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AN ORTHOGONALITY PROPERTY FOR REAL SYMMETRIC MATRIX

POLYNOMIALS WITH APPLICATION TO THE INVERSE PROBLEM

PETER LANCASTER, UWE PRELLS AND ION ZABALLA

Abstract. An orthogonality property common to a broad class of real symmetric matrix polyno-
mials is developed generalizing earlier results concerning polynomials of second degree. This
property is obtained with the help of canonical forms expressed in terms of a triple of real ma-
trices (even though there may be complex spectrum) and it is used in the solution of an inverse
spectral problem. The distribution of eigenvalues on the real line is discussed and earlier re-
sults for quadratic polynomials are generalized, in which the inertias of coefficient matrices are
expressed in terms of the canonical forms.
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