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Abstract. Let ¢ be a simple undirected connected graph on n vertices. Suppose that the vertices
of & are labelled 1,2,...,n. Let d; be the degree of the vertex i. The Randi¢ matrix of ¢,

denoted by R, is the n x n matrix whose (i, j)—entry is i!d if the vertices i and j are
idj

adjacent and O otherwise. The normalized Laplacian matrix of ¢ is . =1 — R, where [ is the
n X n identity matrix. In this paper, by using an upper bound on the maximum modulus of the
subdominant Randi¢ eigenvalues of ¢, we obtain an upper bound on the largest eigenvalue of
. We also obtain an upper bound on the largest modulus of the negative Randi¢ eigenvalues
and, from this bound, we improve the previous upper bound on the largest eigenvalue of .Z.

1. Introduction

Let 4 = (V,E) be a simple undirected graph on n vertices. Some matrices on ¢
are the adjacency matrix A, the Laplacian matrix L =D — A and the signless Laplacian
matrix Q = D+ L, where D is the diagonal matrix of vertex degrees. It is well known
that L and Q are positive semidefinite matrices and that (0,1) is an eigenpair of L
where 1 is the all ones vector. Fiedler [16] proved that ¢ is a connected graph if and
only if the second smallest eigenvalue of L is positive. This eigenvalue is called the
algebraic connectivity of & . The signless Laplacian matrix has recently attracted the
attention of several researchers. Recent papers on this matrix are [5, 6, 7, 8, 9] and
some of its basic properties [6] are:

1. For a connected graph, the smallest eigenvalue of Q is equal to O if and only
if the graph is bipartite. In this case, 0 is a simple eigenvalue. Then, for a
connected graph, the smallest eigenvalue of Q is positive if and only if the graph
is not bipartite.

2. If ¢ is a bipartite graph then Q and L have the same characteristic polynomial.
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Other matrices on the graph ¢ are the normalized Laplacian matrix and the Randié¢
matrix of . Suppose that the vertices of ¢ are labelled 1,2,...,n. Let d; be the degree

1 . . . .
of the vertex i. Let D™2 be the diagonal matrix whose diagonal entries are

1 1 1

N A

whenever d; # 0. If d; = 0 for some i then the corresponding diagonal entry of D7 is
defined to be 0. The normalized Laplacian matrix of ¢, denoted by ., was introduced
by F. Chung [15] as

L =D LD —1—D 2AD 2. (1)
The eigenvalues of £ are called the normalized Laplacian eigenvalues of ¥.
From (1), we have
1 1
D2¥D?=D—-A=L
and thus . .
D2.¥D21=1L11=01.

Hence 0 is an eigenvalue of . with eigenvector D1.
We recall the following results on . [15] :

1. The eigenvalues of .Z lie in the interval [0,2].
2. 0 is a simple eigenvalue of .Z if and only if ¢ is connected.

3. 2 is an eigenvalue of .Z if and only if a connected component of ¢ is bipartite
and nontrivial.

Among papers on ., we mention [10, 11, 13, 14] and [17].

From now on, we assume that ¢ is connected graph. Then d; > 0 for all i. The
notation i ~ j means that the vertices i and j are adjacent. The matrix R = D 2AD?
in (1) is the Randi¢ matrix of ¢ in which the (i, j)-entry is —— if i ~ j and 0

Vdidj

otherwise. Moreover
11— % =R.

The eigenvalues of R are called the Randi¢ eigenvalues of ¢ . Clearly . and R are
both real symmetric matrices. The Randi¢ matrix was earlier studied in connection with
the Randi¢ index [1, 2, 18] and [19]. Two recent papers on the Randi¢ matrix are [3]
and [4].

Throughout this paper

and
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are the normalized Laplacian eigenvalues and the Randi¢ eigenvalues of ¢, respec-
tively. It follows that
Ai: 1_pnfi+1 (1 <l<n)

If M is a nonnegative matrix then, by the Perron-Frobenius Theorem, M has
an eigenvalue equal to its spectral radius, called the Perron root of M. In addition,
if M is irreducible then the Perron root of M is a simple eigenvalue with a corre-
sponding positive eigenvector, called the Perron vector of M. Since ¢ is a connected
graph, Randi¢ matrix of ¢ is a irreducible nonnegative matrix. Let v = D?1. Then

v=[Vdi,Vdy,...,\/d, N easy computation shows that
Rv=yv.

Hence, 1 and v are the Perron root and the Perron vector of R, respectively.

Let A and & be the largest and smallest vertex degrees of ¢, respectively, and let
gn be the smallest eigenvalue of Q.

A recent result involving the largest eigenvalue of .Z and the smallest eigenvalue
of Q is

THEOREM 1. [17] Let 4 be a connected graph. Then

qn qn
2— = <M <2——. 2
5 1 A (2)
We may consider 2 — qK" as an upper bound on A;. Observe that 2 — qK" =2 if and
only if ¢ is a bipartite graph.
In this paper, we search for a new upper bound on A; not exceeding the trivial
upper bound 2.

2. Searching for an upper bound on A,
Since Y7 | pi =tr(R) =0, it follows that p, < 0. We have
M =1=pp=1+|pal.

In order to find an upper bound on A; not exceeding 2, we look for an upper bound on
|px| not exceeding 1.

An eigenvalue of a nonnegative matrix M which is different from the Perron root
is called a subdominant eigenvalue of M. Let & (M) be the maximum modulus of
the subdominant eigenvalues of M. Special attention has been devoted to find upper
bounds on & (M). In [20], we can find a unified presentation of results concerning
upper bounds on & (M). These upper bounds are important because & (M) plays a
major role in convergence properties of powers of M. Since

M <1+E(R), 3)

we focus our attention on upper bounds on & (R). We recall the result [12, p. 295] :
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THEOREM 2. If M = (m; j) > 0 of order n X n has a positive eigenvector
T
W= [Wl,Wz,... ,wn}

corresponding to the spectral radius p (M ) of M then

wi Wi
where the maximum is taken over all pairs (i,j), I<i<j<n

In order to apply Theorem 2, it is convenient to observe that the Randi¢ matrix of
¢ is diagonally similar to the row stochastic matrix

S=D IRD?. )
The following lemma gives some immediate properties of S.
LEMMA 1. 1. The (i,j)—entry of S is dll_ifj ~ 1 and O otherwise.
2. S1 =1 where 1 is the all ones vector.

3. u is an eigenvector for R corresponding to the eigenvalue o if and only if

D~ 7w is an eigenvector for S corresponding to the eigenvalue o.
4. If 9 is an r—regular graph then S = R.

Let N; be the set of neighbours of the vertex v; and let |N;| be the cardinality of
N;.

THEOREM 3. Let ¢4 be a simple undirected connected graph. If Ay is the largest
eigenvalue of £ then
N;iNN;
A1 <2 —min o] (5)
i<j | max {di,dj}
where the minimum is taken over all pairs (i,]), 1 <i<j<n
Proof. We know that the Randié matrix of ¢ is similar to the row stochastic matrix

S defined in (4). Then & (R) = &£ (S). The eigenvector corresponding to the spectral
of S is w=1. Applying Theorem 2 to S = (s; ;) , we have

E(S) < EryijElSzk—sfk’
= 5max (2 it i )
(B 5 (12
(o g s )
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Suppose d; = max {di,dj} . In this case

o NN NN 1
di dj kEN;NN; di d;
L, NN NN
=2 i d +<d_j_d_i>NmNj
. 2|NinNj|
_Z—T.
Similarly, if d; = max {d,-,d ,'} then
o NN NN 1
di di e, 14 d;
2|N;NN;|
=2-—L
dj

Hence

e
“
n

2 i<j —

1ma 2— 72|ijNi|
2 i<JX max{di,dj}

| NN
1 —min{ ————
i<j max{di7dj}

1 n
—max 2 |si7k _sj,k|
1

Since A} < 1+ & (R)=1+E&(S), the upper bound in (5) follows. O

327

REMARK 1. If ¢ is a bipartite graph then }N,ﬂNJ-} =0, for some i < j, and
consequently the upper bound in (5) is equal to 2. This is sufficient condition but it is
not a necessary condition. In fact, there are other instances in which N;NN; =0 for
some i < j. One of them is given by a nonbipartite graph having a bridge. However, if

min;<; [N;\N;j| > 1 and g, < 1 then

2—min{M} <21

i<j | max{d;,d;} A

In fact
gn <1< |N,-ﬂNj| fori<j

and
qn 1

1 . )
A X max{d,-,d,»} for i <]

(6)
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Then
. N;NN;

dn < M fori < j.

A max { di,d ,'}
It follows

N;NN;
2 g g NN
A i<j max{di7dj}

Hence, if min;; }N,- NN j} >1 and g, < 1 then (5) gives a better upper bound for A4,
than the second inequality in (2) does.

3. Improving the upper bound on A,

We have
A =ul+|g,| <1+E(R)=1+&(S).
The upper bound on A, in (5) was obtained by using an upper bound on & (R). In this

section, in order to get an improved upper bound on A;, we search for an upper bound
on |qn|, that is, on the largest modulus of the negative Randi¢ eigenvalues.

THEOREM 4. Let ¢ be a simple undirected connected graph. If py is eigenvalue
with the largest modulus among the negative Randi¢ eigenvalues of 4 then

[N | }

<1—mind 2 1
lpa| <1 mm{max{dhdj}

i~j

where the minimum is taken over all pairs (i, j), 1 <i< j < n, such that the vertices i
and j are adjacent.

Proof. Let p, be the largest modulus of the negative Randi¢ eigenvalues of ¢ .
Let

T
X = [X[,X2,...,Xn]
be such that
SX = p,X. (7
1 . .
From Lemma 1, we have x =D~ 2u where Ru = p,u. Since u is orthogonal to the Per-
T .
ron vector v = [\/dl ,Vdo,...,\/dy| , the vector u has at least one positive component

. . 1 .
and at least one negative component. Since X =D~ 2u, this is also true for the vector x.
Let

max {x;,X2,..., Xy} =X;

and let
xj=min{x; 1k~ i}.

Since x has at least one positive component, x; > 0. Let S = (s; ;) . From (7)

“ 1
PnXj= Y. Sjkk=— D X 3)
k=1 dj

J keN;
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and

PnXi = Y, Si X = 2 X- )
k=1

di kEN;

Subtracting (9) from (8), we get

Pu (x Exk__zxk

dj keN; di (=i
Then
qn (xj — x;) (10)

1
2 xk—l—E 2 xk—— 2 xk—g 2 X

J keN;nI; i yenin; i keN;NN;

By definition, x; < x; for all Kk ~ i and x; < x; for all k. Hence

Z X < }N N|xl (11)
kEN —N;

and
— Y x<—|N;—Nj|x;. (12)
keNN

Replacing the inequalities (11) and (12) in (10), we obtain

qn( | — Xi)
1 1
< d—j’Nj—Ni|xi ‘N N|x]+k€N2HN (E—E)xk.
Thus
11
an o5 =5) < 3 =N =)+ 55 = =)
1/1
+3 j}Nj—Ni|_zi}Ni—Nj} (xi +x;)
1 1
+ — = — | %
kE[%WN_,‘ <dj dt) k
Clearly

1 I 1

4 }N,-—Ni|—d—l_ [Ni = Nj| = (E_d_) [NiON; |-
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Hence
11
P (xXj—xi) < §g|N/’—Ni’(xi—xj |N Nj| (xi —x))
J
1 (1 ) 1 1 1
+o |- INiON; | (xi+x)+5 Y (———) (X +xx)
2\d; d; ZkeMmNj dj d;
11 11
= 5d—j|N,—1\’,-}(x,- x1)+§gi|Nt Nj| (xi —x;)
+1 (1 1 ) ( n )
= —_—— Xi =Xk T Xj — Xk
2 yenmw; \di d;
Moreover
(1 1 ) ( n )
—_—— Xi =Xk T Xj — X
ke, \di d;
1 1 1
< ———|xi—x)+ Y |5—=|—x))
kEN,NN di dj kEN;NN dj
1 1
- 3 o7 w-x
keN;NN dj
Therefore
11 11
P () = Xi) < Ed—j}N,—Ni|(xi )3 |Ni = Nj| (xi —x;) (13)
1 1 1
I A )
2keN,—mN, i dj

If x; = x; then x; = x; for all k ~ i. Consequently, from Sx = p,x, we have
qnXi = Z Exk Z Xi = — i = Xj.
kEN; di kEN; di

Thus p, = 1, which is a contradiction. Hence x; —x; > 0. Dividing both sides of (13)
by (x; —x;), we obtain

11 1 1 1
—pn < 5= |N; Ny+ |Ni—N,-’+— Y |- (14)
Zd ZkGNiﬁNj d d]
As in the proof of Theorem 3, we get
11 11 1 1 1
- N_N - N_N — -
2dj| ! l}+2di| l szkeI%Wj didj

_ ’NiﬁNj’
max{d,-,dj}'
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Consequently
[Ni ;|
max {di, d j} ’
Observe that the vertices v; and v; are adjacent. Hence

|pn] < max 1_M — 1 —min M
nl X i~ maX{d[,dj} l‘~j maX{di,dj} .

The proof is complete. [

lpa] <1

Finally, we have

THEOREM 5. Let &4 be a simple undirected connected graph. If Ay is the largest
normalized Laplacian eigenvalue of 4 then

Al <2—min{M}

i~j | max {d;,d;}

where the minimum is taken over all pairs (i,j), 1 <i< j < n, such that the vertices i
and j are adjacent.

Proof. Since A1 =1—p, = 1+|py|, the proof is immediate using the upper bound
on |p,| given by Theorem 4. [

EXAMPLE 1. ¥:

5 6
3 4
1 2
Let
N;iNN;
b(i7]): | J’
max{di,dj}
For this graph
1
b(1,2) ==
(1,2) = 3
1 2
b(173):b(273):b(3,4):b(375):g,b(376)=§
1
b(4,6):b(5,6):§.

Then min;~ ;b (i, j) = 5. Hence the largest modulus of the negative Randi¢ eigenvalues
is bounded above by z and the largest normalized Laplacian eigenvalue is bounded
above by % = 1.8. To four decimal places the smallest signless Laplacian eigenvalue of
@ is 0.7411. Since A =5, the upper bound in (2) becomes 2 — 2211 = 1.8518.

[N
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