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AN ORTHOGONALITY PROPERTY FOR REAL SYMMETRIC MATRIX

POLYNOMIALS WITH APPLICATION TO THE INVERSE PROBLEM

PETER LANCASTER, UWE PRELLS AND ION ZABALLA

(Communicated by L. Rodman)

Abstract. An orthogonality property common to a broad class of real symmetric matrix polyno-
mials is developed generalizing earlier results concerning polynomials of second degree. This
property is obtained with the help of canonical forms expressed in terms of a triple of real ma-
trices (even though there may be complex spectrum) and it is used in the solution of an inverse
spectral problem. The distribution of eigenvalues on the real line is discussed and earlier re-
sults for quadratic polynomials are generalized, in which the inertias of coefficient matrices are
expressed in terms of the canonical forms.

1. Introduction

We consider real selfadjoint matrix polynomials of any degree. With the exception
of Appendix A, it is assumed for simplicity that all eigenvalues are semisimple. The
main objective is a generalization of an orthogonality property originating in [15], and
developed in [10], for quadratic polynomials having positive definite leading coefficient
and no real eigenvalues. See also [9] for the (hyperbolic) quadratic case of all real
eigenvalues. This orthogonality property has also been studied recently by Al-Ammari
and Tisseur in [1] for general quadratic matrix polynomials.

Here, a general nonsingular leading coefficient is admitted as well as mixed real/
non-real spectrum. We take advantage of the corresponding spectral theory of selfad-
joint matrix polynomials initiated by Gohberg, Lancaster, and Rodman in 1978 in [2],
continued in [4], [5], [7], and revisited more recently in [12]. We study n×n polyno-
mials of the form

L(λ ) = L�λ � +L�−1λ �−1 + · · ·+L1λ +L0, � � 1 (1)

with real and symmetric coefficients and det L� �= 0. The spectrum generally consists
of both real and non-real eigenvalues - the latter in conjugate pairs.

The notions of real selfadjoint Jordan triple and sign characteristic will play an
important role in our development. These are reviewed in Section 2, and in Section 3 a
specific real selfadjoint Jordan triple is constructed (see Theorem 1) that is well-suited
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to derivation of the orthogonality property. Theorem 10 of Appendix A also has a role
in this theory.

Section 4 contains the basic orthogonality results. It is shown in Theorem 2 that,
for n×n real symmetric matrix polynomials of even degree � = 2m , “half” of the spec-
tral data (eigenvalues, eigenvectors and sign characteristic) is determined by the other
“half” together with a real orthogonal matrix of size mn×mn . There is an analogous
statement for the case of polynomials of odd degree.

A discussion of our basic hypotheses in the context of more general complex sys-
tems appears in Section 5.

Section 6 provides an investigation of the orthogonal matrix mentioned above, and
characterizes admissible eigenvalue and sign characteristic distributions for symmetric
matrix polynomials of even degree, � = 2m . The main result is Theorem 5 in which a
connection is made between admissible canonical structures and certain mn×mn real
orthogonal matrices. It is known that, for Hermitian matrix polynomials with positive
definite leading coefficients, some restrictions apply to the spectral data (see Example
1.5 of [5]) and this idea is developed further in Theorem 7.

In Section 8 we focus on the important special case of the inverse quadratic eigen-
value problem, � = 2, and show how the general theory developed in Section 6 applies
in this important case. Proposition 8 shows how the inertias of the matrix coefficients
can be expressed in terms of a canonical triple. Corollary 9 demonstrates the role played
by n×n real orthogonal matrices in this construction.

In the case of real symmetric polynomials with L� > 0, a result of Gohberg, Lan-
caster, and Rodman [6] shows how to take advantage of conjugate complex symmetry
in the formulation of Jordan triples. A generalization to admit general nonsingular L�

is the subject of Appendix A

2. Canonical forms

An early comprehensive study of canonical structures for selfadjoint matrix poly-
nomials can be found in [6], but is confined to the case of positive definite leading
coefficient, L� . However, the theory in [7] is more general in that L� is to be invertible,
but may be indefinite. Furthermore, this degree of generality is maintained in the re-
cent survey [12]. This section provides a survey of necessary canonical forms for real
symmetric matrix polynomials of the form (1).

Briefly, this structure includes a complete summary of the eigenvalue/eigenvector
data for L(λ ) and the so-called “sign characteristic” of the real eigenvalues. Basic
references are [6, 7, 12].

Let F denote the field of either the real numbers or the complex numbers. Two
matrices X ∈ F

n×�n and T ∈ F
�n×�n form a “standard pair” if

C(X ,T ) =

⎡⎢⎢⎢⎣
X

XT
...

XT �−1

⎤⎥⎥⎥⎦ (2)
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is nonsingular and it is a standard pair for L(λ ) if, in addition,

L(X ,T ) := L�XT � + · · ·+L1XT +L0X = 0.

Then three matrices X ∈ Fn×�n, T ∈ F�n×�n and Y ∈ F�n×n are said to form a standard
triple if (X , T ) is a standard pair and

Y =

⎡⎢⎢⎢⎣
X

XT
...

XT �−1

⎤⎥⎥⎥⎦
−1 ⎡⎢⎢⎢⎣

0
...
0
Q

⎤⎥⎥⎥⎦ . (3)

for some nonsingular matrix Q ∈ Fn×n . If (X ,T ) is a standard pair for L(λ ) and (3)
holds with Q = L−1

� then (X ,T,Y ) is a standard triple for L(λ ) .
All standard triples for L(λ ) are similar in the sense that (X1,T1,Y1) and (X2,T2,Y2)

are standard triples for L(λ ) if and only if

(X2,T2,Y2) = (X1S,S−1T1S,S−1Y1)

for some invertible matrix S . In particular, if (X ,T,Y ) is a standard triple for L(λ )
then, by applying a similarity transformation, we can obtain a triple (XS,S−1TS,S−1Y )
with S−1TS in Jordan canonical form. Such a triple is called a Jordan triple for L(λ ) ,
the columns of XS are right Jordan chains of L(λ ) and the rows of S−1Y are left
Jordan chains. Thus, Jordan triples convey complete information about the eigen-
value/eigenvector data of L(λ ) .

Now, if L(λ ) is real symmetric (LT
i = Li , i = 0,1, . . . , �) or complex Hermitian

(L∗
i = Li , i = 0,1, . . . , �) then the non-real eigenvalues appear in conjugate pairs and the

relationship between the right and left Jordan chains is stronger than (3). It is related
to the sign characteristic as follows. Since L(λ ) = L�(λ ) (� = ∗ or T ), both (X ,T,Y )
and (Y �,T �,X�) are standard triples of L(λ ) . So there is an invertible matrix S such
that

Y � = XS, T � = S−1TS, X� = S−1Y. (4)

It turns out (see [6]) that such a matrix S is unique and that (see [12]) S is symmetric
or Hermitian according as L(λ ) is real symmetric or complex Hermitian, respectively.
Thus, (4) reduces to

Y � = XH, T � = H−1TH, (H� = H). (5)

Triples (X ,T,Y ) satisfying (5) are called selfadjoint standard triples when X , T and
Y are matrices with complex entries and � = ∗ (conjugate transposition). And if X , T
and Y are real matrices and � = T (transposition) then they are called real selfadjoint
standard triples. When T is in (real) Jordan form then they are called (real) selfadjoint
Jordan triples.

The general theory asserts (see [5, 12]), that if L(λ ) is complex Hermitian then
there is a selfadjoint Jordan triple (X ,J,Pε,JX∗) for L(λ ) for which:

J =
r⊕

j=1

Jl j (α j)
⊕ s⊕

k=1

[
Jmk(β k) 0

0 Jmk(βk)

]
, (6)
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and

Pε,J =
q⊕

j=1

ε jFl j

⊕ s⊕
k=1

F2mk , (7)

where

• α1, . . . ,αr are the (not necessarily distinct) real eigenvalues of L(λ ) with partial
multiplicities l1, . . . , lr ,

• (β1,β 1), . . . ,(βs,β s) are the (not necessarily distinct) pairs of non-real conjugate
eigenvalues of L(λ ) with partial multiplicities m1, . . . ,ms ,

• Jk(λ0) =

⎡⎢⎢⎢⎣
λ0

1 λ0
. . .

. . .
1 λ0

⎤⎥⎥⎥⎦ ∈ Fk×k , Fk =

⎡⎢⎢⎣
1

1
. .

.

1

⎤⎥⎥⎦ ∈ Fk×k , and

• ε1, . . . ,εq are each equal to either +1 or -1 and, together, they are known as the
sign characteristic of L(λ ) .

Furthermore, if L(λ ) is real and symmetric then there is a real selfadjoint Jordan
triple for L(λ ) of the form (X ,J,Pε,JXT ) where Pε,J is as in (7) and

J =
r⊕

j=1

Jl j(α j)
⊕ s⊕

k=1

K2mk (βk) (8)

is a matrix in real Jordan form with

Kj(β j) =

⎡⎢⎢⎢⎣
Uj

I2 Uj
. . .

. . .
I2 Uj

⎤⎥⎥⎥⎦ ∈ R
j× j, (9)

and

Uj =
[

μ j −ν j

ν j μ j

]
, β j = μ j + iν j, ν j > 0.

In both cases the columns of X and the rows of Pε,JX� (recall � = ∗ or T ) are real
or complex right and left Jordan chains, respectively, of L(λ ) according as this matrix
is real symmetric or complex Hermitian (see [12] for the notion of real Jordan chain of
non-real eigenvalues). In particular, if L(λ ) is a real symmetric matrix polynomial with
non-real eigenvalues, then it admits both real and complex Jordan forms and chains.
The relationship between them will be used in the next section and is explored further
in Appendix A.
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3. Convenient real canonical structures

As mentioned in the introduction, we will focus on semisimple real symmetric
matrix polynomials with nonsingular leading coefficents. If L(λ ) is such a matrix
function, the partial multiplicities of its eigenvalues are all equal to one. If 2s is the total
number of non-real eigenvalues (counting multiplicities) then the remaining n�− 2s
eigenvalues are real. Denote the signature of L� by δ , i.e. δ is the difference between
the number of positive and negative real eigenvalues of L� , so that −n � δ � n .

By Proposition 4.2 of [4], if the sign characteristic of L(λ ) associated with the
real eigenvalue λi (1 � i � n�−2s) is εi = ±1, it follows that

n�−2s

∑
i=1

εi =
{

0 if � is even,
δ if � is odd,

Now define χ to be 0 or 1 according as � is even or odd, respectively, and if q
is the number of real eigenvalues of negative type (negative sign characteristic), then
q+ χδ is the number of real eigenvalues of positive type (positive sign characteristic).
Thus, q � 0 and q+ χδ � 0 but it may happen that q+ χδ = 0 or q = 0.

Let r1, . . . ,rq+χδ be the real eigenvalues of positive type, rq+χδ+1, . . . ,r2q+χδ be
those of negative type and construct diagonal matrices of size q+ χδ and q :

R+ = Diag(r1, . . . ,rq+χδ ), R− = Diag(rq+χδ+1, . . . ,r2q+χδ ). (10)

Write the 2s conjugate pairs of eigenvalues as follows:

β j = μ j + iν j, β j+1 = β j = μ j − iν j (ν j > 0), j = 1,3, . . . ,2s−1.

The semisimple case of Theorem 10 of Appendix A implies that there is a (gener-
ally) complex Jordan triple for L(λ ) of the form (Xc, Jc, PcX∗

c ) where Xc ∈ Cn×n�,Jc ∈
Cn�×n�,Pc ∈ Rn�×n� and

Jc = Diag(R+,R−,β 1,β1, . . . ,β s,βs),

Pc = Diag

(
Iq+χδ ,−Iq,

[
0 1
1 0

]
, . . . ,

[
0 1
1 0

])
, (11)

Xc =
[
X+ X− u1− iv1 u1 + iv1 · · · us− ivs us + ivs

]
, (12)

and X+ ∈ Rn×(q+χδ ),X− ∈ Rn×q , u j,v j ∈ Rn×1 , j = 1, . . . ,s .
We are to transform such a triple to a real selfadjoint Jordan triple by applying a

suitable transformation as follows:

(Xc, Jc, PcX
∗
c ) → (XcÛ , Û∗JcÛ , Û∗PcX

∗
c ) =

(
XcÛ , Û∗JcÛ , (Û∗PcÛ)(XcÛ)∗

)
,

where Û is unitary.

First consider the primitive unitary matrix W = 1√
2

[
i 1
−i 1

]
and observe that, if

x = u+ iv , then [
u− iv u+ iv

]
W =

√
2
[
v u

]
.
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Also, if β = μ + iν ,

W ∗
[

β 0
0 β

]
W =

[
μ −ν
ν μ

]
, and W ∗

[
0 1
1 0

]
W =

[−1 0
0 1

]
.

By applying corresponding unitary transformations to the complex Jordan triple,
(Xc, Jc, PcX∗

c ) , one for each conjugate pair of non-real eigenvalues, we arrive at a real
Jordan triple defined by:

JR = Diag

(
R+, R−,

[
μ1 −ν1

ν1 μ1

]
, . . . ,

[
μs −νs

νs μs

])
,

PR = Diag(Iq+χδ ,−Iq,−1,+1, . . . ,−1,+1),

XR =
[
X+ X−

√
2v1

√
2u1 · · · √2vs

√
2us

]
.

Now apply the (unitary) permutation Π = Diag
(
I2q+χδ , P0

)
where

P0 =
[
e1 e3 e2 e4 · · · e2s

]
,

and, defining

M = Diag(μ1,μ3, . . . ,μ2s−1), N = Diag(ν1,ν3, . . . ,ν2s−1) > 0, (13)

we obtain the final real canonical forms:

J = ΠT JRΠ = Diag

(
R+,R−,

[
M −N
N M

])
∈ R

n�×n�, (14)

P = ΠT PRΠ = Diag
(
Iq+χδ ,−Iq,−Is, Is

) ∈ R
n�×n�, (15)

X = XRΠ =
[
X+ X− V U

] ∈ R
n×n�, (16)

where X+ ∈ Rn×(q+χδ ),X− ∈ Rn×q and

V =
√

2
[
v1 · · · vs

] ∈ R
n×s, U =

√
2
[
u1 · · · us

] ∈ R
n×s. (17)

Note the fundamental symmetry property, (JP)T = JP . This particular canonical
form has the advantage of making the inertia of P explicit.

Bearing in mind the results of Section 2 and, in particular, the definition (5) of a
real selfadjoint Jordan triple we have:

THEOREM 1. A semisimple real matrix polynomial of the form (1) with L� non-
singular has a real selfadjoint canonical triple (X , J, PXT ) where X , J, P have the
real canonical forms (16), (14), (15), respectively. Conversely, such a real canonical
triple uniquely defines a semisimple real selfadjoint matrix polynomial L(λ ) with L�

nonsingular.

The last part of the theorem is a straightforward consequence of Theorems 2.4 and
3.5 of [12].
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REMARK 1. We note that, for the real selfadjoint Jordan triple (X ,J,PXT ) of
Theorem 1, we have the following properties:

(i) The “moment conditions” hold (see (3)):

XJkPXT = 0, k = 0,1, . . . , �−2 (18)

and, furthermore, the leading coefficient is given by

XJ�−1PXT = L−1
� . (19)

Indeed, it is generally possible to express all the coefficients of L(λ ) in terms of
the moments.

(ii) More generally, when λ is not an eigenvalue of L(λ ) :

λ rL(λ )−1 =
{

XJr(Iλ − J)−1PXT , r = 0,1, . . . , �−1,

XJ�(Iλ I− J)−1PXT +L−1
� , r = �,

for all λ /∈ σ(L) , the spectrum of L(λ ) . The case r = 0 is known as the “resol-
vent form” (see [3], Corol. to Thm. 1).

(iii) When � (the degree of L(λ )) is odd (χ = 1) there are at least |δ | real eigenvalues
r j (see [4], Thm. 3.1).

REMARK 2. If J and P are matrices as in (14) and (15) and X satisfies (18)
and (19) then (X ,J,PXT ) is a real selfadjoint Jordan triple. In fact, C(X ,J) of (2) is
invertible because

C(X ,J)C(XP,JT )T =

⎡⎢⎢⎢⎣
0 · · · 0 L−1

�

0 · · · L−1
� �

... . .
. ...

...
L−1

� · · · � �

⎤⎥⎥⎥⎦
is invertible and (X ,J,PXT ) clearly satisfies (3) and (5).

EXAMPLE 1. To illustrate, consider the real matrix polynomial

L(λ ) :=
[

0 1
1 −1

]
λ 2 +

[
1 3
3 −5

]
λ +

[
1 2
2 −6

]
of [9], Example 4. The four eigenvalues are: a real eigenvalue -1 of positive type, a real
eigenvalue -2 of negative type, and a conjugate pair −2± i .

There is a complex Jordan triple:

Jc = Diag(−1,−2,−2− i,−2+ i),
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Pc =

⎡⎢⎢⎣
1 0 0 0
0 −1 0 0
0 0 0 1
0 0 1 0

⎤⎥⎥⎦ , Xc =

[
1 0 i√

2
− i√

2
0 1 1√

2
1√
2

]
.

It is found that, as required, XcPcX∗
c = 0 and

XcJcPcX
∗
c =

[
0 1
1 −1

]−1

.

In terms of the real canonical structures of (14), (15) and (16) we have:

J =

⎡⎢⎢⎣
−1 0 0 0
0 −2 0 0
0 0 −2 −1
0 0 1 −2

⎤⎥⎥⎦ , P =

⎡⎢⎢⎣
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎤⎥⎥⎦ ,

X =
[
X+ X− V U

]
=

[
1 0 −1 0
0 1 0 1

]
.

The moment condition (18) can be verified: XPXT = 0 and (as in (19))

XJPXT =
[

0 1
1 −1

]−1

.

4. An orthogonality property

Using the canonical forms (14) - (17), and for k = 0,1, . . . , �− 1, form n× 2s
matrices [

Vk Uk
]
:=

[
V U

][
M −N
N M

]k

(20)

and n× (q+ χδ + s) , n× (q+ s) matrices:

Ak :=
[
X+Rk

+ Uk
]
, Bk :=

[
X−Rk− Vk

]
, (21)

respectively. Then, with the definitions (14), (16) and (20),

XJk =
[
X+Rk

+ X−Rk− Vk Uk
] ∈ R

n×n�, (22)

and if � = 2m+ χ then the moment conditions of (18) can be written collectively as a
matrix product: ⎡⎢⎢⎢⎣

X
XJ
...

XJm+χ−1

⎤⎥⎥⎥⎦[
PXT JPXT · · · Jm−1PXT

]
= 0, (23)
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the zero matrix of size n(m+ χ)×nm . (Actually, this is the submatrix of B−1 on p. 34
of [5] formed by its first m+ χ block-rows and m block-columns.)

Notice now that, by definition of a selfadjoint standard triple (see (5)), PJP = JT .
Therefore JkP = P(JT )k and equation (23) takes the symmetric form⎡⎢⎢⎢⎣

X
XJ
...

XJm+χ−1

⎤⎥⎥⎥⎦P
[
XT JT XT · · · (JT )m−1XT

]
= 0. (24)

However, using (22) and the definition of (21) it follows that, for i = 0,1, . . . ,m+ χ −1
and k = 0,1, . . . ,m−1, the (i,k) block-entry of this matrix is:

XJiP(JT )kXT =
[
X+Ri

+ −X−Ri− −Vi Ui
]⎡⎢⎢⎣

(RT
+)kXk

+
(RT−)kXk−

VT
k

UT
k

⎤⎥⎥⎦ ,

= X+Ri
+(RT

+)kXT
+ +UiUT

k −X−Ri−(RT−)kXK− −ViVT
k ,

= AiAT
k −BiBT

k .

Hence (24) is equivalent to

AiA
T
k = BiB

T
k , for i = 0,1,2, . . . ,m+ χ −1 and k = 0,1,2, . . . ,m−1. (25)

Define

A =

⎡⎢⎢⎢⎣
A0

A1
...

Am−1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
X+ U0

X+R+ U1
...

...
X+Rm−1

+ Um−1

⎤⎥⎥⎥⎦ , B =

⎡⎢⎢⎢⎣
B0

B1
...

Bm−1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
X− V0

X−R− V1
...

...
X−Rm−1

− Vm−1

⎤⎥⎥⎥⎦ , (26)

and let us compute the sizes of A and B . It follows from � = 2m+ χ that n� is both
2mn+nχ and (counting the eigenvalues) 2s+2q+ δ χ . Thus

q+ s+ δ χ = nm+
(n+ δ )χ

2
, and hence q+ s = nm+

(n− δ )χ
2

.

Then A and B are nm×
(
nm+ (n+δ )χ

2

)
and nm×

(
nm+ (n−δ )χ

2

)
real matrices re-

spectively.
It is convenient, at this point, to separate the cases of even and odd degree polyno-

mials, i.e. χ = 0 or χ = 1.

(i) χ = 0: L(λ ) has degree, � = 2m , A and B are nm×nm real matrices and (25)
is equivalent to AAT = BBT . In turn, this condition is equivalent (see Appendix
B) to the existence of a real orthogonal nm×nm matrix Θ such that

B = AΘ. (27)
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(ii) χ = 1: L(λ ) has degree � = 2m+ 1 and (25) is equivalent, simultaneously, to

AAT = BBT and AmAT = BmBT . If p := (n+δ )
2 then the sizes of A and B are

nm× (nm+ p) and nm× (nm+ p− δ ) , respectively.

(a) If δ � 0 then (see Appendix B), AAT = BBT is equivalent to the existence of
a real (nm+ p)× (nm+ p− δ ) matrix Θ with orthonormal rows such that

B = AΘ (28)

and, under this condition, AmAT = BmBT is equivalent to (Am −BmΘT )AT = 0;
i.e. the rows of Am −BmΘT and A are mutually orthogonal.

(b) If δ � 0 then (see Appendix B), AAT = BBT is equivalent to the existence of
a real (nm+ p− δ )× (nm+ p) matrix Θ with orthonormal rows such that

A = BΘ (29)

and, under this condition, AmAT = BmBT is equivalent to (Bm −AmΘT )BT = 0;
i.e. the rows of Bm −AmΘT and B are mutually orthogonal.

(c) When δ = 0 and n is even Θ is a real orthogonal matrix.

Observe that the definitions of (26) imply that

[
A B

]
=

⎡⎢⎢⎢⎣
X
XJ
...

XJm−1

⎤⎥⎥⎥⎦
⎡⎢⎢⎣

Iq+δ χ 0 0 0
0 0 Iq 0
0 0 0 Is
0 Is 0 0

⎤⎥⎥⎦ ,

so that
[
A B

]
is simply a column permutation of the matrix

Q =

⎡⎢⎢⎢⎣
X
XJ
...

XJm−1

⎤⎥⎥⎥⎦ ∈ R
mn×2mn.

Given that (X ,J) is a right Jordan pair, rankQ = nm and, since either A = BΘ or
B = AΘ for some full-rank matrix Θ , rankA = rankB = nm, and

rank
[
X+ Uk

]
= rank

[
X− Vk

]
= n, k = 0,1 . . . ,m−1. (30)

We have established the following general orthogonality property for real-symmetric
matrix polynomials:

THEOREM 2. Let L(λ ) be as in (1) and let (X , J, PXT ) be a real selfadjoint triple
as defined in (14) - (17) where J,P ∈ Rn�×n� , � = 2m+ χ (χ = 0 or 1 ) and the sizes
of the submatrices R+ and R− of J are q+δ χ and q, respectively . Let p = n+δ

2 and
let full-rank real matrices A, B of sizes nm× (nm+ pχ) and nm× (nm+(p− δ )χ) be
formed from this triple as in (21) and (26). Then:
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(i) If � = 2m there is a real orthogonal matrix Θ ∈ Rmn×mn such that B = AΘ .

(ii) If � = 2m+1 and δ > 0 there is a real (nm+ p−δ )× (nm+ p) matrix Θ with
orthonormal rows such that B = AΘ and (Am −BmΘT )AT = 0 .
If � = 2m+1 and δ < 0 there is a real (nm+ p)× (nm+ p−δ ) matrix Θ with
orthonormal rows such that A = BΘ and (Bm −AmΘT )BT = 0 .

Conversely, let J and P be canonical matrices of the form (14) and (15), respectively,
and let X ∈ Rn×�n be such that:

(a) XJ�−1PXT is nonsingular, and

(b) There is a real orthogonal Θ ∈ Rmn×mn such that matrices A and B, formed as
in (21) and (26), satisfy condition (i) or (ii), as appropriate,

then (X , J, PXT ) is a real selfadjoint triple.

The proof of the last part of this Theorem is straightforward: If A and B satisfy
either condition (i) or (ii) then XJkPXT = 0 for k = 1, . . . , �n−2 and, by Remark 2, if
XJ�−1PXT is nonsingular then (X , J, PXT ) is a real selfadjoint Jordan triple.

Theorem 2 provides a generalization of results in [10] (Section 3) and [9] (Section
9) in two important respects: polynomials of any degree are admitted and, also, poly-
nomials with mixed real/non-real spectra. It also implies that real symmetric matrix
polynomials with any prescribed degree and semi-simple spectrum can be constructed
by appropriate choices of real matrices A and Θ , or B and Θ , as in (27), (28), or (29),
as appropriate. We develop this idea for matrix polynomials of even degree in Section
6.

Notice also that if L(λ ) has even degree and L2m > 0 then L(λ ) can be factorized
into a product of matrix polynomials of degree m and the real matrices A and B of
(27) are necessarily nonsingular (see Theorems 11.2 of [6] and 12.3.2 of [7]). Here, it
has been shown that the matrices A and B are nonsingular under the weaker condition
detL2m �= 0.

5. Remarks on more general polynomial systems

The existence of the real transformation Θ with orthogonal rows is, of course, a
direct consequence of equation (23). This, in turn, is part of the lower block-triangular
Hankel structure of the matrix H−1 where

H =

⎡⎢⎢⎢⎣
L1 L2 · · · L�

L2 · · · L� 0
...

...
L� 0 · · · 0

⎤⎥⎥⎥⎦
(as in [5]). Now these triangular structures are shared with more general systems (with
odd or even degree, complex hermitian coefficients, and with no hypotheses on the
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degrees of elementary divisors). Furthermore, this triangular structure can always be
expressed in the form (24) but with (generally) complex selfadjoint standard triples
(Xc,Jc,PX∗

c ) where, perhaps, Jc is not a Jordan matrix but easily constructed from
it (as in (14)). Matrix P , however, is a diagonal matrix of 1 and −1 exhibiting the
inertia of the original matrix Pε,J . This, in turn, leads to generalizations of (27) - but a
(generally) complex matrix with orthonormal rows (unitary if � is even) will play the
role of Θ .

This is the approach taken in [1] for the general Hermitian quadratic case, but with
a substantial difference: In [1] selfadjoint standard triples (X ,T,PX∗) are obtained for
Hermitian quadratic matrix polynomials with P = Diag(I,−I) but T does not reflect,
in general, the Jordan structure of the matrix polynomial and so, the columns of X are
not, in general, eigenvectors of that matrix polynomial. However, with this matrix P ,
XPX∗ = 0 does reveal orthogonality properties of the columns of X .

We anticipate that properties of a real orthogonal Θ will be more readily visual-
ized (as in [10] and [9]) and this, together with the frequent occurrence of real sym-
metric systems, is the rationale for our focus on analysis of the real selfadjoint Jordan
triples of Theorem 1.

6. The inverse problem

Our goal in this section is investigation of the role of the real orthogonal matrix Θ
of Theorem 2 in representations of the coefficients of L(λ ) – keeping in mind the con-
straint of equation (19) defining the leading coefficient. For simplicity, we will focus on
symmetric matrix polynomials of even degree, so that � = 2m . (A similar study (though
probably more difficult) could be carried out for odd degree matrix polynomials.)

Systems with invertible leading coefficient (as in Theorem 1) are of great impor-
tance and suggest the following definitions of “admissible” structures:

DEFINITION 3.

(a) A real selfadjoint Jordan structure is a pair of matrices (J,P) ∈ R2mn×2mn ×
R2mn×2mn with the form (14), (15) for some real diagonal matrices R+,R− ∈
R

q×q and M,N ∈ R
s×s (q+ s = nm) and N > 0.

(b) A real selfadjoint Jordan structure (J,P) is said to be admissible if there is an
X ∈ Rn×�n for which equations (18) and (19) hold (in particular, XJ�−1PXT is
nonsingular).

(c) An admissible real selfadjoint Jordan structure, (J,P) , will be said to be admis-
sible positive if XJ�−1PXT > 0.

Recall Remark 2: If J , P and X satisfy condition (18) and XJ�−1PXT is nonsin-
gular then (X ,J,PXT ) is a real selfadjoint Jordan triple and (Theorem 1) it defines a
unique real symmetric matrix polynomial. The coefficients of such a matrix polynomial
can then be expressed in terms of the moments. In Section 8 we will be more specific
about this construction in the quadratic case.
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As mentioned in the introduction, there are real selfadjoint Jordan structures which
are not admissible positive. For example, there is no 2×2 quadratic matrix polynomial
with positive definite leading coefficient and Jordan structure

J = Diag(1,2,3,4), P = Diag(1,1,−1−1).

This is because, by Example 1.5 of [5], for all matrix polynomials of even degree with
positive definite leading coefficient, the sign characteristic of the largest real eigenvalue
must be positive and that of the smallest real eigenvalue must be negative (see also
Theorem 7 below).

With the help of Theorem 2 and the notions of subspaces which are nondegenerate,
positive, or neutral with respect to a (possibly singular) symmetric matrix, the next
theorem provides a characterization of the admissible real selfadjoint Jordan structures
for matrix polynomials of even degree, � = 2m .

More notation will be needed: Given a Jordan matrix as in (14) with diagonal
matrices M and N as in (13), define sequences of 2s×2s diagonal matrices {Mr}∞

r=0
and {Nr}∞

r=0 recursively by setting M0 = Is , N0 = 0s×s and[
Mr+1 Nr+1

Nr+1 −Mr+1

]
=

[
M −N
N M

][
Mr Nr

Nr −Mr

]
, r ∈ Z, (31)

and observe that M1 = M , N1 = N . Indeed,[
Mr Nr

Nr −Mr

]
=

[
M −N
N M

]r [
Is 0
0 −Is

]
, r ∈ Z.

Let Θ ∈ R
nm×nm be an orthogonal matrix and define symmetric matrices in R

nm×nm ,

Hk(Θ) :=
[
Inm Θ

]⎡⎢⎢⎣
Rk

+ 0 0 0
0 Mk 0 −Nk

0 0 −Rk− 0
0 −Nk 0 −Mk

⎤⎥⎥⎦[
Inm

ΘT

]
, k ∈ Z. (32)

and note that H0(Θ) = 0.
We recall next the definition of nondegenerate, positive and neutral subspaces with

respect to a symmetric matrix (see [13] and, for the case when H is nonsingular, [7,
Ch. 2]):

Given a symmetric matrix H ∈ Rp×p , a subspace S ⊂ Rp is said to be:
(a) H -nondegenerate if x ∈ S and xT Hy = 0 for all y ∈ S implies that x = 0,
(b) H -positive if xT Hx > 0 for all x ∈ S ,
(c) H -neutral if xT Hx = 0 for all x ∈ S .

The following lemma will be useful:

LEMMA 4. Let H ∈ Rp×p be a symmetric matrix and S be a subspace of Rp of
dimension d . Then:
(i) S is H -nondegenerate if and only if XT HX is invertible for any matrix X ∈ Rp×d

such that ImX = S .
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(ii) S is H -positive if and only if XT HX is positive definite for any matrix X ∈ Rp×d

such that ImX = S .
(iii) S is H -neutral if and only if XT HX = 0 for any matrix X ∈ Rp×d such that
ImX = S .

Proof. (i) Assume that ImX = S and XT HX is invertible. We are to show that
x ∈ S and xT Hy = 0 for all y ∈ S implies x = 0. We have x = Xα for some α ∈ Rd

so, for any y = Xu ∈ S (u ∈ Rd ),

0 = xT Hy = αT XT HXu.

But this holds for all u ∈ Rd , so αT XT HX = 0 and, because XTHX is invertible, it
follows that α = 0 and, finally, x = Xα = 0, as required.

Conversely, if S = ImX and XTHX is not invertible then there is an α �= 0 such
that αT XTHX = 0. Thus αT XT HXβ = 0 for all β ∈ Rd and so S is degenerate.

(ii) If XT HX > 0, ImX = S and 0 �= y ∈ S then y = Xz for some 0 �= z ∈ Rd

and yT Hy = zT XT HXz > 0.
Conversely, assume that S is H -positive and let X ∈ Rp×d be a matrix whose

columns span S . Take any nonzero y ∈ Rd . Then 0 �= z = Xy ∈ S and yT XTHXy =
zT Hz > 0. This means that XTHX > 0, as desired.

(iii) This follows at once from the fact that xT Hx = 0 for all x ∈ S implies
xT Hy = 0 for all x,y ∈ S (see [7, p. 13]). �

THEOREM 5. Let � = 2m and J , P be canonical matrices of the form (14) and
(15). Then (J,P) is an admissible (admissible positive) real selfadjoint Jordan struc-
ture if and only if there is a real orthogonal matrix Θ ∈ Rnm×nm such that, for k =
0,1, . . . ,2m− 2, the real symmetric matrix Hk(Θ) of (32) is either the zero matrix or
has a neutral subspace of dimension n which is non-degenerate (resp. positive) with
respect to H2m−1(Θ) .

Proof. Let (X ,J,PXT ) be a real selfadjoint Jordan triple of some matrix polyno-
mial of even degree � = 2m with positive definite leading coefficient, L2m . Then (18)
and (19) are satisfied and

Jk = Diag

[
Rk

+ Rk−

[
M −N
N M

]k ]
,

= Diag

[
Rk

+ Rk−

[
Mk Nk

Nk −Mk

]]
Diag

[
I2q,

[
Is 0
0 −Is

] ]
.

Hence, for k = 0,1, . . . ,2m−2,

XJkPXT = X Diag

[
Rk

+ −Rk−

[−Mk −Nk

−Nk Mk

] ]
XT = 0, (33)

and

L−1
2m = X Diag

[
R2m−1

+ −R2m−1
−

[−M2m−1 −N2m−1

−N2m−1 M2m−1

]]
XT . (34)
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Now,

X =
[
X+ X− V U

]
=

[
X+ U X− V

]⎡⎢⎢⎣
Iq 0 0 0
0 0 0 Is
0 Iq 0 0
0 0 Is 0

⎤⎥⎥⎦
and, using (27), Theorem 2 implies that

[
X− V

]
=

[
X+ U

]
Θ, for some orthogonal

matrix Θ ∈ Rnm×nm . Hence

X =
[
X+ U

][
Inm Θ

]⎡⎢⎢⎣
Iq 0 0 0
0 0 0 Is
0 Iq 0 0
0 0 Is 0

⎤⎥⎥⎦ .

Bearing in mind the definition (32) of Hk(Θ) , (33) and (34) give

XJkPXT =
[
X+ U

]
Hk(Θ)

[
XT

+
UT

]
= 0, k = 0,1, . . . ,2m−2, (35)

and

L−1
2m =

[
X+ U

]
H2m−1(Θ)

[
XT

+
UT

]
. (36)

Let S be the subspace spanned by the columns of

[
XT

+
UT

]
. By (30), S has

dimension n and by (35), (36) and Lemma 4, S is Hk(Θ)-neutral for k = 1, . . . ,2m−
2, and H2m−1(Θ)-nondegenerate. Furthermore, if L2m is positive definite, then S
must be H2m−1(Θ)-positive.

Conversely, assume that for some real orthogonal matrix Θ ∈ Rnm×nm there is a
subspace S ⊂ R

nm×nm of dimension n which is Hk(Θ)-neutral for k = 1, . . . ,2m−
2 and H2m−1(Θ)-nondegenerate. Let Y =

[
XT

+
UT

]
be any full rank matrix for which

ImY = S . Define [
X− V

]
=

[
X+ U

]
Θ,

and we have
X =

[
X+ X− V U

]
.

Then

X =
[
X+ U X− V

]⎡⎢⎢⎣
Iq 0 0 0
0 0 0 Is
0 Iq 0 0
0 0 Is 0

⎤⎥⎥⎦ =
[
X+ U

][
Inm Θ

]⎡⎢⎢⎣
Iq 0 0 0
0 0 0 Is
0 Iq 0 0
0 0 Is 0

⎤⎥⎥⎦
and XJkPXT satisfies (35). As S is Hk(Θ)-neutral we have XJkPXT = 0 for k =
1, . . .2m−2 and, since S is H2m−1(Θ)-nondegenerate,

XJ2m−1XT =
[
X+ U

]
H2m−1(Θ)

[
XT

+
UT

]
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is invertible (Lemma 4). Thus (X ,J,PXT ) is a real selfadjoint Jordan triple of a sym-
metric matrix polynomial of degree 2m with nonsingular leading coefficient. In addi-
tion, if S is H2m−1(Θ)-positive, then the leading coefficient of that matrix polynomial
is positive definite. �

REMARK 3.
(i) Since H0(Θ) = 0 for any orthogonal matrix Θ , all subspaces are H0(Θ)-

neutral. In other words, the condition XPXT = 0 imposes no further restriction on
Θ , X+ and U .

(ii) The existence of positive and neutral subspaces with respect to a real symmet-
ric matrix H can be characterized in terms of the number of positive, negative and zero
eigenvalues of H . In fact, the proof of Theorem 2.3.2 in [7] can be slightly modified to
show that the maximal dimension of a positive subspace with respect to the indefinite
inner product defined by a symmetric matrix H (that may be singular) is the number of
positive eigenvalues of H (counting multiplicities). Also the proof of Theorem 2.3.4
in [7] can be adapted to admit singular symmetric matrices. It can be seen that, in that
case, the maximal dimension of an H -neutral subspace is min(i+, i−)+ i0 where i+ ,
i− and i0 are the number of positive, negative and zero eigenvalues of H , respectively
(i.e. its inertia).

7. Distribution of the real eigenvalues

Since neutral subspaces for Hk(Θ) are closely related to the eigenvalues of this
symmetric matrix, we consider the distribution of the real eigenvalues on the real line.
If we define

Gk :=

⎡⎢⎢⎣
Rk

+ 0 0 0
0 Mk 0 −Nk

0 0 −Rk− 0
0 −Nk 0 −Mk

⎤⎥⎥⎦ , k ∈ Z, (37)

then (32) takes the form

Hk(Θ) =
[
Inm Θ

]
Gk

[
Inm Θ

]T
with ΘT Θ = I. (38)

PROPOSITION 6. For k = 1,2, . . . , let λ1(Gk) � · · ·� λ2nm(Gk) denote the eigen-
values of Gk and let Hk(Θ) be defined as in (38). Then for any nm× nm orthogonal
matrix Θ the following inequalities hold:

2λi(Gk) � λi(Hk(Θ)) � 2λi+nm(Gk), 1 � i � nm (39)

where λ1(Hk(Θ)) � · · · � λnm(Hk(Θ)) denote the eigenvalues of Hk(Θ) .

Proof. For any nm×nm orthogonal matrix Θ

Ω =
1√
2

[
Inm Θ
−ΘT Inm

]
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is also orthogonal. Clearly, Hk(Θ) is just the leading nm× nm principal submatrix
of 2ΩGkΩT . Since this matrix and 2Gk have the same eigenvalues, property (39)
follows at once from the Cauchy interlacing inequalities relating the eigenvalues of a
symmetric matrix to those of any of its principal submatrices (see [14, Section 10.1],
for example)). �

It is clear that, for any k , the eigenvalues of Gk are easily computed from the
eigenvalues of the prescribed Jordan form J . In fact, if J is a Jordan matrix as in (14),
then the eigenvalues of Gk are:

rk
1, . . . ,r

k
q,−rk

q+1, . . . ,−rk
2q, |β1|k,−|β1|k, |β3|k,−|β3|k, . . . , |β2s−1|k,−|β2s−1|k,

where β j = μ j + iν j , j = 1,3, . . . ,2s−1.
Let i+(·) and i−(·) denote the number of positive and negative eigenvalues, re-

spectively. Then it is an immediate consequence of (39) that, for any orthogonal matrix
Θ ,

i+(Hk(Θ)) � i+(Gk) and s � i−(Gk) � i−(Hk(Θ)). (40)

These simple conditions impose restrictions on admissible Jordan structures for real
symmetric quadratic matrix polynomials with positive definite leading coefficient. Stron-
ger constraints on J and P are specified in the following theorem:

THEOREM 7. Let L(λ ) be a semisimple Hermitian matrix polynomial with L� > 0
and a maximal real eigenvalue λmax . For any α � λmax , let p(α), n(α) denote
the number of real eigenvalues (counting multiplicites) of L(λ ) of positive and neg-
ative types (respectively) in the interval (α,λmax] . Then n(α) � p(α) for all α ∈
[λmin, λmax] .

This theorem can be proved with the help of the real eigenfunctions μ1(λ ) , . . . ,
μn(λ ) of the n× n matrix function L(λ ) , λ ∈ R , and the fact that their zeros are
just the real eigenvalues of L(λ ) (see Chapter 12 of [6]). The proof is postponed to a
subsequent paper dedicated to the inverse quadratic eigenvalue problem.

To illustrate the scope of this result, there is no 3×3 quadratic symmetric matrix
polynomial with L2 > 0 and all real eigenvalues as follows:

Eigenvalue | −3 −2 −1 1 2 3
Sign-characteristic | − + + − − +

In fact, n(α) > p(α) on the interval (−1,3] .
As the real eigenvalues are displayed on the diagonal of G1 , the properties of The-

orem 7 required to ensure L� > 0 are easily confirmed in special cases and incorporated
in (37).

8. The quadratic case

We summarize results of the previous sections for the important special case of
semisimple quadratic matrix polynomials. This is already a significant generalization
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of results in [10] and [9] since we admit mixed real/non-real spectrum and indefinite
leading coefficient. Now (1) becomes

L(λ ) = L2λ 2 +L1λ +L0

and L(λ ) admits a standard triple (X ,J,PXT ) as in Theorem 1, where
[
X+ U

]
and[

X− V
]

are nonsingular n× n real matrices. According to Theorem 2 there is a real
orthogonal matrix Θ such that [

X− V
]
=

[
X+ U

]
Θ, (41)

and this is the fundamental extension of the results of [10] and [9].

EXAMPLE 2. For L(λ ) of Example 1 there is mixed real/non-real spectrum. Fur-
thermore, [

X+ U
]
=

[
1 0
0 1

]
and

[
X− V

]
=

[
0 −1
1 0

]
so that Θ =

[
0 1
−1 0

]
; an orthogonal matrix.

Now consider the inverse problem: To construct a family of real symmetric quadratic
matrix polynomials (possibly with some definiteness constraints on the coefficients)
with an admissible set of spectral data; namely, real and complex eigenvalues together
with their partial multiplicities and sign characteristics for the real spectrum (an admis-
sible Jordan structure). This is a difficult problem even in the semisimple case and we
provide some partial insights in this section.

Recall first that a real selfadjoint Jordan triple, (X ,J,PXT ), uniquely defines a
matrix polynomial L(λ ) with this Jordan triple. Indeed, the coefficients can be given
explicitly in terms of the triple. Specifically, following a lead given in [10], define the
moment functions Pk acting on matrices X ∈ Rn×2n as follows:

Pk(X) := XJkPXT (42)

for integers k . (Recall equations (18) and (19), and note that k is any integer if zero is
not in the spectrum and, otherwise, k � 0.).

Then P0(X) = 0 because XPXT = 0 and the coefficients are defined by the mo-
ments in the form:

L−1
2 = P1(X),

L1 = −L2P2(X)L2 = −P1(X)−1P2(X)P1(X)−1, (43)

L0 = −L2P3(X)L2 +L1P1(X)L1,

= −P1(X)−1 [
P3(X)+P2(X)P1(X)−1P2(X)

]
P1(X)−1.

Alternatively, if 0 /∈ σ(L) then

L0 = −P−1(X)−1. (44)
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We can also use Theorem 14.7.1 of [11] to obtain L0 and L1 in the form:

[
L0 L1

]
= −L2XJ2

[
X
XJ

]−1

.

As a consequence we have:

PROPOSITION 8. If m = 1 , all eigenvalues of L(λ ) are semisimple and L2, L0

are both nonsingular, then the coefficients L2, L1, L0 have the inertias of P1(X), −P2(X),
and −P−1(X) , respectively, where (X ,J,PXT ) is a real selfadjoint Jordan triple for
L(λ ) .

Hence, a real symmetric quadratic matrix polynomial with desirable definiteness
conditions imposed on the coefficients can be constructed from an appropriate real self-
adjoint Jordan triple. If the spectral data has been prescribed, the goal is to construct
such a real selfadjoint Jordan triple with prescribed J and P as in (14) and (15), and
Theorem 5 can be useful for this purpose. The following result is an immediate conse-
quence of that theorem:

COROLLARY 9. Let J and P be matrices of the form (14) and (15) with � = 2 .
Then there is a full rank matrix X ∈ R

n×2n such that (X ,J,PXT ) is a real selfadjoint
Jordan triple if and only if there is an orthogonal matrix Θ ∈ Rn×n such that

H1(Θ) =
[
In Θ

]⎡⎢⎢⎣
R+ 0 0 0
0 M 0 −N
0 0 −R− 0
0 −N 0 −M

⎤⎥⎥⎦[
In

ΘT

]
(45)

is nonsingular.

If H1(Θ) is invertible for some orthogonal Θ , Q ∈ Rn×n is any invertible matrix
and we define X = Q

[
In Θ

]
, then (X ,J,PXT ) is a real selfadjoint Jordan triple as in

Theorem 1, and so XJPXT is invertible. With this real selfadjoint Jordan triple, a real
symmetric quadratic matrix polynomial is constructed with

L−1
2 = P1(X) = XJPXT = QH1(Θ)QT . (46)

Thus, L2 and H1(Θ) must have the same inertia. In particular, if L2 is to be positive
definite, then an orthogonal matrix Θ must exist such that all eigenvalues of H1(Θ) are
positive.

It is easily seen that when all eigenvalues are in conjugate pairs, we recover results
of [10] (see equation (22) and Theorem 5 of that paper).

EXAMPLE 3. Assume that 2q real eigenvalues for J are prescribed with ri > rq+i ,
i = 1, . . . ,q . Then (see (10)) R+−R− > 0. Choosing Θ = ±In in Corollary 9 and J, P
as in (13), (14) we obtain

H1(Θ) = H1(±In) =
[

R+−R− 0
0 ∓2N

]
.
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Since N > 0 (see (13)), H1(±In) is certainly nonsingular and, with X = Q
[
In ±In

]
(and Q nonsingular), a broad family of symmetric quadratic matrix polynomials is
constructed with the Jordan structure (J,P) in common.

If L2 > 0 is required then the choice Θ = In would not be admissible (see (46)).

APPENDICES

A. Symmetric matrix polynomials with real coefficients

In the main body of this paper (Sections 3 to 9) it has been found necessary to
restrict the analysis to the semisimple case. Here, we do not make this assumption.

Theorem 10.7 of [6] shows how non-real spectral data for Hermitian polynomials
can be organized in complex conjugate pairs. Here, we prove an analogous result in
the real symmetric case with the spectral data organized in conjugate pairs (where ap-
propriate). This is in contrast with the forms of equations (14) - (16), and without the
semisimple hypothesis. The generalization of Theorem 10.7 of [6] (when applied to the
real symmetric case) lies in the fact that the leading coefficient is not assumed to be
positive definite.

THEOREM 10. Let L(λ ) be an n×n real symmetric matrix polynomial with non-
singular leading coefficient. Then there exists a selfadjoint Jordan triple (X ,J,Pε,JX∗)
of L(λ ) with the following form: J and Pε,J are as in (6) and (7), respectively, and

X =
[
X0 U1− iV1 U1 + iV1 · · · ,Us − iVs Us + iVs

]
(47)

X0 ∈ Rn×(l1+···+lr) , Uj,Vj ∈ Rn×mj , j = 1, . . . ,s.

Proof. Let (X̃ ,J,Pε,JX̃T ) be a real selfadjoint Jordan triple of L(λ ) with Pε,J

and J given by (7) and (8) respectively. Partition X̃ according to the block diagonal
structure of J :

X̃ =
[
X̃1 · · · X̃r X̃r+1 · · · X̃r+s

]
where X̃ j ∈ Rn×l j , 1 � j � r , and X̃r+ j ∈ Rn×2mj , 1 � j � s . Put

X0 =
[
X̃1 · · · X̃r

]
and, for j = 1, . . . ,s, consider the submatrix X̃r+ j and blocks K2mj and F2mj appearing
in the expression of J and Pε,J (cf. (7) and (8)). We are to find a unitary matrix Wj

such that
X̃r+ jWj =

[
Uk − iVj Uj + iVj

]
(48)

W ∗
j F2mjWj = F2mj (49)

W ∗
j K2mjWj =

[
Jmj (β j) 0

0 Jmj (β j)

]
. (50)
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With these matrices we construct the unitary matrix

W = Diag(Il1+···+lr ,W1, . . . ,Ws)

and define X = X̃W , Jc = W ∗JW and Pε,Jc = W ∗Pε,JW . Then (X̃ ,J,Pε,JXT ) is (uni-
tarily) similar to (X ,Jc,Pε,JcX

∗) and so this triple is a selfadjoint Jordan triple of L(λ )
with the desired form.

In order to find the matrix Wj satisfying (48)-(50) the unitary matrix

Z =
1
2

[
1− i 1+ i
1+ i 1− i

]
.

will be helpful. This matrix has the following properties:

(a) If x̃k denotes the k -th columns of X̃r+ j then, for k = 1, . . . ,mj[
x̃2k−1 x̃2k

]
Z =

[
u jk − iv jk u jk + iv jk

]
,

where u jk = 1
2 (x̃2k−1 + x̃2k) and v jk = 1

2 (x̃2k−1− x̃2k) .

(b) If P2 =
[

0 1
1 0

]
then Z∗P2Z = P2 .

(c) Z∗
[

μ j −ν j

ν j μ j

]
Z =

[
μ j − iν j 0

0 μ j + iν j

]
=

[
β j 0
0 β j

]
.

Hence if W̃j = Diag(Z,Z, . . . ,Z) (mj times) then W̃j is unitary and

(a) X̃r+ jW̃j =
[
u j1− iv j1 u j1 + iv j1 · · · u jmj − iv jmj u jmj + iv jmj

]
,

(b) W̃ ∗
j F2mjW̃j = F2mj ,

(c) W̃ ∗
j K2mjW̃j =

⎡⎢⎢⎢⎣
Bj

I2 Bj
. . .

. . .
I2 Bj

⎤⎥⎥⎥⎦ , with Bj =
[

β j 0
0 β j

]
.

Now, let Q ∈ R
2mj×2mj be the permutation matrix

Q =
[
e1 e3 · · · e2mj−1 e2 e4 · · · e2mj

]
where ei is the i-th column of I2mj . Then QT F2mjQ = F2mj ,

QT

⎡⎢⎢⎢⎣
Bj

I2 Bj

. . .
. . .
I2 Bj

⎤⎥⎥⎥⎦Q =

[
Jmj (β j) 0

0 Jmj (β j)

]
,
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and [
u j1− iv j1 u j1 + iv j1 · · · u jmj − iv jmj u jmj + iv jmj

]
Q =[

u j1− iv j1 · · · u jmj − iv jmj · · · u j1 + iv j1 · · ·u jmj + iv jmj

]
=[

Uj − iVj Uj + iVj
]
,

where Uj =
[
u j1 · · · u jmj

]
and Vj =

[
v j1 · · · v jmj

]
.

Therefore if Wj = W̃jQ then Wj is a unitary matrix and, with this matrix, condi-
tions (48)-(50) are satisfied. �

The above theorem is, of course, a result on the existence of desirable selfadjoint
Jordan triples of real symmetric matrix polynomials rather than a constructive proce-
dure to obtain them. In order to obtain Jordan chains of real or complex matrix poly-
nomials one has to solve for each (real or non-real) eigenvalue λ j a system of the form
(see [6])

L(λ j)x jl j = 0,

L(λ j)x jl j−1 +L(1)(λ j)x jl j = 0,
...

L(λ j)x j1 +L(1)(λ j)x j2 + · · ·+ 1
(l j−1)!L

(l j−1)(λ j)x jl j = 0,

where L(k)(λ j) is the k th derivative of L(λ ) at λ j . Then x jl j , x j,l j−1 ,. . . , x j1 is a real
or non-real Jordan chain of L(λ ) associated with the real or non-real eigenvalue λ j ,
respectively. Now, for general (not necessarily symmetric) real matrix polynomials, if
x j,l j−1 ,. . . , x j1 is a Jordan chain for a non-real eigenvalue λ j then x j,l j−1 ,. . . , x j1 is a

Jordan chain for λ j . Theorem 10 says that the same is still true for selfadjoint Jordan
chains of real symmetric matrix polynomials with nonsingular leading coefficients.

On the other hand, although real Jordan chains for a pair of non-real conjugate
eigenvalues can be obtained by solving a similar but more complicated system (see
[12]), this should be seen as a result of a rather theoretical nature. A more practical pro-
cedure is to obtain first a selfadjoint Jordan triple of L(λ ) with X as in (47) and reverse
the procedure developed in the proof of the above theorem to obtain the corresponding
real selfadjoint Jordan triple. This is the approach taken in Section 3.

B. The orthogonal matrix

Recall that F denotes either the real or complex number field.

LEMMA 11. Assume that n � p � m. Then matrices A1 ∈ Fm×n and A2 ∈ Fm×p

satisfy the equation A1A∗
1 = A2A∗

2 if and only if A1 = A2Θ for some matrix Θ ∈ Fp×n

with orthonormal rows. In particular, if n = p then Θ is a unitary matrix.
(Note that, when F = R , Θ is, in fact, a real matrix.)

Proof. If A1 = A2Θ and the rows of Θ form a system of orthonormal vectors
then, obviously, A1A∗

1 = A2A∗
2 . Conversely, consider the polar decompositions, A1 =

H1U1, A2 = H2U2 where H1, H2 ∈ F
m×m , U1 ∈ F

m×n and U2 ∈ F
m×p , H1 and H2 are
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positive semi-definite Hermitian or symmetric matrices, and U1, U2 are matrices with
orthonormal rows (see Theorem 3.1.9 of [8], for example). Then A1A∗

1 = A2A∗
2 implies

H2
1 = H2

2 and, since the (semi-definite) square root is unique, H2 = H1 =: H � 0.
Now A1 = HU1 and A2 = HU2 . If n � p > m then we can write A1 =

[
H 0

]
V1 and

A2 =
[
H 0

]
V2 with

[
H 0

]∈ Fm×p , V2 ∈Fp×p unitary and V1 ∈Fn×p with orthonormal
rows. Then A1 = A2V ∗

2 V1 . If we put Θ =V ∗
2 V1 it follows that Θ has orthonormal rows

and A1 = A2Θ . If p = n then V1 is unitary and so is Θ . �
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