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NUMERICAL RANGES AND COMPRESSIONS OF Sn –MATRICES

HWA-LONG GAU AND PEI YUAN WU

Abstract. Let A be an n -by-n (n � 2) Sn -matrix, that is, A is a contraction with eigenvalues
in the open unit disc and with rank (In −A∗A) = 1 , and let W (A) denote its numerical range.
We show that (1) if B is a k -by-k (1 � k < n ) compression of A , then W(B) � W(A) , (2) if
A is in the standard upper-triangular form and B is a k -by-k (1 � k < n ) principal submatrix
of A , then ∂W (B)∩∂W(A) = /0 , and (3) the maximum value of k for which there is a k -by-k
compression of A with all its diagonal entries in ∂W(A) is equal to 2 if n = 2 , and �n/2� if
n � 3 .
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