian matrix of G is L = I−R, where I is the
n× n identity matrix. In this paper, by using an upper bound on the maximum modulus of the
subdominant Randić eigenvalues of G , we obtain an upper bound on the largest eigenvalue of
L . We also obtain an upper bound on the largest modulus of the negative Randić eigenvalues
and, from this bound, we improve the previous upper bound on the largest eigenvalue of L .

1. Introduction

Let G = (V,E) be a simple undirected graph on n vertices. Some matrices on G
are the adjacency matrix A, the Laplacian matrix L = D−A and the signless Laplacian
matrix Q = D+L, where D is the diagonal matrix of vertex degrees. It is well known
that L and Q are positive semidefinite matrices and that (0,1) is an eigenpair of L
where 1 is the all ones vector. Fiedler [16] proved that G is a connected graph if and
only if the second smallest eigenvalue of L is positive. This eigenvalue is called the
algebraic connectivity of G . The signless Laplacian matrix has recently attracted the
attention of several researchers. Recent papers on this matrix are [5, 6, 7, 8, 9] and
some of its basic properties [6] are:

1. For a connected graph, the smallest eigenvalue of Q is equal to 0 if and only
if the graph is bipartite. In this case, 0 is a simple eigenvalue. Then, for a
connected graph, the smallest eigenvalue of Q is positive if and only if the graph
is not bipartite.

2. If G is a bipartite graph then Q and L have the same characteristic polynomial.
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Other matrices on the graph G are the normalized Laplacian matrix and the Randić
matrix of G . Suppose that the vertices of G are labelled 1,2, . . . ,n. Let di be the degree
of the vertex i. Let D− 1

2 be the diagonal matrix whose diagonal entries are

1√
d1

,
1√
d2

, . . . ,
1√
dn

whenever di �= 0. If di = 0 for some i then the corresponding diagonal entry of D− 1
2 is

defined to be 0. The normalized Laplacian matrix of G , denoted by L , was introduced
by F. Chung [15] as

L = D− 1
2 LD− 1

2 = I−D− 1
2 AD− 1

2 . (1)

The eigenvalues of L are called the normalized Laplacian eigenvalues of G .
From (1) , we have

D
1
2 L D

1
2 = D−A = L

and thus
D

1
2 L D

1
2 1 = L1 = 01.

Hence 0 is an eigenvalue of L with eigenvector D
1
2 1.

We recall the following results on L [15] :

1. The eigenvalues of L lie in the interval [0,2] .

2. 0 is a simple eigenvalue of L if and only if G is connected.

3. 2 is an eigenvalue of L if and only if a connected component of G is bipartite
and nontrivial.

Among papers on L , we mention [10, 11, 13, 14] and [17].
From now on, we assume that G is connected graph. Then di > 0 for all i . The

notation i∼ j means that the vertices i and j are adjacent. The matrix R = D− 1
2 AD− 1

2

in (1) is the Randić matrix of G in which the (i, j)-entry is 1√
did j

if i ∼ j and 0

otherwise. Moreover
I−L = R.

The eigenvalues of R are called the Randić eigenvalues of G . Clearly L and R are
both real symmetric matrices. The Randić matrix was earlier studied in connection with
the Randić index [1, 2, 18] and [19]. Two recent papers on the Randić matrix are [3]
and [4].

Throughout this paper

0 = λn � λn−1 � . . . � λ1

and
ρn � ρn−1 � . . . � ρ1
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are the normalized Laplacian eigenvalues and the Randić eigenvalues of G , respec-
tively. It follows that

λi = 1−ρn−i+1 (1 � i � n) .

If M is a nonnegative matrix then, by the Perron-Frobenius Theorem, M has
an eigenvalue equal to its spectral radius, called the Perron root of M. In addition,
if M is irreducible then the Perron root of M is a simple eigenvalue with a corre-
sponding positive eigenvector, called the Perron vector of M. Since G is a connected
graph, Randić matrix of G is a irreducible nonnegative matrix. Let v = D

1
2 1. Then

v =
[√

d1,
√

d2, . . . ,
√

dn
]T

. An easy computation shows that

Rv = v.

Hence, 1 and v are the Perron root and the Perron vector of R, respectively.
Let Δ and δ be the largest and smallest vertex degrees of G , respectively, and let

qn be the smallest eigenvalue of Q .
A recent result involving the largest eigenvalue of L and the smallest eigenvalue

of Q is

THEOREM 1. [17] Let G be a connected graph. Then

2− qn

δ
� λ1 � 2− qn

Δ
. (2)

We may consider 2− qn
Δ as an upper bound on λ1. Observe that 2− qn

Δ = 2 if and
only if G is a bipartite graph.

In this paper, we search for a new upper bound on λ1 not exceeding the trivial
upper bound 2.

2. Searching for an upper bound on λ1

Since ∑n
i=1 ρi = tr (R) = 0, it follows that ρn < 0. We have

λ1 = 1−ρn = 1+ |ρn| .

In order to find an upper bound on λ1 not exceeding 2, we look for an upper bound on
|ρn| not exceeding 1.

An eigenvalue of a nonnegative matrix M which is different from the Perron root
is called a subdominant eigenvalue of M. Let ξ (M) be the maximum modulus of
the subdominant eigenvalues of M. Special attention has been devoted to find upper
bounds on ξ (M) . In [20], we can find a unified presentation of results concerning
upper bounds on ξ (M) . These upper bounds are important because ξ (M) plays a
major role in convergence properties of powers of M. Since

λ1 � 1+ ξ (R) , (3)

we focus our attention on upper bounds on ξ (R) . We recall the result [12, p. 295] :
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THEOREM 2. If M = (mi, j) � 0 of order n×n has a positive eigenvector

w = [w1,w2, . . . ,wn]T

corresponding to the spectral radius ρ (M) of M then

ξ (M) � 1
2

max
i< j

n

∑
k=1

wk

∣∣∣∣mi,k

wi
− mj,k

wj

∣∣∣∣ .
where the maximum is taken over all pairs (i, j) , 1 � i < j � n.

In order to apply Theorem 2, it is convenient to observe that the Randić matrix of
G is diagonally similar to the row stochastic matrix

S = D− 1
2 RD

1
2 . (4)

The following lemma gives some immediate properties of S.

LEMMA 1. 1. The (i, j)−entry of S is 1
di

if j ∼ i and 0 otherwise.
2. S1 = 1 where 1 is the all ones vector.
3. u is an eigenvector for R corresponding to the eigenvalue α if and only if

D− 1
2 u is an eigenvector for S corresponding to the eigenvalue α.
4. If G is an r−regular graph then S = R.

Let Ni be the set of neighbours of the vertex vi and let |Ni| be the cardinality of
Ni.

THEOREM 3. Let G be a simple undirected connected graph. If λ1 is the largest
eigenvalue of L then

|λ1| � 2−min
i< j

{ ∣∣Ni ∩Nj
∣∣

max
{
di,d j

}
}

(5)

where the minimum is taken over all pairs (i, j) , 1 � i < j � n.

Proof. We know that the Randić matrix of G is similar to the row stochastic matrix
S defined in (4) . Then ξ (R) = ξ (S) . The eigenvector corresponding to the spectral
of S is w = 1 . Applying Theorem 2 to S = (si, j) , we have

ξ (S) � 1
2

max
i< j

n

∑
k=1

∣∣si,k − s j,k

∣∣
=

1
2

max
i< j

(
∑

k∈Ni−Nj

1
di

+ ∑
k∈Nj−Ni

1
d j

+ ∑
k∈Ni∩Nj

∣∣∣∣ 1di
− 1

d j

∣∣∣∣
)

=
1
2

max
i< j

(∣∣Ni −Nj
∣∣

di
+

∣∣Nj −Ni
∣∣

d j
+ ∑

k∈Ni∩Nj

∣∣∣∣ 1di
− 1

d j

∣∣∣∣
)

=
1
2

max
i< j

(
2−

∣∣Ni ∩Nj
∣∣

di
−
∣∣Nj ∩Ni

∣∣
d j

+ ∑
k∈Ni∩Nj

∣∣∣∣ 1di
− 1

d j

∣∣∣∣
)

.
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Suppose di = max
{
di,d j

}
. In this case

2−
∣∣Ni ∩Nj

∣∣
di

−
∣∣Nj ∩Ni

∣∣
d j

+ ∑
k∈Ni∩Nj

∣∣∣∣ 1di
− 1

d j

∣∣∣∣
= 2−

∣∣Ni ∩Nj
∣∣

di
−
∣∣Nj ∩Ni

∣∣
d j

+
(

1
d j

− 1
di

)
Ni ∩Nj

= 2− 2
∣∣Ni ∩Nj

∣∣
di

.

Similarly, if d j = max
{
di,d j

}
then

2−
∣∣Ni ∩Nj

∣∣
di

−
∣∣Nj ∩Ni

∣∣
d j

+ ∑
k∈Ni∩Nj

∣∣∣∣ 1di
− 1

d j

∣∣∣∣
= 2− 2

∣∣Nj ∩Ni
∣∣

d j
.

Hence

ξ (S) � 1
2

max
i< j

n

∑
k=1

∣∣si,k − s j,k
∣∣

=
1
2

max
i< j

{
2− 2

∣∣Nj ∩Ni
∣∣

max
{
di,d j

}
}

= 1−min
i< j

{ ∣∣Ni ∩Nj
∣∣

max
{
di,d j

}
}

Since λ1 � 1+ ξ (R) = 1+ ξ (S) , the upper bound in (5) follows. �

REMARK 1. If G is a bipartite graph then
∣∣Ni ∩Nj

∣∣ = 0, for some i < j, and
consequently the upper bound in (5) is equal to 2. This is sufficient condition but it is
not a necessary condition. In fact, there are other instances in which Ni ∩Nj = 0 for
some i < j. One of them is given by a nonbipartite graph having a bridge. However, if
mini< j

∣∣Ni ∩Nj
∣∣� 1 and qn < 1 then

2−min
i< j

{ ∣∣Ni ∩Nj
∣∣

max
{
di,d j

}
}

< 2− qn

Δ
. (6)

In fact
qn < 1 �

∣∣Ni ∩Nj
∣∣ for i < j

and
qn

Δ
� 1

max
{
di,d j

} for i < j.
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Then
qn

Δ
<

∣∣Ni ∩Nj
∣∣

max
{
di,d j

} for i < j.

It follows

2− qn

Δ
> 2−min

i< j

∣∣Ni ∩Nj
∣∣

max
{
di,d j

} .

Hence, if mini< j
∣∣Ni ∩Nj

∣∣ � 1 and qn < 1 then (5) gives a better upper bound for λ1

than the second inequality in (2) does.

3. Improving the upper bound on λ1

We have
λ1 = u1+ |qn| � 1+ ξ (R) = 1+ ξ (S) .

The upper bound on λ1 in (5) was obtained by using an upper bound on ξ (R) . In this
section, in order to get an improved upper bound on λ1 , we search for an upper bound
on |qn| , that is, on the largest modulus of the negative Randić eigenvalues.

THEOREM 4. Let G be a simple undirected connected graph. If ρn is eigenvalue
with the largest modulus among the negative Randić eigenvalues of G then

|ρn| � 1−min
i∼ j

{ ∣∣Ni ∩Nj
∣∣

max
{
di,d j

}
}

where the minimum is taken over all pairs (i, j) , 1 � i < j � n, such that the vertices i
and j are adjacent .

Proof. Let ρn be the largest modulus of the negative Randić eigenvalues of G .
Let

x = [x1,x2, . . . ,xn]T

be such that
Sx = ρnx. (7)

From Lemma 1, we have x =D− 1
2 u where Ru = ρnu. Since u is orthogonal to the Per-

ron vector v =
[√

d1,
√

d2, . . . ,
√

dn
]T

, the vector u has at least one positive component

and at least one negative component. Since x =D− 1
2 u , this is also true for the vector x.

Let
max{x1,x2, . . . ,xn} = xi

and let
x j = min{xk : k ∼ i} .

Since x has at least one positive component, xi > 0. Let S = (si, j) . From (7)

ρnx j =
n

∑
k=1

s j,kxk =
1
d j

∑
k∈Nj

xk (8)
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and

ρnxi =
n

∑
k=1

si,kxk =
1
di

∑
k∈Ni

xk. (9)

Subtracting (9) from (8) , we get

ρn (x j − xi) =
1
d j

∑
k∈Nj

xk − 1
di

∑
k∼i

xk.

Then

qn (x j − xi) (10)

=
1
d j

∑
k∈Nj−Ni

xk +
1
d j

∑
k∈Nj∩Ni

xk − 1
di

∑
k∈Ni−Nj

xk − 1
di

∑
k∈Nj∩Ni

xk.

By definition, x j � xk for all k ∼ i and xk � xi for all k . Hence

∑
k∈Nj−Ni

xk �
∣∣Nj −Ni

∣∣xi (11)

and

− ∑
k∈Ni−Nj

xk � − ∣∣Ni −Nj
∣∣x j. (12)

Replacing the inequalities (11) and (12) in (10) , we obtain

qn (x j − xi)

� 1
d j

∣∣Nj −Ni
∣∣xi − 1

di
|Ni −Ni|x j + ∑

k∈Nj∩Ni

(
1
d j

− 1
di

)
xk.

Thus

qn (x j − xi) � 1
2

1
d j

∣∣Nj −Ni
∣∣(xi− x j)+

1
2

1
di

∣∣Ni −Nj
∣∣(xi − x j)

+
1
2

(
1
d j

∣∣Nj −Ni
∣∣− 1

di

∣∣Ni −Nj
∣∣)(xi + x j)

+ ∑
k∈Ni∩Nj

(
1
d j

− 1
di

)
xk.

Clearly

1
d j

∣∣Nj −Ni
∣∣− 1

di

∣∣Ni −Nj
∣∣= ( 1

di
− 1

d j

)∣∣Ni ∩Nj
∣∣ .
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Hence

ρn (x j − xi) � 1
2

1
d j

∣∣Nj −Ni
∣∣(xi− x j)+

1
2

1
di

∣∣Ni −Nj
∣∣(xi − x j)

+
1
2

(
1
di

− 1
d j

)∣∣Ni ∩Nj
∣∣(xi + x j)+

1
2 ∑

k∈Ni∩Nj

(
1
d j

− 1
di

)
(xk + xk)

=
1
2

1
d j

∣∣Nj −Ni
∣∣(xi− x j)+

1
2

1
di

∣∣Ni −Nj
∣∣(xi − x j)

+
1
2 ∑

k∈Ni∩Nj

(
1
di

− 1
d j

)
(xi− xk + x j − xk) .

Moreover

∑
k∈Ni∩Nj

(
1
di

− 1
d j

)
(xi − xk + x j − xk)

� ∑
k∈Ni∩Nj

∣∣∣∣ 1di
− 1

d j

∣∣∣∣(xi − xk)+ ∑
k∈Ni∩Nj

∣∣∣∣ 1di
− 1

d j

∣∣∣∣(xk − x j)

= ∑
k∈Ni∩Nj

∣∣∣∣ 1di
− 1

d j

∣∣∣∣(xi − x j) .

Therefore

ρn (x j − xi) � 1
2

1
d j

∣∣Nj −Ni
∣∣(xi− x j)+

1
2

1
di

∣∣Ni −Nj
∣∣(xi − x j) (13)

+
1
2 ∑

k∈Ni∩Nj

∣∣∣∣ 1di
− 1

d j

∣∣∣∣(xi − x j) .

If x j = xi then xk = xi for all k ∼ i. Consequently, from Sx = ρnx, we have

qnxi = ∑
k∈Ni

1
di

xk =
1
di

∑
k∈Ni

xi =
xi

di
di = xi.

Thus ρn = 1, which is a contradiction. Hence xi− x j > 0. Dividing both sides of (13)
by (xi − x j) , we obtain

−ρn � 1
2

1
d j

∣∣Nj −Ni
∣∣+ 1

2
1
di

∣∣Ni −Nj
∣∣+ 1

2 ∑
k∈Ni∩Nj

∣∣∣∣ 1di
− 1

d j

∣∣∣∣ . (14)

As in the proof of Theorem 3, we get

1
2

1
d j

∣∣Nj −Ni
∣∣+ 1

2
1
di

∣∣Ni −Nj
∣∣+ 1

2 ∑
k∈Ni∩Nj

∣∣∣∣ 1di
− 1

d j

∣∣∣∣
= 1−

∣∣Ni ∩Nj
∣∣

max
{
di,d j

} .
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Consequently

|ρn| � 1−
∣∣Ni ∩Nj

∣∣
max

{
di,d j

} .

Observe that the vertices vi and v j are adjacent. Hence

|ρn| � max
i∼ j

{
1−

∣∣Ni ∩Nj
∣∣

max
{
di,d j

}
}

= 1−min
i∼ j

{ ∣∣Ni ∩Nj
∣∣

max
{
di,d j

}
}

.

The proof is complete. �
Finally, we have

THEOREM 5. Let G be a simple undirected connected graph. If λ1 is the largest
normalized Laplacian eigenvalue of G then

λ1 � 2−min
i∼ j

{ ∣∣Ni ∩Nj
∣∣

max
{
di,d j

}
}

where the minimum is taken over all pairs (i, j) , 1 � i < j � n, such that the vertices i
and j are adjacent.

Proof. Since λ1 = 1−ρn = 1+ |ρn| , the proof is immediate using the upper bound
on |ρn| given by Theorem 4. �

EXAMPLE 1. G :

1 2

3 4

5 6

Let

b(i, j) =

∣∣Ni ∩Nj
∣∣

max
{
di,d j

}
For this graph

b(1,2) =
1
2

b(1,3) = b(2,3) = b(3,4) = b(3,5) =
1
5
, b(3,6) =

2
5

b(4,6) = b(5,6) =
1
3
.

Then mini∼ j b(i, j) = 1
5 . Hence the largest modulus of the negative Randić eigenvalues

is bounded above by 4
5 and the largest normalized Laplacian eigenvalue is bounded

above by 9
5 = 1.8. To four decimal places the smallest signless Laplacian eigenvalue of

G is 0.7411. Since Δ = 5, the upper bound in (2) becomes 2− 0.7411
5 = 1.8518.
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[6] D. CVETKOVIĆ, P. ROWLINSON, S. K. SIMIĆ, Signless Laplacian of finite graphs, Linear Algebra
Appl. 423 (2007) 155–171.
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[19] J. A. RODRÍGUEZ, J. M. SIGARRETA, On the Randić index and conditional parameters of a graph,

MATCH Commun. Math. Comput. Chem. 54 (2005) 403–416.
[20] U. G. ROTHBLUM, C. P. TAN, Upper Bounds on the Maximum Modulus of Subdominant Eigenvalues

of Nonnegative Matrices, Linear Algebra Appl. 66 (1985) 45–86.

(Received November 19, 2011) Oscar Rojo
Department of Mathematics

Universidad Católica del Norte
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