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INDEFINITE HAMILTONIAN SYSTEMS WHOSE

TITCHMARSH––WEYL COEFFICIENTS HAVE NO FINITE

GENERALIZED POLES OF NON–POSITIVE TYPE

MATTHIAS LANGER AND HARALD WORACEK

Abstract. The two-dimensional Hamiltonian system

(∗) y′(x) = zJH(x)y(x), x ∈ (a,b),

where the Hamiltonian H takes non-negative 2× 2-matrices as values, and J :=
(

0 −1
1 0

)
, has

attracted a lot of interest over the past decades. Special emphasis has been put on operator
models and direct and inverse spectral theorems. Weyl theory plays a prominent role in the
spectral theory of the equation, relating the class of all equations (∗) to the class N0 of all
Nevanlinna functions via the construction of Titchmarsh–Weyl coefficients.

In connection with the study of singular potentials, an indefinite (Pontryagin space) ana-
logue of equation (∗) was proposed, where the ‘general Hamiltonian’ is allowed to have a finite
number of inner singularities. Direct and inverse spectral theorems, relating the class of all gen-
eral Hamiltonians to the class N<∞ of all generalized Nevanlinna functions, were established.

In the present paper, we investigate the spectral theory of general Hamiltonians having a
particular form, namely, such which have only one singularity and the interval to the left of this
singularity is a so-called indivisible interval. Our results can comprehensively be formulated as
follows.

– We prove direct and inverse spectral theorems for this class, i.e. we establish an intrin-
sic characterization of the totality of all Titchmarsh–Weyl coefficients corresponding to general
Hamiltonians of the considered form.

– We determine the asymptotic growth of the fundamental solution when approaching the
singularity.

– We show that each solution of the equation has ‘polynomially regularized’ boundary
values at the singularity.

Besides the intrinsic interest and depth of the presented results, our motivation is drawn
from forthcoming applications: the present theorems form the core for our study of Sturm–
Liouville equations with two singular endpoints and our further study of the structure theory of
general Hamiltonians (both to be presented elsewhere).
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[42] G. PICK, Über die Beschränkungen analytischer Funktionen, welche durch vorgegebene Funktions-

werte bewirkt werden, Math. Ann. 77 (1916), 7–23.
[43] M. ROSENBLUM, J. ROVNYAK, Topics in Hardy Classes and Univalent Functions, Birkhäuser Ad-
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