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Abstract. The two-dimensional Hamiltonian system

(∗) y′(x) = zJH(x)y(x), x ∈ (a,b),

where the Hamiltonian H takes non-negative 2× 2-matrices as values, and J :=
(

0 −1
1 0

)
, has

attracted a lot of interest over the past decades. Special emphasis has been put on operator
models and direct and inverse spectral theorems. Weyl theory plays a prominent role in the
spectral theory of the equation, relating the class of all equations (∗) to the class N0 of all
Nevanlinna functions via the construction of Titchmarsh–Weyl coefficients.

In connection with the study of singular potentials, an indefinite (Pontryagin space) ana-
logue of equation (∗) was proposed, where the ‘general Hamiltonian’ is allowed to have a finite
number of inner singularities. Direct and inverse spectral theorems, relating the class of all gen-
eral Hamiltonians to the class N<∞ of all generalized Nevanlinna functions, were established.

In the present paper, we investigate the spectral theory of general Hamiltonians having a
particular form, namely, such which have only one singularity and the interval to the left of this
singularity is a so-called indivisible interval. Our results can comprehensively be formulated as
follows.

– We prove direct and inverse spectral theorems for this class, i.e. we establish an intrin-
sic characterization of the totality of all Titchmarsh–Weyl coefficients corresponding to general
Hamiltonians of the considered form.

– We determine the asymptotic growth of the fundamental solution when approaching the
singularity.

– We show that each solution of the equation has ‘polynomially regularized’ boundary
values at the singularity.

Besides the intrinsic interest and depth of the presented results, our motivation is drawn
from forthcoming applications: the present theorems form the core for our study of Sturm–
Liouville equations with two singular endpoints and our further study of the structure theory of
general Hamiltonians (both to be presented elsewhere).
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1. Introduction

In order to explain our present results and their significance, we need to recall the
theory of positive definite and indefinite Hamiltonian systems up to a certain extent.
We thus divide this introductory section into five parts: in the first two parts, we re-
call the required notions and facts, then we discuss in detail the present theorems, our
motivation, and the organisation of the present manuscript.

Two-dimensional positive definite Hamiltonian systems.

Consider a Hamiltonian system of the form

y′(x) = zJH(x)y(x), x ∈ (a,b), (1.1)

where (a,b) is some (possibly unbounded) interval, z is a complex parameter, J :=(
0 −1
1 0

)
and H is a 2× 2-matrix-valued locally integrable function defined on (a,b)

which takes real non-negative values and does not vanish on any set of positive measure.
The function H is called the Hamiltonian of the system (1.1).

Hamiltonian systems have been intensively analysed via various approaches. Op-
erator methods were used, e.g. in [2], [4], [16], [17], [18], [21]–[24], [34], [41], [46].

With the system (1.1) a Hilbert space L2(H) and a (maximal) differential operator
Tmax(H) acting in this space are associated (actually, Tmax(H) may be a linear relation,
i.e. a multi-valued operator). This viewpoint goes back to [21]. Our standard reference
is [18] where the matters are laid out in a modern language. We recall the basic facts
needed in the present paper in §2.c below.

The spectral properties of Tmax(H) highly depend on the growth of H towards the
endpoints a and b . One says that Weyl’s limit circle case prevails for H at a (or at b )
if for one (and hence for all) x0 ∈ (a,b) ,

x0∫
a

trH(x)dx < ∞
(

or

b∫
x0

trH(x)dx < ∞
)

, (1.2)

and one speaks of Weyl’s limit point case at a (or at b ) if the respective integral di-
verges. It follows from the non-negativity of H(x) that H is in the limit circle case at
a if and only if all entries of H are integrable at a , i.e. a is a regular endpoint. This is
also equivalent to the fact that all solutions of (1.1) are in L2(H) at the corresponding
endpoint.
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Assume that a is finite and that H is in the limit circle case at a and in the limit
point case at b . Then a complex-valued function: its Titchmarsh–Weyl coefficient qH

is associated with H , which is constructed as follows. Let θ(x;z) = (θ1(x;z),θ2(x;z))T

and ϕ(x;z) = (ϕ1(x;z),ϕ2(x;z))T be the solutions of (1.1) with initial values

θ(a;z) =
(

1
0

)
, ϕ(a;z) =

(
0
1

)
,

so that the matrix function

WH(x;z) :=

(
θ1(x;z) θ2(x;z)

ϕ1(x;z) ϕ2(x;z)

)
(1.3)

is (the transpose of) the fundamental solution of (1.1). The limit point condition at b
implies that, for each z ∈ C\R , there exists a unique number qH(z) ∈ C such that

θ(· ;z)−qH(z)ϕ(· ;z) ∈ L2(H).

The function qH is called Titchmarsh–Weyl coefficient. Alternatively, it can be obtained
as the limit (for τ ∈ R∪{∞} )

qH(z) = lim
x↗b

θ1(x;z)τ +θ2(x;z)
ϕ1(x;z)τ +ϕ2(x;z)

, (1.4)

which exists locally uniformly on C \R and does not depend on τ . The Titchmarsh–
Weyl coefficient qH belongs to the Nevanlinna class N0 , i.e. it is analytic on C \R ,
satisfies qH(z) = qH(z) , z ∈ C\R , and

Imz · ImqH(z)� 0, z ∈ C\R. (1.5)

It plays a prominent role in the spectral theory of the system (1.1). For example, it
generates, via its Herglotz integral representation, a spectral measure μH and a Fourier
transform from L2(H) onto L2(μH) . The Inverse Spectral Theorem by L. deBranges
(see, e.g. [4] and [47]) states that the assignment

H �−→ qH (1.6)

sets up a bijective correspondence between the set of all Hamiltonians of the consid-
ered kind (up to reparameterization, i.e. changes of the independent variable) and the
Nevanlinna class N0 . In view of this fact it is an obvious task to try to translate prop-
erties of H into properties of qH . However, the mentioned Inverse Spectral Theorem
is quite involved and (in general) non-constructive. Thus it is usually far from easy to
find correspondences between properties of H and qH . For the purpose of illustration
let us give two theorems of this type.

The Titchmarsh–Weyl coefficient qH belongs to the Stieltjes class (i.e. it has an
analytic continuation to C \ [0,∞) and takes non-negative values on (−∞,0)) if and
only if the Hamiltonian H is of the form (where ξα := (cosα,sinα)T )

H(x) = h(x) ·ξφ(x)ξ T
φ(x), x ∈ (a,b) a.e., (1.7)
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with real-valued functions h(x) , φ(x) such that h is non-negative, locally integrable
and positive a.e. on [a,b) and φ is non-increasing with φ(x) ∈ [0, π

2 ] for x ∈ (a,b) ;
see, e.g. [48, Corollary 3.2]. This result can be seen as a direct and inverse spectral
theorem: the ‘direct part’ is that the Titchmarsh–Weyl coefficient of a Hamiltonian of
the form (1.7) belongs to the Stieltjes class, and the ‘inverse part’ that the Hamiltonian
corresponding to a Stieltjes class function is indeed of the form (1.7).

A second result of this type is the following: the Hamiltonian H starts with an
indivisible interval of type 0, i.e.

H(x) = h(x) ·ξ0ξ T
0 =

(
h(x) 0

0 0

)
, x ∈ (a,a+ ε) a.e.,

for some ε > 0 and some locally integrable, non-negative function h on (a,a+ ε) if

and only if limy↗∞
qH(iy)

iy > 0; see, e.g. [47, Lemma 3.1].

This characterization of ‘ limy↗∞
qH (iy)

iy > 0’ is a simple instance of a general in-
tuitive idea, namely, that the behaviour of qH at infinity corresponds to the behaviour
of H at its left endpoint. Another, more involved, instance of the same principle can be
found in [48].

The Pontryagin space analogue.

In the theory of operators in spaces with an indefinite inner product an extension of the
class N0 appeared and has proved to be useful: the so-called generalized Nevanlinna
class N<∞ ; see, e.g. [31], [32]. Thereby, instead of analytic functions, one consid-
ers meromorphic functions on C\R and replaces condition (1.5) by requiring that the
Nevanlinna kernel has a finite number of negative squares, cf. Definition 2.1 below.
The extension of N0 to N<∞ on the right-hand side of (1.6) corresponds to admit-
ting certain Hamiltonian systems with a finite number of singularities on the left-hand
side. Very roughly speaking, we may imagine a Hamiltonian system of this kind with a
general Hamiltonian h as follows:

h :

σ0

H0 ×

�

b1 j
ö1

σ1
�
d1 j

H1 ×

�

b2 j
ö2

σ2
�
d2 j

H2 Hn−1 ×

�

bn j
ön

σn
�
dn j

Hn

σn+1

where Hi are classical Hamiltonians which are not integrable on any side of the singu-
larities σ1, . . . ,σn , i.e. they are in Weyl’s limit point case, where the data öi,bi j describe
what happens to a solution when passing through the singularity, and the data di j de-
scribe a ‘local interaction’ of the potential to the left and to the right of the singularity.
We say that the general Hamiltonian h is regular if Hn is in the limit circle case at
σn+1 . Otherwise, h is called singular.
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For the purpose of explaining our present results we prefer to content ourselves in
this introduction with the above given imprecise and intuitive ‘definition’ of a general
Hamiltonian. The reader who is seeking for logically consistent ordering should read
2.16–Definition 2.18 before proceeding. However, the precise definition is quite long
and involved1. More explanations are given in the paragraphs below Definition 2.18.

For a general Hamiltonian h an operator model consisting of a Pontryagin space
boundary triple (P(h),T (h),Γ(h)) was constructed, where P(h) is a Pontryagin
space, T (h) is the maximal operator (or linear relation) and Γ(h) are boundary map-
pings; see [28]. Analogues ωh and qh of the fundamental solution WH and the
Titchmarsh–Weyl coefficient qH were constructed, and a Fourier transform onto a
space generated by a distribution φh instead of a measure μH was defined. An In-
verse Spectral Theorem was proved which states that the assignment

h �−→ qh

sets up a bijective correspondence between the set of all singular general Hamiltonians
(up to reparameterization) and the generalized Nevanlinna class N<∞ ; see [29], [30].
The ‘inverse’ part of this theorem, i.e. that for each q∈ N<∞ there exists an essentially
unique general Hamiltonian h with q = qh is similarly involved and non-constructive
as the corresponding result in the classical (positive definite) case. In the indefinite sit-
uation even the direct problem, i.e. the construction of the Titchmarsh–Weyl coefficient
qh for given h , is in general non-constructive.

A different approach towards understanding Hamiltonian systems with inner sin-
gularities was proposed in [44], [45]. There 2m× 2m-systems were studied with
the method of operator identities. This leads to constructive constructions for certain
classes of systems. In the positive definite setting, this method has a longer history, see
[46] and the references cited therein.

Main results.

We investigate the following class(es) of general Hamiltonians.

DEFINITION 1.1. Let α ∈ [0,π) . We say that a singular general Hamiltonian h
belongs to the class Hα if

(gHo.s. ) h has exactly one singularity, i.e. is defined on a set of the form (σ0,σ1)∪
(σ1,σ2) ;

(gHα ) H0(x) = h0(x) ·ξα ξ T
α , x ∈ (σ0,σ1) a.e.,

where again ξα = (cosα,sinα)T .

The results we are aiming for can be divided into three major themes; the below
named theorems are the main results of the present paper.

1Unfortunately, at present, we do not know a smoother way to introduce the notion of general Hamiltoni-
ans.
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A direct and inverse spectral theorem (Theorem 3.1) . We show that a general Hamil-
tonian h belongs to the class Hα if and only if its Titchmarsh–Weyl coefficient qh

assumes the value cotα at infinity with maximal possible multiplicity2.
This result can be viewed as a far reaching generalization of the above stated char-

acterization of ‘ limy↗∞
qH(iy)

iy > 0’. It is a direct and inverse spectral theorem: the ‘di-
rect part’ being that the Titchmarsh–Weyl coefficient of a general Hamiltonian of class
Hα has the mentioned growth property, and the ‘inverse part’ that the general Hamil-
tonian corresponding to a generalized Nevanlinna function with this property indeed
belongs to the class Hα .

For the proof of this Theorem 3.1 we analyse the multi-valued part of a certain
self-adjoint realization and use a classical result which connects the structure of the
algebraic eigenspace at ∞ with the growth of the Q-function.

It is interesting to notice that the class of generalized Nevanlinna functions that
appears in the present context as totality of Titchmarsh–Weyl coefficients has already
frequently appeared independently in earlier work; see, e.g. [5], [7], [9], [10], [11], [12],
[13] and the references therein. A posteriori, this is no surprise; in our forthcoming
work [39], we shall obtain a structural explanation.

Asymptotic behaviour of the fundamental solution at a singularity (Theorems 4.1 and
4.21) . Let h ∈ Hα and consider the fundamental solution ωh of the system. We show
that three of the four entries of ωh (if rotated appropriately according to the angle α )
pass continuously through the singularity, and we determine precisely the rate of growth
of the fourth entry. This is Theorem 4.1, the most involved and elaborate result of the
paper. Its proof is based on an inductive procedure to reduce the negative index and
on some classical results from complex analysis, in particular, the theory of de Branges
spaces of entire functions.

Using the knowledge about Hα we can deduce a continuity result for the funda-
mental solution of an arbitrary general Hamiltonian h . Namely that, for each singularity
of h , one row of ωh (again, ωh should be rotated appropriately) passes continuously
through the singularity. Also, we determine the rate of growth of the other entries of
ωh . This is Theorem 4.21; the proof uses some complex analysis and some standard
methods from the theory of general Hamiltonians.

A noteworthy corollary for the classical ‘positive definite’ theory is that, for a cer-
tain kind of Hamiltonians H , the limit (1.4) defining the Titchmarsh–Weyl coefficient
qH exists locally uniformly on the domain of analyticity of qH including intervals of
the real line. The general formulation is Corollary 4.22.

Regularized boundary values (Theorems 5.1 and 5.2) . Let h ∈ Hα and let ψ(· ;z)
be a solution of the corresponding differential equation (1.1) to the right of the singu-
larity. We show that the projection of ψ(· ;z) onto a certain direction (depending on
the value of α ) attains a boundary value at the singularity and that the projection onto
the orthogonal direction can be regularized with ‘H -polynomials’ so that it attains a
boundary value, cf. Theorem 5.1. We show that there exists a unique solution for which
regularization is not necessary, cf. Theorem 5.2. The proof of these results relies heav-

2For the precise formulation of this terminology see Definition 2.2 and Definition 2.3.
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ily on the usage of a function space model for the boundary triple associated with h
(and, of course, the continuity result Theorem 4.1).

These results have two important corollaries which shed significant light on the
behaviour of the system and at the influence of a singularity: first, Corollary 5.7, which
provides a fairly explicit way to compute the fundamental solution and the Titchmarsh–
Weyl coefficient (i.e. to solve the direct spectral problem); second, Corollary 5.9, which
shows explicitly how the data part of h concentrated in the singularity and the respective
local interaction parameters influence the Titchmarsh–Weyl coefficient.

Motivation and forthcoming applications.
A major motivation to study general Hamiltonians of the class Hα is that exactly this
kind of general Hamiltonians appear when one investigates the spectral theory of clas-
sical (positive definite) Hamiltonian systems with two singular endpoints. In fact, this
was the origin of our studies (where we first realized the significance of the class Hα ).
Thereby the basic idea is simple. Let H be a Hamiltonian, say, on (0,∞) , which is
in the limit point case at both endpoints. Assume that appropriate growth restrictions
towards the endpoint 0 are satisfied (so to enable the following construction). We iden-
tify H as a part of a general Hamiltonian h of the class Hα by setting σ1 = 0, σ2 = ∞ ,
H1 = H , and choosing the remaining data of h arbitrary. Knowledge about h will then
lead to knowledge about H , i.e. the Pontryagin space theory built up in this paper can
be used to obtain knowledge about this positive definite situation. More specifically, it
is the basis for theorems asserting existence of singular boundary values, existence of
Fourier transforms and inverse spectral theorems. These results will be presented in the
forthcoming paper [39].

Examples of systems where the above described strategy works occur when con-
sidering Sturm–Liouville equations with singular potentials. As a simple example con-
sider the Bessel equation. Using an appropriate Liouville transformation and rewriting
the equation as a 2×2-system one obtains a Hamiltonian system with Hamiltonian (γ
is an appropriate real number � 1)

H(x) =
(

xγ 0
0 x−γ

)
, x ∈ (0,∞).

One can check that this Hamiltonian satisfies the requirements needed for an application
of the above method; details will be laid out in [39].

Besides this application to the theory of singular differential equations, the present
results can be used to understand the structure of singularities and their influence on
the solutions of the system in more detail. Intuitively speaking, the reason for this is
that a singularity of an arbitrary general Hamiltonian behaves like the singularity of
a general Hamiltonian of class Hα when approaching it from one side (either from
the left or from the right). Local interaction between the two sides is more involved
to capture but can be handled by similar methods as used in the present manuscript.
As a typical application of this principle, one can provide a method to solve the direct
spectral problem for an arbitrary general Hamiltonian in a more constructive way (by
means of integrating positive definite Hamiltonian systems). Details are not yet worked
out and will be presented elsewhere.
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Finally, it must be said that we find the presented theorems deep and interesting on
their own right: partial continuity of the fundamental solution at a singularity is a strik-
ing and powerful property, the explained direct and inverse spectral theorem is a perfect
instance of the mentioned intuitive principle that the behaviour of the Titchmarsh–Weyl
coefficient at infinity is connected with the behaviour of the Hamiltonian at its left end-
point, the formula showing the influence of the parameters of the singularity on the
Weyl coefficient is beautifully explicit and simple, etc.

Organisation of the manuscript.

In Section 2 we set up some notation and recall the definitions of the generalized Nevan-
linna class, its subclasses under consideration and general Hamiltonians. Moreover, we
provide some facts about the model associated with a general Hamiltonian and some
useful tools. After this, the manuscript is naturally divided into sections according to
the above explained themes.

2. Some preliminaries and supplements

Let us first fix some notation that is used throughout the paper. Set

J :=
(

0 −1

1 0

)
, ξφ :=

(
cosφ
sinφ

)
, (2.1)

and denote by C+ the open upper half-plane, i.e. C+ := {z ∈ C : Imz > 0} and by N

and N0 the set of positive and non-negative integers, respectively. For a 2× 2-matrix
M = (mi j)2

i, j=1 and a scalar τ ∈ C we define the fractional linear transformation M � τ
as

M � τ :=

⎧⎪⎪⎨⎪⎪⎩
m11τ +m12

m21τ +m22
, τ ∈ C,

m11

m21
, τ = ∞.

(2.2)

It is easy to see that M � (N � τ) = (MN)� τ if N is another 2×2-matrix.
The rest of this section is divided into subsections as follows. In §2.a and §2.b

we recall definitions and properties of certain classes of holomorphic functions. In §2.c
the notion of boundary triples is recalled in a form that is used in the paper. Properties
of classical (positive definite) Hamiltonian systems are reviewed in §2.d, whereas in
§2.e the definition of general Hamiltonians is given. In §2.f a certain class of general
Hamiltonians with one singularity is studied and a function space operator model is
described in detail. Finally, in §2.g rotation isomorphism are recalled, a technical tool
which is used in later proofs.

a. The generalized Nevanlinna class.

We recall the definition of the class N<∞ of generalized Nevanlinna functions.

DEFINITION 2.1. Let q be a complex-valued function and let κ ∈ N0 . We write
q ∈ Nκ if
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(N1) q is real (meaning q(z) = q(z)) and meromorphic on C\R ;

(N2) with D denoting the domain of holomorphy of q , the Nevanlinna kernel
(for z = w this formula should be interpreted appropriately as a derivative)

Nq(w,z) :=
q(z)−q(w)

z−w
, z,w ∈ D,

has κ negative squares on D . The latter means that for every choice of n ∈
N and z1, . . . ,zn ∈ D the matrices (Nq(zi,z j))n

i, j=1 have at most κ negative
eigenvalues and for at least one choice of n and zi the matrix has exactly κ
negative eigenvalues.

We agree that the constant function with value ∞ belongs to N0 . Further, we set

N<∞ :=
⋃

κ∈N0

Nκ

and write ind− q = κ to express that q ∈ N<∞ belongs to Nκ . The set N<∞ is called
the class of generalized Nevanlinna functions.

It is a classical result that the class N0 \{∞} consists of those functions q that are
holomorphic on C \R , are real and satisfy Imz · Imq(z) � 0 for z ∈ C \R . This fact
goes back to as far as [20] or [42].

A generalized Nevanlinna function cannot grow arbitrarily fast towards ∞ . In fact,
for each q ∈ Nκ , the limit

lim
z→̂i∞

q(z)
z2κ+1 exists and is in [0,∞).

Here →̂ denotes a non-tangential limit, i.e. a limit inside a sector of the form {z ∈ C :
arg∈ [α,π−α]} with α ∈ (0, π

2 ) . This fact was shown, e.g. in [36]. Even more precise
knowledge about the power growth of generalized Nevanlinna functions is available.
Using the canonical factorization established in [8], one can easily deduce that, for
each q ∈ Nκ , there exists a unique non-negative integer n , not exceeding κ , such that

lim
z→̂i∞

q(z)
z2n+1 ∈ [0,∞) but lim

z→̂i∞

q(z)
z2n−1 ∈ (−∞,0)∨ lim

z→̂i∞

∣∣∣ q(z)
z2n−1

∣∣∣= ∞.

In the present paper the subclass of N<∞ appears which consists of all functions having,
in this sense, maximal possible growth at infinity, i.e. n = κ .

DEFINITION 2.2. For κ ∈ N we denote by N
(∞)

κ the set of all functions q ∈ Nκ
such that

lim
z→̂i∞

q(z)
z2κ−1 ∈ (−∞,0) or lim

z→̂i∞

∣∣∣ q(z)
z2κ−1

∣∣∣= ∞, (2.3)

where →̂ again denotes the non-tangential limit. Moreover, we set

N
(∞)

<∞ :=
⋃

κ∈N

N
(∞)

κ .
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The class N
(∞)

<∞ previously appeared in many papers in the context of Sturm–
Liouville equations with singular endpoints or singular perturbations, see, e.g. [14],
[15], [35] and the papers mentioned in the Introduction.

Slightly more generally, we also consider the subclasses of N<∞ of all functions
which attain a certain value τ ∈ R at ∞ with maximal possible multiplicity. Related
notions were considered, e.g. in [3, Definition 3.9].

DEFINITION 2.3. Let τ ∈ R . We denote by N
(τ)

κ the set of all functions q∈Nκ
such that

1
τ −q(z)

∈ N
(∞)

κ .

Further, we set
N

(τ)
<∞ :=

⋃
κ∈N

N
(τ)

κ .

Note that q ∈ Nκ implies that 1
τ−q ∈ Nκ .

REMARK 2.4. Let κ ∈ N and τ ∈ R . Then a function q ∈ Nκ belongs to N
(τ)

κ
if and only if

lim
z→̂i∞

z2κ−1(q(z)− τ
) ∈ [0,∞).

The class N
(∞)

<∞ admits an operator theoretic interpretation. In the language of
[33] and [36], the condition (2.3) means that ∞ is a generalized pole of non-positive
type with degree of non-positivity equal to ind− q . Equivalently, one can say that q
has a generalized pole of non-positive type at ∞ with maximal possible degree of non-
positivity permitted by the negative index and, consequently, no finite generalized poles
of non-positive type. More precisely, the statement in the following lemma is true,
which follows, e.g. from [36, Theorem 3.2] and which is used in Section 3. Recall that
the algebraic eigenspace at infinity of a linear relation A in a Pontryagin space P is
the set of all elements of Jordan chains at ∞ , where a Jordan chain at ∞ is a sequence
of vectors g0, . . . ,gn ∈ P with g0 = 0 such that (gi−1;gi) ∈ A for all i = 1, . . . ,n .

LEMMA 2.5. Let q ∈ Nκ . Moreover, let A be a self-adjoint relation in a Pon-
tryagin space (P, [ · , · ]) and v ∈ P such that

q(z) = q(z0)+ (z− z0)
[(

I +(z− z0)(A− z)−1)v,v], z ∈ ρ(A), (2.4)

where z0 ∈ ρ(A) is fixed and assume that this representation is minimal, i.e.

P = c.l.s.
{(

I +(z− z0)(A− z)−1)v : z ∈ ρ(A)
}

where c.l.s. stands for ‘closed linear span’. Then

q ∈ N
(∞)

κ ⇐⇒ ν∞(A) = κ

where ν∞(A) is the degree of non-positivity of ∞ , i.e. the maximal dimension of a non-
positive A−1 -invariant subspace of the algebraic eigenspace at infinity of A.
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b. Some classes of entire functions.

In this subsection we recall several classes of scalar and matrix-valued entire functions,
which are needed in the proofs in later sections. Note that an entire function is called
real if f (z) = f (z) for all z ∈ C . Moreover, we set f #(z) := f (z) . First we recall the
definition of the Pólya class; for details see, e.g. [4, Section 7].

DEFINITION 2.6. An entire function f belongs to the Pólya class if

(P1) f has no zeros in the upper half-plane C+ ;

(P2) f satisfies | f (z)|� | f (z)| for z ∈ C+ ;

(P3) for each fixed x ∈ R the function y �→ | f (x + iy)| is non-decreasing on
(0,∞) .

Let us next consider functions of bounded type; see, e.g. [43, Definition 3.15 and
Theorem 3.20] or [4, Section 8].

DEFINITION 2.7. A function that is analytic in the upper half-plane C+ is said to
be of bounded type if it can be written as a quotient f (z) = p(z)/q(z) of two analytic
functions which are bounded throughout C+ and where q is not identically equal to 0.

According to [4, Problem 24] it is possible to choose p and q such that q has no
zeros in C+ . One can define bounded type in the lower half-plane in a similar way.

REMARK 2.8.

(i) A function from N<∞ is of bounded type in the upper and lower half-planes; see,
e.g. [25, Proposition 2.4].

(ii) According to [4, Problem 34] an entire function f that satisfies | f (z)| � | f (z)|
for z ∈ C+ and is of bounded type in the upper half-plane belongs to the Pólya
class. In particular, a real entire function that is of bounded type in the upper
half-plane belongs to the Pólya class.

Next we recall a generalization of Hermite–Biehler functions, namely functions
belonging to the class H Bκ . When E : D → C is an analytic function defined on
some open subset D of the complex plane, we define a kernel KE as

KE(w,z) :=
i
2
· E(z)E(w)−E#(z)E#(w)

z−w
, z,w ∈ D.

For z = w this formula has to be interpreted appropriately as a derivative, which is
possible by analyticity. For more details see, e.g. [29, §2.e].

DEFINITION 2.9. Let E be a complex-valued function defined on C and let κ ∈
N0 . We write E ∈ H Bκ if
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(HB1) E is entire;

(HB2) E and E# have no common non-real zeros;

(HB3) the kernel KE has κ negative squares on C .

We use the notation
H B<∞ :=

⋃
κ∈N0

H Bκ

and write ind−E = κ to express that a function E ∈ H B<∞ belongs to H Bκ . The
class H B<∞ is called the indefinite Hermite–Biehler class.

It is a classical result that an entire function E belongs to the class H B0 if and
only if either it is a constant multiple of a real entire function which has no non-real
zeros, or it satisfies |E(z)| > |E(z)| for z ∈ C+ . For details see, e.g. [40, Chapter 7].

By means of the reproducing kernel KE , each function E ∈ H B<∞ generates a
Pontryagin space P(E) which consists of entire functions. This space is referred to as
the deBranges Pontryagin space generated by E ; see [1] and [25].

The indefinite Hermite–Biehler class is related to the generalized Nevanlinna class:
let E(z) ∈ H B<∞ and write E = A− iB with the real entire functions

A :=
1
2
(E +E#), B :=

i
2
(E −E#).

Then q = B
A belongs to N<∞ with ind− q = ind−E . This follows from the relation

KE(w,z) = A(z)Nq(w,z)A(w), z,w ∈ C, A(z),A(w) �= 0.

Finally in this subsection, let us define a class of matrix-valued entire functions.
Functions from this class appear later as fundamental solutions of general Hamiltoni-
ans. When W is an entire 2×2-matrix-valued function that satisfies W (z)JW (z)∗ = J
for z ∈ C , then a kernel HW is defined by

HW (w,z) :=
W (z)JW (w)∗ − J

z−w
, z,w ∈ C,

where J is as in (2.1). For z = w this formula has to be interpreted appropriately as a
derivative.

DEFINITION 2.10. Let W = (wi j)2
i, j=1 be a 2×2-matrix-valued function and let

κ ∈ N0 . We write W ∈ Mκ if

(M1) the entries wi j of W are real entire functions;

(M2) detW (z) = 1 for z ∈ C , and W (0) = I ;

(M3) the kernel HW has κ negative squares on C .
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Note that the conditions (M1) and (M2) together imply that W (z)JW (z)∗ = J . More-
over, we set

M<∞ :=
⋃

κ∈N0

Mκ

and write ind−W = κ to express that W ∈ Mκ .

Define a map t : M<∞ → R by

t(W ) := tr
(
W ′(0)J

)
= w′

12(0)−w′
21(0) (2.5)

for W = (wi j)2
i, j=1 ∈ M<∞ . This map t is used, e.g. to measure the growth of the

unbounded entry of the fundamental solution of an indefinite Hamiltonian.

Each matrix W ∈ M<∞ generates, by means of the kernel HW , a reproducing
kernel Pontryagin space K(W ) whose elements are 2-vector-valued entire functions;
see, e.g. [1] and [29, §2.a].

If W = (wi j)2
i, j=1 ∈ M<∞ , then the function E(z) := w11(z)− iw12(z) belongs to

H B<∞ with ind−E � ind−W , which follows from the relation

KE(w,z) = (1, 0)HW (w,z)
(

1
0

)
z,w ∈ C;

cf. [29, §2.e]. Hence w12
w11

belongs to N<∞ .

c. Boundary triples.

Let us also recall the notion of boundary triples as introduced in [28, Definition 2.7].
This definition is slightly different from but related to the one in [6].

DEFINITION 2.11. A triple (P,T,Γ) is called a boundary triple if

(i) (P, [·, ·]) is a Pontryagin space, which carries a conjugate linear and anti-isometric
involution · : P → P ;

(ii) T is a closed linear relation in P that is real, i.e.

( f ;g) ∈ T ⇐⇒ ( f ;g) ∈ T ;

(iii) Γ ⊆ T × (C2×C
2) is a closed linear relation with domΓ = T , which is compat-

ible with the involution · : P → P in the sense that(
( f ;g);(a;b)

) ∈ Γ ⇐⇒ (
( f ;g);(a;b)

) ∈ Γ;

(iv) the following abstract Green identity holds:

[g,u]− [ f ,v] =
(

c
d

)∗(
J 0
0 −J

)(
a
b

)
when

(
( f ;g);(a;b)

)
,
(
(u;v);(c;d)

) ∈ Γ;

(v) kerΓ = T ∗ .
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In applications, e.g. to differential operators, often the relation T in a boundary
triple (P,T,Γ) is the maximal relation, e.g. the differential operator with no boundary
conditions imposed; it is the adjoint of a symmetric relation. The relation Γ often maps
the functions in the domain of T (or more precisely, pairs in the relation T ) onto the
boundary values at the left and/or right endpoint of the interval or linear combinations
of them. The abstract Green identity is then nothing else than a classical Green or
Lagrange identity, which follows from integration by parts. In the next subsection a
boundary triple associated with a classical (positive definite) Hamiltonian system is
recalled. Note that a,b,c,d in the abstract Green identity are 2-vectors.

Two boundary triples (P,T,Γ) , (P̃, T̃ , Γ̃) are called isomorphic if there exists a
pair (ϖ ,φ) (which is then called an isomorphism) such that

(i) ϖ is an isometric isomorphism from P onto P̃ that is compatible with the
respective involutions in the sense that ϖ(x) = ϖ(x) for x ∈ P ;

(ii) φ is an isometric isomorphism from
(
C2×C2,

((
J 0
0 −J

)·, ·)) onto itself;

(iii) (ϖ ×ϖ)(T ) = T̃ ;

(v) Γ̃◦ (ϖ ×ϖ)|T = φ ◦Γ .

REMARK 2.12. For certain boundary triples one can construct a matrix function
ω from the class Mκ and an isometric isomorphism Ξ from P onto the reproducing
kernel space K(ω) such that the symmetric operator T ∗ corresponds to the operator
of multiplication by the independent variable in the space K(ω) ; for details see [29,
Definition 4.3 and Theorem 4.19]. This construction is related to Krein’s representation
of entire operators.

d. More facts about Hamiltonian systems.

A function H : (a,b) → R2×2 , where (a,b) is an interval with −∞ � a < b � ∞ , is
called a Hamiltonian if

the values of H are real non-negative matrices and the function H is
locally integrable and does not vanish on any set of positive measure.

(2.6)

In connection with the differential equation (1.1) one often considers also the matrix
differential equation

∂
∂x

W (x;z)J = zW (x;z)H(x), x ∈ (a,b), (2.7)

where W (x;z) is a 2× 2-matrix for x ∈ (a,b) , z ∈ C . If a ∈ R and (1.1) is in the
limit circle case at a (recall the definition from the Introduction), then the differential
equation (2.7) together with the initial condition W (a;z) = I has a unique solution,
which we denote by WH , cf. (1.3). The rows of WH satisfy the differential equation
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(1.1) and y(x) = [(a1, a2)WH(x;z)]T is a solution of (1.1) satisfying the initial condi-
tions y(a) = (a1, a2)T . Moreover, if WH,x1(x;z) denotes the solution of (2.7) satisfying
the initial condition WH,x1(x1;z) = I with some x1 ∈ (a,b) , then

WH(x;z) = WH(x1;z)WH,x1 (x;z)

for x ∈ [x1,b) .

2.13. Properties of WH . Assume that (1.1) is in the limit circle case at a . For
fixed x ∈ (a,b) the matrix function WH(x; ·) belongs to the class M0 , where M0

was defined in Definition 2.10. If one combines Theorems 38, 27 and 25 in [4], then
it follows that the entries WH(x; ·)i j , i, j = 1,2, of WH(x; ·) are of bounded type in
the upper half-plane, and since the functions are real, also in the lower half-plane.
By Remark 2.8 (ii) this implies that WH(x; ·)i j belongs to the Pólya class. Since
WH(x;0)12 = WH(x;0)21 = 0, it follows from [4, Lemma 1 in §1.7] that

WH(x;z)12

z
and

WH(x;z)21

z
(2.8)

are also from the Pólya class. Moreover, the function E(z) := WH(x;z)11 − iWH(x;z)12

belongs to the Hermite–Biehler class H B0 . Hence E induces a de Branges Hilbert
space P(E) of entire functions and WH(x;·)12

WH(x;·)11
∈ N0 ; see §2.b and [4].

If H is in the limit point case at b , then, with the notation (2.2), the Titchmarsh–
Weyl coefficient qH for (1.1) (as defined in (1.4)) can be written as

qH(z) = lim
x↗b

WH(x;z)� τ, z ∈ C\R,

for τ ∈ R∪{∞} , where the limit exists locally uniformly in C\R and is independent
of τ .

With t from (2.5) we have

t
(
WH(x2; ·)

)− t
(
WH(x1; ·)

)
=

x2∫
x1

trH(x)dx (2.9)

for a� x1 < x2 < b as can easily be seen.

2.14. Indivisible intervals. An interval (α,β ) ⊆ (a,b) is called H -indivisible of
type φ if

H(x) = h(x)ξφ ξ T
φ , x ∈ (α,β ),

where ξφ is defined in (2.1) and h is a locally integrable function that is positive almost
everywhere; see, e.g. [22]. If (α,β ) is H -indivisible, then, for α < x1 < x2 < β ,

WH(x1;z)−1WH(x2;z) = W(l,φ)(z)
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where

W(l,φ)(z) :=

(
1− lzsinφ cosφ lzcos2 φ

−lzsin2 φ 1+ lzsinφ cosφ

)
(2.10)

and

l =
x2∫

x1

h(x)dx.

The number
∫ β

α h(x)dx =
∫ β

α trH(x)dx is called the length of the indivisible interval
(α,β ) , which is infinite exactly when H is singular at α or β .

2.15. The maximal relation Tmax(H) . With a Hamiltonian H a maximal linear
relation (i.e. a multi-valued operator), Tmax , can be associated as follows (for details
see, e.g. [28, §2]). First we recall the definition of the space L2(H) : it is the space of
measurable functions f defined on (a,b) with values in C

2 which satisfy
∫ b
a f ∗H f < ∞

and have the property that ξ T
φ f is constant on every indivisible interval of type φ ,

factorized with respect to the equivalence relation =H where

f =H g ⇐⇒ H( f −g) = 0 a.e.

In the space L2(H) the maximal relation Tmax(H) is defined as

Tmax(H) :=
{
( f ;g) ∈ (L2(H)

)2
: ∃ representatives f̂ , ĝ of f , g such that

f̂ is locally absolutely continuous and f̂ ′ = JHĝ a.e. on (a,b)
}
.

Sometimes we need Green’s identity in the following form: if f and u are absolutely
continuous functions on [x1,x2] where a < x1 < x2 < b and g, v are such that

f ′ = JHg, u′ = JHv, a.e. on (x1,x2),

then
x2∫

x1

u∗Hg−
x2∫

x1

v∗H f = u(x1)∗J f (x1)−u(x2)∗J f (x2); (2.11)

see [28, Remark 2.20].
With a Hamiltonian H defined on an interval (a,b) also a boundary relation

Γ(H) ⊆ L2(H)2 × (C2)2 for Tmax(H) is associated: a pair
(
( f ;g);(c;d)

)
belongs to

Γ(H) if and only if there exists a representative f̂ of f that is absolutely continuous
such that

c =

⎧⎨⎩ f̂ (a) if H is regular at a,

0 if H is singular at a,
d =

⎧⎨⎩ f̂ (b) if H is regular at b,

0 if H is singular at b.

For details see, e.g. [28, Theorems 2.18 and 2.19].
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Let us also recall some properties of Hamiltonian systems which are connected
with the behaviour of H at an endpoint. They are needed in the definition of general
(indefinite) Hamiltonians in §2.e.

2.16. Hilbert–Schmidt resolvents. Let H be a Hamiltonian defined on some in-
terval (a,b) .

(i) We say that H satisfies the condition (HS− ) if for one (and hence for all)
x0 ∈ (a,b) the resolvents of self-adjoint extensions of (Tmax(H|(a,x0)))

∗ , i.e. self-
adjoint restrictions of Tmax(H|(a,x0)) , are Hilbert–Schmidt operators. Similarly,
we say that (HS+ ) holds for H if for one (and hence for all) x0 ∈ (a,b) the re-
solvents of self-adjoint extensions of (Tmax(H|(x0,b)))∗ are Hilbert–Schmidt op-
erators, cf. [28, §2.3.a].

(ii) It follows, with an obvious change of variable, from [28, Theorem2.27] that these
properties can be characterized explicitly in terms of H . Namely, H satisfies
(HS− ) if and only if there exists a number φ ∈ R such that for one (and hence
for all) x0 ∈ (a,b)

(I−φφφ ) x0∫
a

ξ T
φ Hξφ < ∞,

where ξφ is defined in (2.1);

(HS−
φφφ ) with M(x) :=

∫ x
x0

H(y)dy ,∣∣∣∣∣∣
x0∫
a

ξ T
φ+ π

2
Mξφ+ π

2
ξ T

φ Hξφ

∣∣∣∣∣∣< ∞.

If H is in the limit point case at a and satisfies (HS− ), then the number φ ∈ [0,π)
such that (I−φ ) and (HS−

φ ) hold is uniquely determined; in this case we denote
this unique φ by φ−(H) . Clearly, φ−(H) does not depend on the choice of the
cutting point x0 .

The property (HS+ ) is characterized by corresponding conditions (I+
φ ), (HS+

φ ).
The unique angle φ is denoted by φ+(H) in this case and again does not depend
on x0 .

Let us explicitly consider the case φ = 0; the conditions (I−0 ) and (HS−
0 ) read as

follows:

(I−0 ) :

x0∫
a

h11(x)dx < ∞,

(HS−
0 ) :

x0∫
a

x0∫
x

h22(t)dt h11(x)dx < ∞.
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For (I−π
2
), (HS−

π
2
) one has to swap h11 and h22 .

If (a,c) , with some c ∈ (a,b) , is an indivisible interval of type φ and H is in the
limit point case at a , then (I−φ− π

2
) and (HS−

φ− π
2
) are satisfied but (I−φ ′ ), (HS−

φ ′ )

are not when φ − π
2 −φ ′ /∈ πZ .

2.17. Some growth condition. Let H be a Hamiltonian defined on some interval
(a,b) which satisfies (HS− ) and fix a point x0 ∈ (a,b) . Denote by I the operator
f �→ ∫ x

x0
JH(t) f (t)dt . Then there exist unique numbers ρk ∈ R , k ∈ N0 , such that

ρ0 = 1 and
n

∑
k=0

ρn−kI
kξφ−(H) ∈ L2(H|(a,x0)), n ∈ N0;

see [28, Corollary 3.5]. If ξφ−(H) is replaced by ξφ−(H)+ π
2
, this is no longer true for all

n ∈ N0 . We denote by Δ−(H) ∈ N0∪{∞} the number

Δ−(H) := inf
{

n ∈ N0 : ∃ω0, . . . ,ωn ∈ C such that ω0 �= 0 and

n

∑
k=0

ωn−kI
kξφ−(H)+ π

2
∈ L2(H|(a,x0))

}
,

where the infimum of the empty set is infinity.
The number Δ−(H) measures in a certain sense the growth of H towards a ; for

example Δ−(H) = 0 means that H is in the limit circle case at a because then all
constant vectors are in L2(H|(a,x0)) , i.e. H is integrable at a . If (a,c) is an indivisible
interval for some c ∈ (a,b) and H is in the limit point case at a , then Δ−(H) = 1.

An illustrative toy example occurs in connection with the Bessel equation as men-
tioned in the Introduction. One can show that

Hγ(x) =

(
xγ 0

0 x−γ

)
, x ∈ (0,∞),

satisfies (I−0 ) and (HS−
0 ), and hence (HS− ), and one has Δ−(Hγ) =

⌊ γ+1
2

⌋
.

Assume that Δ−(H) < ∞ and let x0 ∈ (a,b) . Then there exist unique absolutely
continuous functions wl , l ∈ N0 , defined on (a,b) such that

w0 ≡ ξφ−(H)+ π
2
,

w′
l+1 = JHwl, l ∈ N0,

wl(x0) ∈ span{ξφ−(H)+ π
2
}, l ∈ N0,

wl |(a,x0) ∈ L2(H|(a,x0)), l � Δ−(H).

(2.12)

Note that w0, . . . ,wΔ−(H)−1 do not belong to L2(H|(a,x0)) . It was shown in [28, Lemma
3.12 (i)] that Δ−(H) does not depend on the choice of the cutting point x0 ∈ (a,b) ; the
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functions wl of course do depend on x0 . The functions w0, . . . ,w2Δ−(H) are used, e.g.
to construct regularized boundary values in Theorem 5.1.

For a Hamiltonian H that satisfies (HS+ ) a number Δ+(H) is defined in a similar
manner.

e. General Hamiltonians in detail.

In this subsection we give the definition of a general Hamiltonian as in [28, §8]. This
definition is somewhat elaborate, and we give some explanations after the definition.

DEFINITION 2.18. A general Hamiltonian h is a collection of data of the follow-
ing kind:

(i) n ∈ N0 , σ0, . . . ,σn+1 ∈ R∪{±∞} with σ0 < σ1 < .. . < σn+1 ,

(ii) Hamiltonians Hi : (σi,σi+1) → R2×2 for i = 0, . . . ,n , which satisfy (2.6),

(iii) numbers ö1, . . . , ön ∈ N∪{0} and bi,1, . . . ,bi,öi+1 ∈ R , i = 1, . . . ,n , with bi,1 �= 0
when öi � 1,

(iv) numbers di,0, . . . ,di,2Δi−1 ∈ R where Δi := max{Δ+(Hi−1),Δ−(Hi)} for
i = 1, . . . ,n , (note that Δi will be finite by condition (H3) below),

(v) a finite subset E of {σ0,σn+1}∪⋃n
i=0(σi,σi+1) ,

which is assumed to be subject to the following conditions:

(H1) The Hamiltonian H0 is in the limit circle case at σ0 . If n� 1, then Hi is in
the limit point case at σi for i = 1, . . . ,n , and at σi+1 for i = 0, . . . ,n−1.

(H2) None of the intervals (σi,σi+1) , i = 1, . . . ,n− 1, is indivisible2. If n �
1 and Hn is in the limit point case at σn+1 , then also (σn,σn+1) is not
indivisible.

(H3) The Hamiltonian H0 satisfies (HS+ ) if n � 1; Hi satisfies (HS− ) and
(HS+ ) for i = 1, . . . ,n− 1, and Hn satisfies (HS− ). We have Δi < ∞ ,
i = 1, . . . ,n .

(H4) We have φ+(Hi−1) = φ−(Hi) , i = 1, . . . ,n .

(H5) Let i ∈ {1, . . . ,n} . If both Hi−1 and Hi end with an indivisible interval
towards σi , then d1 = 0. If, in addition, bi,1 = 0, then d0 < 0.

(E1) σ0,σn+1 ∈ E , and E ∩ (σi,σi+1) �= /0 for i = 1, . . . ,n− 1. If Hn is in
the limit point case at σn+1 , then also E ∩ (σn,σn+1) �= /0 . Moreover, E
contains all endpoints of indivisible intervals of infinite length which lie in⋃n

i=0(σi,σi+1) .

(E2) No point of E is an inner point of an indivisible interval.

2The interval (σ0,σ1) may be indivisible.
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The common value of φ+(Hi−1) and φ−(Hi) is denoted by φi .
The general Hamiltonian h is called regular or singular if Hn is in the limit circle

case or in the limit point case, respectively, at σn+1 . Moreover, we set

ind− h :=
n

∑
i=1

(
Δi +

⌊
öi

2

⌋)
+
∣∣{1� i� n : öi odd,bi,1 > 0

}∣∣. (2.13)

It is probably helpful to have a more intuitive picture of general Hamiltonians than
their precise definition. We may say that a general Hamiltonian models a canonical
system on [σ0,σn+1) whose Hamiltonian is allowed to have finitely many inner singu-
larities (these are the points σ1, . . . ,σn ), and which is in the limit circle or limit point
case at σn+1 depending whether h is regular or singular. However, H does not behave
too badly at its inner singularities in the sense of (H3).

A singularity itself contributes to the canonical system in two ways. The first one
is a contribution concentrated inside the singularity; passing the singularity influences a
solution, which is modelled by the parameters öi,bi j . Actually, elements in the model
space in which an operator acts can be considered as a combination of functions and
distributions concentrated in the singularities. The parameters öi and bi j are needed
for the interplay of the functions and the distributions. The functions themselves have
also a singular component, namely a linear combination of w0, . . . ,wΔi−1 ; here the
parameters di j and condition (H4) are used for interface conditions at the singularities.

The set E consists of points that split
⋃n

i=0(σi,σi+1) into smaller pieces each
containing at most one singularity. We can picture the situation as follows (E =
{s0, . . . ,sN+1} ):

h :

σ0
�

s0

H0

s1

×

�

b1 j
ö1

σ1
�
d1 j

φ+(H0)
�

φ−(H1)

H1

s2 s3

×

�

b2 j
ö2

σ2
�
d2 j

φ+(H1)
�

φ−(H2)

H2 Hn−1

sN

×

�

bn j
ön

σn
�
dn j

φ+(Hn−1)
�

φ−(Hn)

Hn

σn+1
�

sN+1

The numbers di j depend on the sk in the sense that, if the sk are moved, then the di j

have to be changed in order to obtain an isomorphic model. Moreover, the number of
constants di j needed for a fixed i depends on the behaviour of H in the neighbourhood
of σi , namely one needs 2Δi constants. On the other hand, the öi and bi j can be chosen
independently of the behaviour of H and they do not change when the sk are moved.

With a general Hamiltonian h a boundary triple (P(h),T (h),Γ(h)) can be asso-
ciated, whose definition is quite involved; see [28]. The Pontryagin space P(h) , which
has negative index ind− h , is obtained as a completion and is therefore not very acces-
sible. For a special case we shall consider a more concrete realization of the model
space and the maximal relation T (h) . In [28, Definition 8.5] a mapping ψ(h) was
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defined that maps an element F in P(h) onto some measurable function defined on⋃n
i=0(σi,σi+1) , which represents the ‘function part’ of F .

Analogously to the classical positive definite case where the fundamental solution
WH can be associated with the Hamiltonian H one can define a ‘fundamental solution’
ωh for an indefinite Hamiltonian h where ωh(x;z) is a 2× 2-matrix for every x ∈
[σ0,σ1)∪⋃n

i=1(σi,σi+1) and z ∈ C . For fixed z it satisfies the differential equation
(2.7) on every interval between the singularities and one has ωh(σ0;z) = I for every
z∈C . Moreover, for fixed x , ωh(x; ·) is an entire function belonging to the class M<∞
such that x �→ ind− ωh(x; ·) is non-decreasing, constant between the singularities and

max

{
ind− ωh(x; ·) : x ∈ [σ0,σ1)∪

n⋃
i=1

(σi,σi+1)
}

= ind− h.

The definition of ωh is quite involved, in particular, how one can jump over a singular-
ity; for details see [29, Definition 5.3]. The function ωh is called maximal chain if h is
singular and finite maximal chain if h is regular.

In the case when the indefinite Hamiltonian h is singular one can define the
Titchmarsh–Weyl coefficient qh in a similar way as in the positive definite case:

qh(z) := lim
x↗σn+1

ωh(x;z)� τ, z ∈ C\R,

with τ ∈R∪{∞} ; the limit exists locally uniformly on C\R with respect to the chordal
metric on the Riemann sphere C , defines a meromorphic function on C \R , and the
limit is independent of τ . The Titchmarsh–Weyl coefficient qh belongs to the class
Nκ where κ = ind− h ; see [30, Theorem 1.4]. At the interior singularities σ1, . . . ,σn

one can define intermediate Weyl coefficients, qh,σi , by

qh,σi(z) := lim
x→σi

ωh(x;z)� τ, z ∈ C\R, i = 1, . . . ,n, (2.14)

again for τ ∈ R∪{∞} . It is an essential and non-trivial fact that the limits from both
sides of the singularity coincide; see [27, Theorem 5.6].

2.19. Splitting of general Hamiltonians. On working with general Hamiltonians
one often uses a splitting-and-pasting process. Let us briefly recall how a general
Hamiltonian h can be split into smaller parts. Let h be given by the data

σ0, . . . ,σn+1, H0, . . . ,Hn, öi,bi j,di j, i = 1, . . . ,n, E,

and let s ∈⋃n
i=0(σi,σi+1) be not inner point of an indivisible interval. Then a splitting

of h into two general Hamiltonians, h�s and hs� , can be defined. Namely, h�s is given
by the data (k is such that σk < s < σk+1 )

σ0, . . . ,σk,s, H0, . . . ,Hk|(σk,s),

öi,bi j,di j, i = 1, . . . ,k−1, ök,bk j, d̃k j, (E ∩ [σ0,s])∪{s},
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where the numbers d̃k j depend on the location of s , cf. [29, Definition 3.47]. The
general Hamiltonian hs� is given by data

s,σk+1, . . . ,σn+1, Hk|(s,σk+1),Hk+1, . . . ,Hn,

ök+1,bk+1, j, d̃k+1, j, öi,bi j,di j, i = k+2, . . . ,n, (E ∩ [s,σn+1])∪{s},

where again d̃k+1, j depend on the location of s .
If s = σk , we let h�s be given by

h�s : σ0, . . . ,σk, H0, . . . ,Hk−1,

öi,bi j,di j, i=1, . . . ,k−1, (E ∩ [σ0,σk])∪{σk}.

These notions have been studied in detail in [29]. In particular, it was shown that split-
ting of general Hamiltonians gives rise to splitting of operator models, and it is compat-
ible with fundamental solutions. In particular, the model space P(h) is isomorphic to
P(h�s) [+̇]P(hs�) , where [+̇] denotes a direct and orthogonal sum in the Pontryagin
space P(h) . Elements in T (h) can be identified with sums of elements from P(h�s)
and P(hs�) where boundary values of the latter have to coincide at s . For details see
[29, §3.c/e, §5.d].

For P = P(h�s) an ‘isomorphism Ξ ’ as in Remark 2.12 can be constructed. It
is an isomorphism from P(h�s) onto K(ωh(s)) and denoted by Ξs .

f. A boundary triple for a certain regular general Hamiltonian.

As mentioned above, the construction of the boundary triple (P(h),T (h),Γ(h)) is
quite complicated and not easy to use. For singular general Hamiltonians with one sin-

gularity a more explicit form of this model, i.e. a boundary triple (
�

P(h),
�
T (h),

�
Γ(h))

that is isomorphic to the original one, was constructed in [38]. This form turned
out to be more convenient for some purposes and is more intuitive in the sense that
P(h) is a finite-dimensional extension of a natural function space and T (h) is a finite-
dimensional perturbation/extension of a natural differential operator in this function
space.

In the present paper we use a variant of this model for regular general Hamiltonians
of the class H π

2
.

2.20. Particular form of h . Let h ∈ H π
2

be given by the data

σ0,σ1,σ2, H0,H1, ö,b j,d j, E,

such that σ1 is not left endpoint of an indivisible interval, σ2 < ∞ , E = {σ0,σ2} , and
bö+1 = 0.

Note that φ+(H0) = 0 because of (gH π
2
) and therefore also φ−(H1) = 0. Since

Δ+(H0) = 1, we have Δ := Δ1 = Δ−(H1) . Further, denote by H the function defined as
H0 on (σ0,σ1) and as H1 on (σ1,σ2) and let L2(H) = L2(H0)⊕L2(H1) . Moreover, let
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wl , l ∈N0 , be the unique absolutely continuous functions defined on [σ0,σ1)∪(σ1,σ2]
with the properties that

w0 =
(

0
1

)
, w′

l+1 = JHwl, l ∈ N0, (2.15)

wl(σ0),wl(σ2) ∈ span

{(
0
1

)}
, l ∈ N0, (2.16)

wl ∈ L2(H), l � Δ; (2.17)

cf. (2.12).
Then {w0, . . . ,wΔ−1} is linearly independent modulo L2(H) by [28, Lemma 3.6].

We define the function space

L2
Δ(H) := L2(H)+̇ span

{
wk : k = 0, . . . ,Δ−1

}
and the differential operator TΔ,max(H) (or, more precisely, its graph) by

TΔ,max(H) :=
{
( f ;g) ∈ L2

Δ(H)×L2
Δ(H) : ∃ f̂ absolutely continuous

representative of f s.t. f̂ ′ = JHg
}
.

Now we can define a boundary triple (
�

P(h),
�
T (h),

�
Γ(h)) which will turn out to be

isomorphic to the original model (P(h),T (h),Γ(h)) .

DEFINITION 2.21. Let h be a general Hamiltonian of the form described in 2.20.

Then
�

P(h) ,
�
T (h) and

�
Γ(h) are defined as follows.

The base space
�

P(h) . Set

�

P(h) := L2
Δ(H)×C

Δ ×C
ö.

Elements of
�

P(h) are generically written as F = ( f ;ξ,α) with ξ= (ξ j)Δ−1
j=0 and α=

(α j)ö
j=1 or G = (g;η,β) with η= (η j)Δ−1

j=0 and β= (β j)ö
j=1 . Note that the case ö = 0

is allowed.
By the definition of L2

Δ(H) and the fact that w0, . . . ,wΔ−1 are linearly independent
modulo L2(H) , for given f ,g ∈ L2

Δ(H) , there exist unique scalars λl , μl , l = 0, . . . ,
Δ−1, such that

f̃ := f −
Δ−1

∑
l=0

λlwl, g̃ := g−
Δ−1

∑
l=0

μlwl ∈ L2(H). (2.18)

The inner product on
�

P(h) . If ö > 0, define numbers c1, . . . ,cö recursively by

c1b1 = −1;
k

∑
j=1

c jbk− j = 0, k = 2, . . . , ö. (2.19)
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On
�

P(h) an inner product is defined by

[F,G] = ( f̃ , g̃)L2(H) +
Δ−1

∑
k=0

λkηk +
Δ−1

∑
k=0

ξkμk +
ö

∑
k,l=1

ck+l−öαkβl

for F and G as above.

The maximal relation
�
T (h) . Let F = ( f ;ξ,α), G = (g;η,β) ∈ �

P(h) and λl,μl be the

scalars as above. Then (F ;G) ∈ �
T (h) if and only if

(i) ( f ;g) ∈ TΔ,max(H)

(which implies that μk = λk+1 , k = 0, . . . ,Δ−2);

(ii) for all k = 0, . . . ,Δ−2,

ξk = ηk+1 +
1
2

μΔ−1dΔ+k +
1
2

λ0dk +
(
wk+1(σ2)

)
2 f (σ2)1;

(iii)
ξΔ−1 =

∫ σ2

σ1

(wΔ)∗Hg̃+
1
2

Δ−1

∑
l=0

λldl+Δ−1 + μΔ−1d2Δ−1

+
(
wΔ(σ2)

)
2 f (σ2)1−

⎧⎨⎩β1, ö > 0,

0, ö = 0;

(iv) if ö > 0, then

α j = μΔ−1bö− j+1 +

⎧⎨⎩β j+1, j = 1, . . . , ö−1,

0, j = ö.
(2.20)

Here f (σ2) denotes the value of the unique absolutely continuous representative with
f ′ = JHg (remember here that (σ1,σ2) is not indivisible).

The boundary operator
�
Γ(h) . The boundary relation is actually an operator. Let

(F ;G) ∈ �
T (h) , write F = ( f ;ξ,α) , G = (g;η,β) and let λl,μl be as in (2.18). Then

�
Γ(h)(F ;G) :=

⎛⎝⎛⎝η0 + f (σ2)1 +
1
2

Δ−1
∑
l=0

μldl

λ0

⎞⎠ ; f (σ2)

⎞⎠ . (2.21)

The two components of
�
Γ(h)(F ;G) can be interpreted as boundary values at the left and

right endpoints σ0 and σ2 , respectively; we denote these by πl ◦
�
Γ(h)(F ;G) and πr ◦

�
Γ(h)(F ;G) . The two components of πl ◦

�
Γ(h)(F ;G) are denoted by πl,1 ◦

�
Γ(h)(F ;G)

and πl,2 ◦
�
Γ(h)(F ;G) .
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PROPOSITION 2.22. Let h be a general Hamiltonian of the form 2.20. Then the

boundary triples (P(h),T (h),Γ(h)) and (
�

P(h),
�
T (h),

�
Γ(h)) are isomorphic.

Proof. Let h̃ be the general Hamiltonian that is given by the data

σ0,σ1,∞, H̃0 := H0, H̃1(t) :=

⎧⎨⎩H1(t), t ∈ (σ1,σ2),

I, t ∈ [σ2,∞),

ö,b j,d j, E := {σ0,σ2,∞}.

Then h̃ is of the form considered in [38]. Moreover, the boundary triple (
�

Pσ2(h̃),
�
Tσ2(h̃),

�
Γσ2(h̃)) , which was defined in [38, Definition 2.14], is isomorphic to (P(h̃),

T (h̃),Γ(h̃)) by definition, and has been described explicitly in [38, Theorem 2.15].
Note, however, that there is a typo in [38, Theorem 2.15 (v)], namely, there should be
a plus sign instead of a minus sign in front of μΔ−1 , as in (2.20). Let

�ισ2 := ι̊σ2 ◦ ισ2

be the isomorphism from P(h̃) onto
�

Pσ2(h̃) where ι̊σ2 and ισ2 were defined in [38,
§2].

The following diagram is commutative

P(h̃)

�ισ2
��

ϖ �� P(h) [+̇]L2(H|(σ2,∞))

�ι [+̇] id
��

�

Pσ2(h̃) �
ϖ

�� �

P(h) [+̇]L2(H|(σ2,∞))

(2.22)

where ϖ was defined in [28, Proposition 8.11],
�ι := ι̊ ◦ ι with

ι : P(h) → L2(H)×C
Δ ×C

Δ ×C
ö

as in [28, (4.9) and (4.10)] and

ι̊ : L2(H)×C
Δ ×C

Δ ×C
ö → L2

Δ(H)×C
Δ ×C

ö

( f ;ξ,λ,α) �→
(

f +
Δ−1

∑
k=0

λkwk;ξ,α

)
,

and
�
ϖ acts as

�
ϖ : F �→ ( f |(σ1,σ1)∪(σ1,σ2);ξ ,α) [+̇] f |(σ2,∞), F = ( f ;ξ ,α) ∈ �

Pσ2(h̃).

The definition of
�

P(h) and [38, Theorem 2.15] show that

(F̃ ;G̃) ∈ �
Tσ2(h̃) ⇐⇒

(F̃�σ2 ;G̃�σ2) ∈
�
T (h), ( f̃ |(σ2,∞); g̃|(σ2,∞)) ∈ Tmax(H|(σ2,∞)),

f̃ continuous at σ2

(2.23)
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where F̃ = ( f̃ ;ξ,α) , G̃ = (g̃;η,β) and F̃�σ2
:= ( f̃ |(σ1,σ1)∪(σ1,σ2);ξ ,α) . In this case,

πl ◦
�
Γ(h)(F̃�σ2 ;G̃�σ2) = πl ◦

�
Γσ2(h̃)(F̃ ;G̃),

πr ◦
�
Γ(h)(F̃�σ2 ;G̃�σ2) = πl ◦Γ(H|(σ2,∞))( f̃ |(σ2,∞); g̃|(σ2,∞)) = f (σ2).

(2.24)

Choose ( f1;g1),( f2;g2) ∈ Tmax(H|(σ2,∞)) with f1(σ2) =
(1
0

)
and f2(σ2) =

(0
1

)
.

Now let F = ( f ;ξ ,α), G = (g;η ,β ) ∈ �

P(h) be given and assume that (F ;G) ∈
�
T (h) . Then we set

f̃ := f χ(σ0,σ1)∪(σ1,σ2) + f (σ2)1 f1 + f (σ2)2 f2,

g̃ := gχ(σ0,σ1)∪(σ1,σ2) + f (σ2)1g1 + f (σ2)2g2,

and
F̃ := ( f̃ ;ξ ,α), G̃ := (g̃;η ,β ).

By (2.23), we have (F̃ ;G̃) ∈ �
Tσ2(h̃) . Hence(

(
�ι [+̇] id)−1 × (

�ι [+̇] id)−1)(F̃ ;G̃) ∈ (ϖ ×ϖ)(T (h̃))

by the commutativity of the diagram in (2.22), and it follows that (
�ι × �ι)−1(F ;G) ∈

T (h) . This shows that
(�ι−1 × �ι

−1) �
T (h) ⊆ T (h) . Moreover,

Γ(h)
(
(
�ι
−1 × �ι

−1
)(F ;G)

)
=

�
Γ(h)(F ;G)

by (2.24). The reverse inclusion
(�ι−1 × �ι

−1) �
T (h) ⊇ T (h) is seen in a similar way.

Hence the boundary triples (P(h),T (h),Γ(h)) and (
�

P(h),
�
T (h),

�
Γ(h)) are isomor-

phic. �

REMARK 2.23. If one defines a mapping
�ψ(h) by

�ψ(h)F := f where F = ( f ;ξ;α)
is as above, then it follows from the definition of ψ(h) that

�ψ(h) ◦ �ι = ψ(h) where
�ι

is as in the previous proof.

g. Rotation isomorphisms.

We consider general Hamiltonians of the class Hα on the one hand, and functions from

the class N
(cotα)

<∞ for α ∈ [0,π) on the other. A rotation isomorphism is a tool which
allows us to restrict explicit proofs to one particular value of α . Such isomorphisms
exist on all levels (Hamiltonians, functions, fundamental solutions etc.), and the corre-
sponding constructions are compatible with each other.

Let us now give the definitions, cf. [29, Definition 2.4]. For α ∈ R set

Nα :=

(
cosα sinα
−sinα cosα

)
.



INDEFINITE HAMILTONIAN SYSTEMS 503

DEFINITION 2.24. Let α ∈ R .

(i) If M is a 2×2-matrix, set

	α M := NαMN−1
α .

(ii) Application of ‘	α ’ to matrix functions is always understood pointwise, e.g.

(	α H)(x) :=	α
(
H(x)

)
, (	α ωh)(x;z) :=	α

(
ωh(x;z)

)
.

(iii) If q(z) is a scalar function, set

	α q(z) := Nα � q(z).

(iv) If h is a general Hamiltonian given by the data

σi, Hi, öi,bi j,di j, E,

let 	α h be the general Hamiltonian given by

σi, 	α Hi, öi,bi j,di j, E.

Some practical computational rules have been collected after [29, Definition 2.4] and
in [29, (2.16), (2.24), (3.1)].

Some compatibility properties of the operations ‘	α ’ on the different levels are,
for example,

ω	α h =	α ωh and q	αh =	α qh ,

cf. [29, Lemma 5.14].

LEMMA 2.25. Let H be a Hamiltonian defined on an interval (a,b) , let β ∈ R ,
and set H̃ :=	β H . Then H satisfies (HS− ) if and only if H̃ does. In this case,
φ−(H̃) = φ−(H)−β .

Assume that H (and thus also H̃ ) satisfies (HS− ). Then Δ−(H̃) = Δ−(H) . If
Δ−(H) (and thus also Δ−(H̃)) is finite, and wl , w̃l , l ∈ N0 , denote the corresponding
functions (2.12), then w̃l = Nβ wl , l ∈ N0 .

Proof. We have f T H f = (Nβ f )T (	β H)(Nβ f ) , and hence the map f �→ Nβ f is
an isometric isomorphism from L2(H|(a,x0)) onto L2(H̃|(a,x0)) . In particular,

(I−α ) for H ⇐⇒ (I−α−β ) for 	β H.

As in the definition of the condition (HS−
α ) let M be an anti-derivative of H and M̃ an

anti-derivative of H̃ . If M and M̃ are defined by integrating from the same reference
point, then M̃ =	β M , and hence

ξ T
α+ π

2
Mξα+ π

2
= (Nβ ξα+ π

2
)T (	β M)(Nβ ξα+ π

2
) = ξ T

(α−β )+ π
2
M̃ξ(α−β )+ π

2
.
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Thus also
(HS−

α ) for H ⇐⇒ (HS−
α−β ) for 	β H

and φ−(H̃) = φ−(H)−β . Assume that H satisfies (HS− ) and that Δ−(H) < ∞ . Let
wl , l ∈ N0 , be the unique functions with (2.12), and set

vl := Nβ wl , l ∈ N0.

Then

v0 = ξφ−(H)+ π
2 −β = ξφ−(H̃)+ π

2
,

vl |(a,x0) ∈ L2(H̃|(a,x0)), l � Δ−(H),

vl(x0) ∈ span{ξφ−(H)+ π
2 −β}, l ∈ N0,

and

v′l+1 = Nβ w′
l+1 = Nβ JHwl = JNβ HN−1

β (Nβ wl) = JH̃vl .

It follows that Δ−(H̃) � Δ−(H) , and hence, in particular, Δ−(H̃) < ∞ . Applying the
above argument and the rotation 	−β starting from H̃ we obtain Δ−(H) � Δ−(H̃) .
Moreover, we see that the functions vl , l ∈ N0 , satisfy (2.12) for H̃ . �

In the present context it is important to know how the classes Hα and N
(cotα)

<∞ ,
respectively, transform under application of a rotation isomorphism.

LEMMA 2.26. Let h ∈ Hα , and let β ∈ R . Then 	β h ∈ Hα−β .

Proof. It is obvious from the definition of 	β h that the property (gHo.s. ) is inher-
ited. Since h satisfies (gHα ), we can write

H0(x) = h0(x) ·ξαξ T
α , x ∈ (σ0,σ1),

with some scalar function h0 . It follows that

	β H0(x) = h0(x) · (Nβ ξα)(Nβ ξα)T = h0(x) ·ξα−β ξ T
α−β ,

and hence 	β h satisfies (gHα−β ). �

LEMMA 2.27. Let β ∈ R . Then q ∈ N
(∞)

<∞ if and only if 	β q ∈ N
(−cotβ )

<∞ .

Proof. The case when β ∈ πZ is trivial. So let us assume that β /∈ πZ . We have

(	β q)(z) =
cosβ ·q(z)+ sinβ
−sinβ ·q(z)+ cosβ

=
cotβ ·q(z)+1
−q(z)+ cotβ
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and therefore

1
−cotβ − (	β q)(z)

=
−q(z)+ cotβ

q(z)cotβ − cot2 β − (q(z)cotβ +1
)

=
1

1+ cot2 β
· (q(z)− cotβ

)
.

Hence

	β q ∈ N
(−cotβ )

<∞ ⇐⇒ 1
−cotβ−	β q

∈ N
(∞)

<∞ (by definition)

⇐⇒ 1
1+ cot2 β

· (q− cotβ
) ∈ N

(∞)
<∞

⇐⇒ q ∈ N
(∞)

<∞ . �

3. Characterisation of Titchmarsh–Weyl coefficients

In this section we identify the properties (gHo.s. ), (gHα ) (defined in Definition 1.1
in the introduction) as being equivalent to the fact that the Titchmarsh–Weyl coefficient

belongs to the class N
(τ)

<∞ where τ = cotα . This result is a typical instance of the in-
tuition that the behaviour of the Hamiltonian at its left endpoint relates to the behaviour
of the Titchmarsh–Weyl coefficient at ∞ .

THEOREM 3.1. Let h be a singular general Hamiltonian with ind− h > 0 and let
α ∈ [0,π) . Then h ∈ Hα if and only if its Titchmarsh–Weyl coefficient qh belongs to

the class N
(cotα)

<∞ .

We first prove the statement for α = 0, in which case the class under consideration

is N
(∞)

<∞ . The required statement for other values of α then follows easily by applying
rotation isomorphisms. The method used for the proof is purely operator-theoretic:
the desired equivalence follows, with the help of some Q-function theory, from the
computation of the algebraic eigenspace of a certain linear relation A at infinity, which
is discussed in Lemma 3.2 below. For this we recall some concepts and notations.
Let S(h) := ker(πl ◦Γ(h)) be the closed symmetric operator whose adjoint is T (h) ,
where T (h) is the maximal linear relation in the boundary triple (P(h),T (h),Γ(h))
associated with h , and let A be the self-adjoint extension of S(h) defined by A :=
ker(πl,1 ◦Γ(h)) . In other words, the self-adjoint relation A is obtained from T (h) by
imposing a boundary condition at the regular left endpoint σ0 (formally f1(σ0) = 0);
no boundary condition is needed at the singular endpoint σ2 .

A given indefinite Hamiltonian can be decomposed into a finite number of ‘el-
ementary indefinite Hamiltonians’ and positive definite Hamiltonians using the split-
ting points in the set E , where elementary indefinite Hamiltonians contain exactly
one singularity; see [28, §4] and 2.19. Unless dimP(hi) = 1, the model Pontryagin
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space corresponding to such an elementary indefinite Hamiltonian hi contains elements
δ0, . . . ,δΔi−1+öi such that the pairs (δk−1;δk) , k = 1, . . . ,Δi−1+ öi , are contained in the
maximal relation T (hi) ; see [28, Definitions 4.5 and 4.11 and Proposition 4.17 (iv)]. If
at least on one side of the singularity H is just one indivisible interval of infinite length,
then also (0;δ0) ∈ T (hi) by [28, (4.14) in Definition 4.11].

In the following lemma a connection between the algebraic eigenspace of A at
infinity and the behaviour of H at σ0 is established. In particular, this algebraic
eigenspace at infinity depends on the fact whether h starts with an indivisible inter-
val of type 0 at σ0 and the length of this indivisible interval.

LEMMA 3.2. Let h be a singular general Hamiltonian with κ := ind− h > 0 ,
and let h be given by the data n,σ0, . . . ,σn+1 , H0, . . . ,Hn , öi,bi,1, . . . ,bi,öi+1 , di,0, . . . ,
di,2Δi−1 . Let A be as above and denote by EA(∞) the algebraic eigenspace of A at
infinity.

(a) If h does not start with an indivisible interval of type 0 , then EA(∞) = {0} , i.e.
A is an operator.

(b) Assume that h starts with a maximal indivisible interval of type 0 of finite posi-
tive length and let s0 be the right endpoint of this interval. Moreover, decompose
P(h) as P(h) = P(h�s0) [+̇]P(hs0�) . Then EA(∞) = P(h�s0) .

(c) Assume that h starts with an indivisible interval of type 0 of infinite length and
that σ1 is left endpoint of a maximal indivisible interval (which also must be of
type 0 ) and let s0 be the right endpoint of this interval. Moreover, decompose
P(h) as P(h) = P(h�s0) [+̇]P(hs0�) . Then EA(∞) = P(h�s0) .

(d) Assume that h starts with an indivisible interval of type 0 with infinite length
and that σ1 is not left endpoint of an indivisible interval. Choose a point s0 ∈
(σ1,σ2) that is not inner point of an indivisible interval, and decompose P(h)
as P(h) = P(h�s0) [+̇]P(hs0�) . Then

EA(∞) = span{δ0, . . . ,δΔ1+ö1−1} ⊆ P(h�s0).

Moreover, in the cases (b) , (c) and (d) the algebraic eigenspace EA(∞) is spanned
by one maximal Jordan chain of A at infinity and the dimension of a maximal A−1 -
invariant non-positive subspace is equal to ind− h�s0 .

Proof. Let us first prove the statements in (a)–(d) . Assume that mulA �= {0} ,
i.e. that there exists an element (0;g) ∈ T (h) , g �= 0, with πl,1Γ(h)(0;g) = 0. Since
S(h) is an operator, we must have πl,2Γ(h)(0;g) �= 0. Hence [29, Lemma 3.37] implies
that h starts with an indivisible interval of type 0. This shows that the implication in
(a) is true.

Next assume that h is of the form as described in (b) or (c) and let s0 be the
point specified there. Set

A(hs0�) := ker(πl,1 ◦Γ(hs0�)), S1(h�s0) := ker((πl,1 ×πr)◦Γ(h�s0)),
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and let P�s0 and Ps0� be the orthogonal projections according to the decomposition
P(h) = P(h�s0) [+̇]P(hs0�) .

We shall show that
EA(∞) =

⋃
n∈N

mulS1(h�s0)
n. (3.1)

First note that S1(h�s0)⊆ A , and hence the inclusion ‘⊇ ’ holds trivially since EA(∞) =⋃
n∈N mulAn . Conversely, let g0 := 0 and g1, . . . ,gn ∈ P(h) be given such that

(gl−1;gl) ∈ A, l = 1, . . . ,n. (3.2)

Then, trivially, (P�s0gl−1;P�s0gl) ∈ S1(h�s0)
∗ and (Ps0�gl−1;Ps0�gl) ∈ T (hs0�) . By the

construction of the boundary relation Γ(h�s0) , we have πl,1 ◦Γ(h�s0) = πr,1 ◦Γ(h�s0) ;
see [28, Definition 4.5]. Hence

πl,1 ◦Γ(hs0�)(Ps0�gl−1;Ps0�gl) = πr,1 ◦Γ(h�s0)(P�s0gl−1;P�s0gl) = 0

for l = 1, . . . ,n , and therefore (Ps0�gl−1;Ps0�gl) ∈ A(hs0�) . Since hs0� does not start
with an indivisible interval of type 0, this implies that Ps0�gl = 0, l = 1, . . . ,n . If hs0�
is not just one indivisible interval of infinite length, it follows that

πr ◦Γ(h�s0)(P�s0gl−1;P�s0gl) = πl ◦Γ(hs0�)(Ps0�gl−1;Ps0�gl) = 0,

and hence that (P�s0gl−1;P�s0gl) ∈ S1(h�s0) . If hs0� is just one indivisible interval of
type α of infinite length, then α /∈ πZ and

πr ◦Γ(h�s0)(P�s0gl−1;P�s0gl) ∈ πl ◦Γ(hs0�)(Ps0�gl−1;Ps0�gl) = span{Jξα}.
However, πr ◦ Γ(h�s0)(P�s0gl−1;P�s0gl) ∈ span

{(0
1

)}
and α /∈ πZ , and thus again

(P�s0gl−1;P�s0gl) ∈ S1(h�s0) . This shows that the inclusion ‘⊆ ’ in (3.1) holds.
The Hamiltonian h�s0 is either positive definite and consists of just one indivisible

interval (namely in case (b)), or (namely in case (c)) its rotation 	 π
2
h�s0 is an ele-

mentary indefinite Hamiltonian of kind (B) or (C); see [28, §4]. In each of these cases,
inspection of the definition of Γ(h�s0) shows that⋃

n∈N

mulS1(h�s0)
n = P(h�s0).

Together with (3.1) this shows the assertions in (b) and (c) .
To prove (d) , assume that (σ0,σ1) is indivisible of type 0 and σ1 is not left

endpoint of an indivisible interval. Our aim is to show that, independently of the choice
of s0 , relation (3.1) holds. The inclusion ‘⊇ ’ is of course again trivial. For the converse
inclusion, let g0 := 0 and g1, . . . ,gn ∈ P(h) be given such that (3.2) holds. Choose
s1 ∈ (σ1,s0) such that s1 is not left endpoint of an indivisible interval of type 0 and
that dimK(ωh(s1, ·)−1ωh(s0, ·)) > n , where the reproducing kernel space K(W ) for a
matrix function W is defined in §2.b. The choice of s1 is possible because (σ1,σ2)
does not start with an indivisible interval at σ1 . Next, choose s2 ∈ (σ1,s1) such that
dimK(ωh(s2, ·)−1ωh(s1, ·)) > n . Since((

ψ(h)gl−1
)|(s2,s0);(ψ(h)gl

)|(s2,s0)) ∈ Tmax(H1|(s2,s0)),
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we obtain from [28, Lemma 2.23] that gl−1(s1) = 0, l = 1, . . . ,n . This gives (Ps1�gl−1;
Ps1�gl) ∈ S(hs1�) . However, S(hs1�) is an operator, and hence Ps1�gl = 0, l = 1, . . . ,n .
We see that (gl−1;gl) ∈ S1(h�s1) ⊆ S1(h�s0) , and hence that (3.1) holds.

In order to compute
⋃

n∈N mulS1(h�s0)
n , note first that

δ0, . . . ,δΔ1+ö1−1 ∈
⋃
n∈N

mulS1(h�s0)
n

by the properties of the δk ; see the paragraphs before this lemma. Hence it suffices
to show that the dimension of

⋃
n∈N mulS1(h�s0)

n cannot exceed Δ1 + ö1 . Let again
(gl−1;gl) ∈ S1(h�s0) , l = 1, . . . ,n , g0 = 0, be given. For z ∈ C denote by χ(z) the de-
fect elements of S1(h�s0) , i.e. χ(z) ∈ ker(S1(h�s0)

∗ − z) , with πl ◦Γ(h�s0)(χ(z);zχ(z))
=
(0
1

)
. Then

[gl,χ(z)] = z[gl−1,χ(z)], l = 1, . . . ,n,

and hence, by induction, gl ⊥ span{χ(z) : z ∈ C} , l = 1, . . . ,n . Applying the isomor-
phism Ξs0 , as defined at the end of §2.e, from P(h�s0) onto K(ωh(s0)) , we find that
Ξs0gl ∈ kerπ− , where π− is the projection onto the second component. However, we
know from [49, Lemma 6.3 (proof, subcase 3b)] that dimkerπ− = Δ1 + ö1 . As we
noted above, this estimate suffices to complete the proof of statement (d) .

Let us now prove the last statements. If dimEA(∞) = 1 in (b) or (c) , these are
trivial. Otherwise, in case (b) or (c) , the algebraic eigenspace EA(∞) is spanned by
the Jordan chain

δ0, . . . ,δö1 ,
1

b1,1

(
p0−

ö1+1

∑
l=2

b1,lδ2+ö1−l

)
;

see [28, Definition 4.5]. In case (d) , EA(∞) is spanned by the Jordan chain δ0, . . . ,
δΔ1+ö1−1 as we have seen above. In both cases the Gram matrix of EA(∞) with respect
to one of these Jordan chains has Hankel form, namely, (with c1, j as in (2.19))

⎛⎜⎝ 0 · · · c1,1
... . .

. ...
c1,1 · · · ∗

⎞⎟⎠ or

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 0 · · · 0
...

...
...

...
0 · · · 0 0 · · · 0
0 · · · 0 0 · · · c1,1
...

...
... . .

. ...
0 · · · 0 c1,1 · · · c1,ö1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
in cases (b) and (c) and case (d), respectively, where the first matrix is of size ö1 +2 and
second matrix of size Δ1 + ö1 . The dimension of a maximal A−1 -invariant non-positive
subspace is equal to the size of the maximal negative semi-definite square sub-matrix
of the Gram matrix located at the top left corner. Such a maximal sub-matrix is either
the zero matrix or a matrix that has zeros apart from one negative entry at the bottom
right corner. Since such an entry at the bottom right corner is c1,1 , in cases (b) and (c)
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the maximal size of such a negative semi-definite sub-matrix is equal to⌊
ö1 +2

2

⌋
+
{

1 if ö1 +2 is odd and c1,1 < 0

0 otherwise

}

=
⌊

ö1

2

⌋
+1+

{
1 if ö1 is odd and b1,1 > 0

0 otherwise

}
= ind− h�s0

according to (2.13) since Δ1 = 1 in this case. Similarly, for the case (d) the dimension
of a maximal A−1 -invariant non-positive subspace is equal to

Δ1 +
⌊

ö1

2

⌋
+
{

1 if ö1 is odd and b1,1 > 0

0 otherwise

}
= ind− h�s0 ,

which finishes the proof. �

Proof (of Theorem 3.1; Case α = 0 ) . We use the same notation as in the above
lemma. By [29, Proposition 5.19] the Titchmarsh–Weyl coefficient qh of h is a Q-
function of S(h) generated by A . Moreover, S(h) is completely non-self-adjoint by
[28, Theorem 8.6], and hence A is minimal. Thus qh has a minimal representation of
the form (2.4) in terms of A and hence we can apply Lemma 2.5, i.e. the asymptotics
of qh at infinity reflects precisely the geometric structure of EA(∞) .

First assume that qh ∈ N
(∞)

κ . If h does not start with an indivisible interval of
type 0, then limz→̂i∞

1
z qh(z) = 0 by [29, Proposition 6.1], which is a contradiction to the

assumption that q ∈ N
(∞)

κ . If h starts with an indivisible interval of type 0 and finite
(positive) length l , then limz→̂i∞

1
z qh(z) = l ∈ (0,∞) , which is again a contradiction.

Hence h starts with an indivisible interval of type 0 of infinite length, i.e. (gH0 ) is
satisfied. By Lemmas 2.5 and 3.2, we have ind−(h) = κ = ν∞(A) = ind−(h�s0) , where
s0 is as in Lemma 3.2. This implies that σ1 is the only singularity of h (since each
singularity contributes at least one negative square), i.e. (gHo.s. ) is satisfied.

Now assume that (gH0 ) and (gHo.s. ) are satisfied. It follows from (gH0 ) that in
Lemma 3.2 either case (c) or (d) occurs. Hence ν∞(A) = ind−(h�s0) . The assumption
(gHo.s. ) implies that ind−(h�s0) = ind−(h) = κ . By Lemma 2.5 it follows that qh ∈
N

(∞)
κ . �

Proof (of Theorem 3.1; General values of α ) . Let a singular general Hamiltonian
with ind− h > 0 be given which satisfies (gHo.s. ), and let α ∈ (0,π) .

By Lemma 2.26, h satisfies (gHα ) if and only if the general Hamiltonian 	α h

satisfies (gH0 ). We have q	αh = Nα � qh . By Lemma 2.27, qh ∈ N
(cotα)

<∞ if and only

if q	αh ∈ N
(∞)

<∞ .
Using the already proved case ‘α = 0’ of Theorem 3.1 we conclude that h satisfies

(gHα ) if and only if qh ∈ N
(cotα)

<∞ . �
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4. Partial continuity of the fundamental solution

Let α ∈ [0,π) and h ∈ Hα . Our aim in this section is to show that, after an
appropriate rotation, three entries of the (finite) maximal chain of matrices associated
with h are continuous at the singularity of h .

THEOREM 4.1. Let α ∈ [0,π) and h ∈ Hα . Moreover, let ωh be the (finite)
maximal chain of matrices associated with h , and set th(x) := t(ωh(x; ·)) , where t is
defined in (2.5). Then the following limit relations hold locally uniformly on C:

(limα)
lim

x↘σ1
ξ T

α− π
2

ωh(x;z)ξα− π
2

= lim
x↘σ1

ξ T
α ωh(x;z)ξα = 1,

lim
x↘σ1

ξ T
α− π

2
ωh(x;z)ξα = 0;

(lim′
α) lim

x↘σ1

ξ T
α ωh(x;z)ξα− π

2

|th(x)| · z = 1.

REMARK 4.2.

(i) Note that the quotient on the left-hand side of (lim ′
α ) is an entire function in z

since the numerator is zero for z = 0. Expressions like this have to be interpreted
as derivatives in the following.

(ii) The limit relations in (limα ) and (lim ′
α ) hold trivially when x approaches σ1

from the left. This follows since

ωh(x;z) = N∗
α− π

2

(
1 0

−th(x)z 1

)
Nα− π

2

for x ∈ [σ0,σ1) and hence

ξ T
α− π

2
ωh(x;z)ξα− π

2
= ξ T

α ωh(x;z)ξα = 1, ξ T
α− π

2
ωh(x;z)ξα = 0,

ξ T
α ωh(x;z)ξα− π

2

−th(x) · z = 1

for x ∈ [σ0,σ1) . Therefore (limα ) indeed expresses continuity at σ1 .

(iii) By (2.9) we have

th(x) = th(x0)−
x0∫
x

trH(t)dt

for any x0 ∈ (σ1,σ2) and, since H is in limit point case at σ1 , thus th(x) →−∞
as x ↘ σ1 . Hence

lim
t→σ1

∣∣ξ T
α ωh(x;z)ξα− π

2

∣∣= ∞

locally uniformly on C\ {0} .
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(iv) For α = π
2 the relations (limα ) and (lim ′

α ) read as follows:

(lim π
2
) lim

x↘σ1
ωh(x;z)11 = lim

x↘σ1
ωh(x;z)22 = 1, lim

x↘σ1
ωh(x;z)12 = 0;

(lim′
π
2
) lim

x↘σ1

ωh(x;z)21

|th(x)| · z = 1.

The proof of Theorem 4.1 is quite elaborate. We divide the remainder of this section
into several subsections according to the following plan:

a. We provide/recall some preliminary facts, among them a normal family argument
for Pólya class functions.

b. We establish the asymptotics of the fundamental solution of positive definite
canonical systems of a particular kind.

c. We derive that (lim π
2
) already implies finer asymptotics of ωh(x;z) .

d. We carry out an inductive process to establish Theorem 4.1 for α = π
2 .

e. We apply rotation isomorphisms to obtain the asserted limit relations for arbitrary
values of α .

f. We prove a continuity result for the fundamental solution of an arbitrary general
Hamiltonian.

a. Preliminary observations.

In order to justify a later application of [4, Theorem 41], we need the following ele-
mentary reformulation of (I−0 ) and (HS−

0 ).

LEMMA 4.3. Let h11 and h22 be locally integrable non-negative functions on an
interval (a,x0] . Assume that

∫ x0
a h11(x)dx < ∞ , set α(x) :=

∫ x
a h11(t)dt , and let γ(x)

be an anti-derivative of h22 that is absolutely continuous on each compact interval
contained in (a,x0] , e.g. γ0(x) :=

∫ x
x0

h22(t)dt . Then

x0∫
a

α(x)dγ(x) < ∞ ⇐⇒
x0∫
a

|γ(x)|dα(x) < ∞. (4.1)

In this case, lim
x↘a

α(x)γ(x) = 0 .

Proof. The measure dα is finite on (a,x0] , and the measure space 〈(a,x0],dγ〉
(the σ -algebra is the Borel algebra) is σ -finite since h22 is locally integrable. More-
over, the function χ{y�x}(x,y)h11(y)h22(x) is measurable and non-negative. Hence the



512 M. LANGER AND H. WORACEK

application of Fubini’s theorem is justified, and we obtain

x0∫
a

α(x)dγ0(x) =
x0∫

a

( x∫
a

h11(y)dy

)
h22(x)dx

=
x0∫
a

( x0∫
y

h22(x)dx

)
h11(y)dy =

x0∫
a

(− γ0(y)
)
dα(y).

(4.2)

Any anti-derivative γ of h22 as in the statement of the lemma differs from γ0 only by
an additive constant. The integral on the left-hand side of (4.1) does not depend on the
choice of γ . Since

∫ x0
a dα(x) < ∞ and γ is non-decreasing, also finiteness/infiniteness

of the integral on the right-hand side of (4.1) does not depend on the choice of γ .
Assume that the integrals in (4.1) are finite. Let x ∈ (a,x0) . Since α and γ are

both locally absolutely continuous on (a,x0] , we may integrate by parts to obtain

x0∫
x

α(t)dγ0(t) = −α(x)γ0(x)−
x0∫
x

γ0(t)dα(t), x ∈ (a,x0].

Passing to the limit x ↘ a and remembering (4.2), we find that α(x)γ0(x) tends to 0.
Again this property is inherited by any other anti-derivative γ . �

We shall use a normal family argument, which appeared already in the proof of
[4, Theorem 41]. Denote by P the set of all real entire functions F that belong to the
Pólya class. Moreover, for c > 0, set

Pc :=
{
F ∈ P : F(0) = 1, |F ′(0)|� c, |F ′′(0)|� c

}
.

LEMMA 4.4. For each c > 0 the class Pc is a normal family, i.e. every sequence
of functions from Pc contains a subsequence that converges uniformly on compact sets.
Moreover, ⋂

c>0

Pc = {1}.

Proof. By [4, Problems 10 and 13] each function F ∈ P with F(0) = 1 satisfies
the estimate

log |F(z)|� F ′(0)Rez+
1
2

(
F ′(0)2 −F ′′(0)

)|z|2, z ∈ C.

Hence each class Pc is locally uniformly bounded and by Montel’s theorem normal.
Assume that F ∈ ⋂c>0 Pc ; then F ′(0) = F ′′(0) = 0. By the above estimate, F

is bounded by 1 throughout C , and hence constant. However, F(0) = 1, and thus F
must be identically equal to 1. �
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LEMMA 4.5. Let (Fn)n∈N be a sequence of functions Fn ∈ P with Fn(0) = 1 ,
n ∈ N . If, for some real number β , we have

lim
n→∞

F ′
n(0) = β , lim

n→∞
F ′′

n (0) = β 2,

then lim
n→∞

Fn(z) = eβ z locally uniformly on C .

Proof. Consider the functions Gn(z) := Fn(z)e−β z ; then

G′
n(0) = F ′

n(0)−β , G′′
n(0) = F ′′

n (0)−2βF′
n(0)+ β 2.

Hence limn→∞ G′
n(0) = limn→∞ G′′

n(0) = 0.
For some appropriate c > 0 we have {Gn : n ∈ N} ⊆ Pc , and hence the sequence

(Gn)n∈N has accumulation points with respect to locally uniform convergence. Let G
be any such accumulation point. Then G′(0) = G′′(0) = 0, and hence G ∈ ⋂c>0 Pc

and, by Lemma 4.4, G is identically equal to 1. Therefore we can conclude that
limn→∞ Gn = 1 locally uniformly. �

b. Asymptotics for a class of positive definite Hamiltonians.

In this subsection we consider the class of positive definite Hamiltonians H satisfying
the following two properties (let (a,b) be the domain of H ):

(G1 ) the Hamiltonian H satisfies (I−0 ) and (HS−
0 ), and the interval (a,b) is not

indivisible;

(G2 ) for one (and hence for all) x0 ∈ (a,b) the limit

lim
s↘a

x0∫
s

h12(x)dx

exists and is finite.

Note that, if H is in the limit circle case at a and (a,b) is not indivisible, then these
conditions are trivially satisfied.

For each s ∈ (a,b) let Wst(z) be the unique solution of

d
dt

Wst(z)J = zWst(z)H(t), t ∈ (a,b), Wss(z) = I,

and write

Wst(z) =:

(
Ast(z) Bst(z)

Cst(z) Dst(z)

)
. (4.3)

Set

α(x) :=
x∫

a

h11(t)dt, β (x) := lim
s↘a

x∫
s

h12(t)dt, (4.4)

and let γ be some absolutely continuous anti-derivative of h22 .
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REMARK 4.6.

(i) The condition (G2 ) implies that limt↘a β (t) = 0. To see this, let ε > 0 be given.
Choose t0 ∈ (a,b) ; then there exists δ > 0 such that∣∣∣∣

t0∫
s

h12(x)dx−β (t0)
∣∣∣∣< ε, s ∈ (a, t0], s−a < δ .

Let t ∈ (a, t0] , t−a < δ and s ∈ (a,t] ; then∣∣∣∣ t∫
s

h12(x)dx

∣∣∣∣= ∣∣∣∣
t0∫

s

h12(x)dx−
t0∫

t

h12(x)dx

∣∣∣∣< 2ε.

Passing to the limit s ↘ a gives |β (t)|� 2ε .

(ii) The assumption (HS−
0 ) implies that

x∫
a

|γ(t)|dα(t) < ∞ for all x ∈ (a,b)

and hence, by Lemma 4.3,

x∫
a

α(t)dγ(t) < ∞ for all x ∈ (a,b)

and
lim
x↘a

α(x)γ(x) = 0.

Denote by a+ the maximal number in [a,b) such that (a,a+) is an indivisible interval
of type π

2 . Then

α(x)

⎧⎨⎩= 0, x ∈ (a,a+],

> 0, x ∈ (a+,b),

and in particular, limx↘a+ α(x) = 0. The matrix function

m(x) :=

(
α(x) β (x)

β (x) γ(x)

)
satisfies m(t)−m(s) =

∫ t
s H(x)dx , and hence is non-decreasing and locally absolutely

continuous on (a,b) .

4.7. Existence of Åt and B̊t . By the definition of a+ the Hamiltonian H does not
start with an indivisible interval of type π

2 at the left endpoint of the interval (a+,b) .
Hence all hypotheses of [4, Theorem 41] are satisfied (with the half-line (0,∞) replaced
by the interval (a+,b)). An application of this theorem provides us with families Åt

and B̊t , t ∈ (a+,b) , of real entire functions which have the following properties:
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(a) For each t ∈ (a+,b) the function Åt − iB̊t has no real zeros and belongs to the
Hermite–Biehler class H B0 and the Pólya class. Moreover, Åt(0) = 1 and
B̊t(0) = 0.

(b) We have

d
dt

(
Åt(z), B̊t(z)

)
J = z

(
Åt(z), B̊t (z)

)
H(t), t ∈ (a+,b). (4.5)

(c) limt↘a+ Åt = 1 and limt↘a+ B̊t = 0 locally uniformly on C .

(d) Åt = lims↘a+ Ast and B̊t = lims↘a+ Bst locally uniformly on C .

For (c) remember Remark 4.6 (i) . Item (d) follows from the construction in the proof
of [4, Theorem 41]. Moreover, the functions Åt and B̊t are uniquely determined by the
properties (a), (b) and (c).

REMARK 4.8. If H is in the limit circle case at a+ , then (Åt(z), B̊t (z)) is the
unique solution of (4.5) satisfying the initial condition (Åa+(z), B̊a+(z)) = (1,0) .

The key steps in the present context are the next two lemmas where we determine
the asymptotics of B̊t , Cst and Dst .

LEMMA 4.9. Assume that H satisfies (G1 ), (G2 ), and let a+ ∈ [a,b) be the max-
imal number such that (a,a+) is indivisible of type π

2 . Then

lim
t↘a+

B̊t(z)
zα(t)

= 1 (4.6)

locally uniformly in C .

Proof. Consider the functions Ast and Bst defined in (4.3). By 2.13 the function
Bst belongs to the Pólya class, and by 4.7 (d) therefore also B̊t belongs to the Pólya

class. By [4, Lemma 7.1] the same is true for B̊t(z)
z .

In order to apply Lemma 4.5 we compute the derivatives of Ast and Bst with
respect to z at 0 . For s,t ∈ (a,b) , s < t , the function x �→ (Asx,Bsx) , x ∈ [s,t] , satisfies
the differential equation (1.1) with Hamiltonian H|(s,t) , and takes the value (1,0) for
x = s . Hence

Bst(z) = z

t∫
s

Asx(z)dα(x)+ z

t∫
s

Bsx(z)dβ (x), s < t < b, (4.7)

1−Ast(z) = z

t∫
s

Asx(z)dβ (x)+ z

t∫
s

Bsx(z)dγ(x), s < t < b. (4.8)

Note that H|(s,t) is in the limit circle case at both endpoints.
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Dividing these equations by z , letting z tend to 0 and observing that Wst(0) = I ,
we obtain

B′
st(0) = α(t)−α(s), A′

st(0) = β (s)−β (t).

If we divide (4.8) by z , differentiate with respect to z and evaluate at z = 0, then we
obtain

−A′′
st(0)
2

=
(

1−Ast(z)
z

)′
(0) =

t∫
s

A′
sx(0)dβ (x)+

t∫
s

B′
sx(0)dγ(x)

=
t∫

s

[
β (s)−β (x)

]
dβ (x)+

t∫
s

[
α(x)−α(s)

]
dγ(x)

= −1
2

[
β (s)−β (t)

]2 +
t∫

s

α(x)dγ(x)−α(s)
[
γ(t)− γ(s)

]
.

Equation (4.7) gives

B′′
st(0)
2

=
(

Bst(z)
z

)′
(0) =

t∫
s

A′
sx(0)dα(x)+

t∫
s

B′
sx(0)dβ (x)

=
t∫

s

[
β (s)−β (x)

]
dα(x)+

t∫
s

[
α(x)−α(s)

]
dβ (x)

= β (s)
[
α(t)−α(s)

]− t∫
s

β (x)dα(x)+
[
α(x)−α(s)

]
β (x)

∣∣∣∣t
x=s

−
t∫

s

β (x)dα(x)

=
[
β (s)+ β (t)

] · [α(t)−α(s)
]−2

t∫
s

β (x)dα(x).

It follows that

lim
s↘a+

(
Bst(z)

z

)′
(0) = β (t)α(t)−2

t∫
a+

β (x)dα(x),

and, with the Mean Value Theorem for the evaluation of the integral, that

lim
t↘a+

[
1

α(t)
lim

s↘a+

(
Bst(z)

z

)′
(0)
]

= 0. (4.9)

Dividing (4.7) by z , differentiating twice and evaluating at z = 0, we obtain(
Bst(z)

z

)′′
(0) =

t∫
s

A′′
sx(0)dα(x)+

t∫
s

B′′
sx(0)dβ (x).
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The first summand equals

t∫
s

A′′
sx(0)dα(x)

=
t∫

s

([
β (s)−β (x)

]2 −2

x∫
s

α(y)dγ(y)+2α(s)
[
γ(x)− γ(s)

])
dα(x)

=
t∫

s

[
β (s)−β (x)

]2
dα(x)−2

t∫
s

x∫
s

α(y)dγ(y)dα(x)+2α(s)
t∫

s

[
γ(x)−γ(s)

]
dα(x),

the second one

t∫
s

B′′
sx(0)dβ (x) = 2

t∫
s

([
β (s)+ β (x)

] · [α(x)−α(s)
]−2

x∫
s

β (y)dα(y)
)

dβ (x)

=
t∫

s

[
α(x)−α(s)

] ·2[β (s)+ β (x)
]
dβ (x)−4

t∫
s

x∫
s

β (y)dα(y)dβ (x)

=
[
β (s)+ β (t)

]2[α(t)−α(s)
]− t∫

s

[
β (s)+ β (x)

]2
dα(x)

−4

t∫
s

[
β (t)−β (y)

]
β (y)dα(y).

Using the Bounded Convergence Theorem, we conclude that (note here that |γ(x)−
γ(s)|� 2max{|γ(t)|, |γ(s)|} , x ∈ (s,t))

lim
s↘a+

(
Bst(z)

z

)′′
(0) =

t∫
a+

β (x)2 dα(x)−2

t∫
a+

x∫
a+

α(y)dγ(y)dα(x)

+ β (t)2α(t)−
t∫

a+

β (x)2 dα(x)−4

t∫
a+

[
β (t)−β (y)

]
β (y)dα(y),

and, again using the Mean Value Theorem, we obtain

lim
t↘a+

[
1

α(t)
lim

s↘a+

(
Bst(z)

z

)′′
(0)
]

= 0. (4.10)

Let

Ft(z) :=
B̊t(z)
zα(t)

.
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Since B̊′
t(0) = lims↘a+ B′

st(0) = α(t) and(
B̊t(z)

z

)′
(0) = lim

s↘a+

(
Bst(z)

z

)′
(0),

(
B̊t(z)

z

)′′
(0) = lim

s↘a+

(
Bst(z)

z

)′′
(0),

it follows from (4.9) and (4.10) that

Ft(0) = 1, lim
t↘a+

F ′
t (0) = 0, lim

t↘a+
F ′′

t (0) = 0.

By Lemma 4.5 this implies that limt↘a+ Ft(z) = 1 locally uniformly on C , which is
(4.6). �

LEMMA 4.10. Assume that H satisfies (G1 ), (G2 ).

(i) The limit
lim
s↘a

D′
st(0)

exists for every t ∈ (a,b) , and

lim
t↘a

lim
s↘a

D′
st(0) = 0.

(ii) If lim
s↘a

γ(s) �= 0 , then

lim
s↘a

1
γ(s)

D′′
st(0)

exists for every t ∈ (a,b) and

lim
t↘a

lim
s↘a

1
γ(s)

D′′
st(0) = 0.

(iii) Let

Ĩ := {t ∈ (a,b) : t is not right endpoint of an indivisible interval of type 0}.
Then there exists a non-decreasing function c(t) , t ∈ Ĩ , with lim

t↘inf Ĩ
c(t) = 0 such

that
Cst(z)(

γ(s)− γ(t)
)
z
∈ Pc(t), a < s < t, t ∈ Ĩ. (4.11)

Proof. For s, t ∈ (a,b) , s < t , the function x �→ (Csx,Dsx) satisfies the differential
equation (1.1) with Hamiltonian H|(s,t) , and takes the value (0,1) for x = s . Hence

Dst(z)−1 = z

t∫
s

Csx(z)dα(x)+ z

t∫
s

Dsx(z)dβ (x), s < t < b,

−Cst(z) = z

t∫
s

Csx(z)dβ (x)+ z

t∫
s

Dsx(z)dγ(x), s < t < b.
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Note that H|(s,t) is in the limit circle case at both endpoints. Dividing the first integral
equation by z and letting z → 0 we easily see that

D′
st(0) = β (t)−β (s), C′

st(0) = γ(s)− γ(t), (4.12)

and hence that
lim
s↘a

D′
st(0) = β (t), lim

t↘a
lim
s↘a

D′
st(0) = 0,

which is (i) . Moreover,

D′′
st(0)
2

=
(

Dst(z)−1
z

)′
(0) =

t∫
s

C′
sx(0)dα(x)+

t∫
s

D′
sx(0)dβ (x)

=
t∫

s

[
γ(s)− γ(x)

]
dα(x)+

t∫
s

[
β (x)−β (s)

]
dβ (x)

= γ(s)
[
α(t)−α(s)

]− t∫
s

γ(x)dα(x)+
1
2

[
β (t)−β (s)

]2
.

Under the assumption that lims↘a γ(s) �= 0, it follows that

lim
s↘a

1
γ(s)

D′′
st(0) = 2α(t)− lim

y↘a

(
1

γ(y)

)[
2

t∫
a

γ(x)dα(x)+
(
β (t)

)2]
.

Note that the integral exists by Remark 4.6 (ii) . If we now let t ↘ a , we obtain

lim
t↘a

lim
s↘a

1
γ(s)

D′′
st(0) = 0.

Hence (ii) is proved.
Finally, we show (iii) . By (2.8) the function

z �→ Cst(z)(
γ(s)− γ(t)

)
z

is in the Pólya class. To estimate Cst , we compute

−C′′
st(0)
2

= −
(

Cst(z)
z

)′
(0) =

t∫
s

C′
sx(0)dβ (x)+

t∫
s

D′
sx(0)dγ(x)

=
t∫

s

[
γ(s)− γ(x)

]
dβ (x)+

t∫
s

[
β (x)−β (s)

]
dγ(x)

=
[
γ(s)− γ(t)

] · [β (t)−β (s)
]
+2

t∫
s

[
β (x)−β (s)

]
dγ(x).
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If t ∈ Ĩ , then γ(t) > γ(s) and hence∣∣∣∣( Cst(z)(
γ(s)− γ(t)

)
z

)′
(0)
∣∣∣∣

�
∣∣β (t)−β (s)

∣∣+ 4
γ(t)− γ(s)

sup
x∈(a,t]

|β (x)|
t∫

s

dγ(x)� 6 sup
x∈(a,t]

|β (x)|.
(4.13)

Next,

−
(

Cst(z)
z

)′′
(0) =

t∫
s

C′′
sx(0)dβ (x)+

t∫
s

D′′
sx(0)dγ(x).

The first summand can be written as

t∫
s

C′′
sx(0)dβ (x) = −2

t∫
s

[
γ(s)− γ(x)

] · [β (x)−β (s)
]
dβ (x)

−4

t∫
s

x∫
s

[
β (y)−β (s)

]
dγ(y)dβ (x).

The first integral on the right-hand side of this relation equals

t∫
s

[
γ(s)− γ(x)

] · [β (x)−β (s)
]
dβ (x)

=
[
γ(s)− γ(t)

][β (t)−β (s)
]2

2
−

t∫
s

[
β (x)−β (s)

]2
2

dγ(x),

the second one
t∫

s

x∫
s

[
β (y)−β (s)

]
dγ(y)dβ (x) =

t∫
s

[
β (t)−β (y)

] · [β (y)−β (s)
]
dγ(y).

Hence, for t ∈ Ĩ , we obtain the estimate∣∣∣∣∣ 1
γ(t)− γ(s)

t∫
s

C′′
sx(0)dβ (x)

∣∣∣∣∣� 8 sup
x∈(a,t]

|β (x)|2.

Next we compute

t∫
s

D′′
sx(0)dγ(x) = 2

t∫
s

γ(s)
[
α(x)−α(s)

]
dγ(x)

−2

t∫
s

x∫
s

γ(y)dα(y)dγ(x)+
t∫

s

[
β (x)−β (s)

]2
dγ(x).
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The first integral on the right-hand side equals

2γ(s)
t∫

s

α(x)dγ(x)−2γ(s)α(s)
t∫

s

dγ(x)

= 2
[
γ(s)− γ(t)

] t∫
s

α(x)dγ(x)+2γ(t)
t∫

s

α(x)dγ(x)−2γ(s)α(s)
[
γ(t)− γ(s)

]
.

Hence, for t ∈ Ĩ , (we use that α is monotonic increasing)∣∣∣∣∣ 1
γ(s)− γ(t)

t∫
s

D′′
sx(0)dγ(x)

∣∣∣∣∣
� 2

t∫
s

α(x)dγ(x)+
2|γ(t)|

γ(t)− γ(s)

t∫
s

α(x)dγ(x)+2 sup
x∈(a,t]

∣∣γ(x)α(x)
∣∣

+
2

γ(t)− γ(s)

t∫
s

t∫
s

|γ(y)|dα(y)dγ(x)+4 sup
x∈(a,t]

|β (x)|2

� 2

t∫
s

α(x)dγ(x)+
2|γ(t)|

γ(t)− γ(s)

t∫
s

α(t)dγ(x)+2 sup
x∈(a,t]

∣∣γ(x)α(x)
∣∣

+2

t∫
s

|γ(y)|dα(y)+4 sup
x∈(a,t]

|β (x)|2

� 2

t∫
a

α(x)dγ(x)+4 sup
x∈(a,t]

∣∣γ(x)α(x)
∣∣+2

t∫
a

|γ(y)|dα(y)+4 sup
x∈(a,t]

|β (x)|2.

Putting these estimates together we obtain∣∣∣∣( Cst(z)(
γ(s)− γ(t)

)
z

)′′
(0)
∣∣∣∣� 2

t∫
a

α(x)dγ(x)+4 sup
x∈(a,t]

∣∣γ(x)α(x)
∣∣

+2

t∫
a

|γ(y)|dα(y)+12 sup
x∈(a,t]

|β (x)|2.
(4.14)

It follows from (4.12), (4.13) and (4.14) that, for t ∈ Ĩ and s ∈ (a,t) ,

Cst(z)(
γ(s)− γ(t)

)
z
∈ Pc(t)
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for a certain function c(t) , which can be chosen to be non-decreasing. Let a′ := inf Ĩ . If
a′ > a , then (a,a′) is a maximal indivisible interval of type 0. In this case H must be
in the limit circle case at a by (G1 ), and we have β (t) = 0 and γ(t) = 0 for t ∈ [a,a′] ,
which implies that we can choose c(t) such that c(t) → 0 as t ↘ a′ . If a′ = a , then it
follows from Remark 4.6 that we can choose c(t) such that c(t) → 0 as t ↘ a . �

Note that the assertion (4.11) has a different meaning depending whether H is in
the limit point or limit circle case at a . In the limit point case it limits the growth of Cst ,
whereas in the limit circle case it determines the speed of convergence. More precisely,
for the latter case the following is true.

COROLLARY 4.11. Let H be a Hamiltonian on (a,b) which is in the limit circle
case at a and does not start with an indivisible interval of type 0 at a, and write

ωH(t;z) =:

(
At(z) Bt(z)

Ct(z) Dt(z)

)

Then

lim
t↘a

Ct(z)
C′

t (0) · z = 1

locally uniformly on C .

Proof. We may pass to the limit s ↘ a in (4.11), observe that C′
t (0) = γ(a)− γ(t)

and apply Lemma 4.5. �

c. Asymptotics for a class of general Hamiltonians.

Let h ∈ H π
2

and denote by H the Hamiltonian function of h on the interval (σ1,σ2) .
Then H is in limit point case at σ1 and it satisfies (G1 ) unless (σ1,σ2) is indivisible
(which cannot happen if h is a singular general Hamiltonian). In order to shorten
notation we write again

ωh(t;z) =:

(
At(z) Bt(z)

Ct(z) Dt(z)

)
, (4.15)

and
∂
∂ z

ωh(t;z)J
∣∣
z=0 =:

(
α(t) β (t)

β (t) γ(t)

)
. (4.16)

Explicitly, this is

α(t) = B′
t(0), β (t) = −A′

t(0) = D′
t(0), γ(t) = −C′

t(0) (4.17)

and th(t) = α(t)+ γ(t) . It is easy to see that ∂
∂ zωh(t;z)J

∣∣
z=0 is an anti-derivative of

H(t) and hence
α ′ = h11, β ′ = h12, γ ′ = h22.
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Moreover, if Ast ,Bst ,Cst ,Dst are as in (4.3), then

ωh(s;z)−1ωh(t;z) =

(
Ast(z) Bst(z)

Cst(z) Dst(z)

)
.

It follows that (
A′

s(0) B′
s(0)

C′
s(0) D′

s(0)

)
+

(
A′

st(0) B′
st(0)

C′
st(0) D′

st(0)

)
=

(
A′

t(0) B′
t(0)

C′
t (0) D′

t(0)

)
.

REMARK 4.12.

(i) It will turn out later that H also satisfies (G2 ), cf. Corollary 4.20, but at the
present stage this is not known.

(ii) If H satisfies (G2 ), then the functions α and β defined by (4.16) may differ
from the functions defined in (4.4) by additive constants.

(iii) Since −A′
t(0) is an anti-derivative of h12 , locally uniform existence of the limit

limt↘σ1 At implies (G2 ). If we assume that limt↘σ1 At = 1 and limt↘σ1 Bt = 0,
then the functions α,β in (4.16) coincide with those from (4.4).

First we show a geometric lemma.

LEMMA 4.13. Let h ∈ H π
2
. Then, for t ∈ (σ1,σ2) , the function At − iBt is of

bounded type in the upper half-plane and belongs to the Hermite–Biehler class H B0

and to the Pólya class.

Proof. As usual the case when σ1 is left endpoint of an indivisible interval can
be treated explicitly. Let σ+ be the maximal number in (σ1,σ2) such that (σ1,σ+)
is indivisible. The type of this indivisible interval is equal to π

2 , and hence, by the
construction of ωh in [29], we have

ωh(σ+;z) =
(

1 0

p(z) 1

)
with some polynomial p . It follows that

At = 1, Bt = 0, t ∈ (σ1,σ+],

At = Aσ+t , Bt = Bσ+t , t ∈ [σ+,σ2).

The functions Aσ+t and Bσ+t are the solutions of the positive definite Hamiltonian
system with Hamiltonian H|(σ+,σ2) satisfying the initial condition (Aσ+(z),Bσ+(z)) =
(1,0) . Hence, for t ∈ [σ+,σ2) , the function Aσ+t − iBσ+t belongs to the Hermite–
Biehler class H B0 , is of bounded type and belongs to the Pólya class; see 2.13. For
t ∈ (σ1,σ+) the assertion is trivial.
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Assume now that σ1 is not left endpoint of an indivisible interval. Fix a point
t0 ∈ (σ1,σ2) which is not inner point of an indivisible interval. Consider the isomor-
phism Ξt0 : P�t0 → K(ωh(t0; ·)) as discussed at the end of §2.e. Moreover, denote by
π+ and π− the projections from K(ωh(t0; ·)) onto its upper and lower components,
respectively. By [49, Lemma 6.3 (proof, subcase 3b)] and the construction of Ξt0 in
[29] we have

Ξt0

(
span

{
δ0, . . . ,δΔ+ö−1

})
= kerπ+,

and, as, e.g. noted in [25, Lemma 8.6],

P(At0 − iBt0) ∼= (kerπ+)⊥/(kerπ+)◦.

And application of Lemma 3.2 (d) to 	 π
2
h with s0 = t0 gives (using the same notation

as there)
EA(∞) = span

{
δ0, . . . ,δΔ+ö−1

}
.

By Lemma 3.2 the space EA(∞) contains a non-positive subspace with dimension
ind− h , i.e. a maximal non-positive subspace of P�t0 . Applying Ξt0 we obtain that
(kerπ+)⊥ is positive semi-definite, and hence that P(At0 − iBt0) is positive definite.
This implies that the function At0 − iBt0 belongs to the Hermite–Biehler class; see [25,
Theorem 5.3].

Since kerπ+ �= {0} , we have kerπ− = {0} . Hence, by [25, Proposition 10.3],
the constant function 1 is associated with the space P(Dt0 + iCt0) . This implies that
Dt0 and Ct0 are of bounded type in the upper half-plane; see [25, §2 and §3]. Since
At0
Ct0

and
Bt0
Dt0

belong to the generalized Nevanlinna class N<∞ , and thus are of bounded

type, this property is inherited by At0 and Bt0 . By [4, Problem 34], therefore At0 − iBt0
belongs to the Pólya class. From this one can now also easily obtain the assertion for
inner points of an indivisible interval. �

Next, we establish the knowledge of the asymptotics of ωh(t; ·) that is needed in
the inductive process.

LEMMA 4.14. Let h ∈ H π
2

and assume additionally that

lim
t↘σ1

At(z) = 1, lim
t↘σ1

Bt(z) = 0 (4.18)

locally uniformly on C . For each t0 ∈ (σ1,σ2) with γ(t0) < 0 (which certainly is the
case whenever t0 is sufficiently close to σ1 ),{

Ct(z)
γ(t)z

: t ∈ (σ1,t0]
}

(4.19)

is a normal family. Moreover,
lim
t↘σ1

Dt(z) = 1 (4.20)

locally uniformly on C . Let σ+ ∈ [σ1,σ2) be the maximal number such that (σ1,σ+)
is indivisible. Then

lim
t↘σ+

Bt(z)
zα(t)

= 1. (4.21)
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Moreover,
Bt(z)Ct (z)

z2 = O
(
α(t)γ(t)

)
as t ↘ σ1 (4.22)

locally uniformly in z, and hence the left-hand side of (4.22) tends to 0 as t ↘ σ1 .

Proof. The case when σ1 is left endpoint of an indivisible interval, i.e. when σ1 >
σ1 , is again easy to settle. The type of (σ1,σ+) must be equal to π

2 , and hence

ωh(t;z) =

(
1 0

p(z)− l(t)z 1

)
, t ∈ (σ1,σ+),

with some polynomial p and some non-decreasing function l(t) satisfying lims↘σ1 l(s)
= −∞ , cf. [29, Proposition 4.31]. We have

γ(t) = −C′
t(0) = l(t)− p′(0),

and it follows that

lim
t↘σ1

Ct(z)
γ(t)z

= lim
t↘σ1

p(z)− l(t)z(
l(t)− p′(0)

)
z

= −1;

in particular, the family (4.19) is normal. Moreover, Dt = 1, t ∈ (σ1,σ+) , and hence
the limit relation (4.20) is trivial. Relation (4.21) follows from Remark 4.8 and Lemma
4.9 since σ+ is a regular endpoint and Aσ+ = 1, Bσ+ = 0. Finally, relation (4.22) is
trivial since Bt(z) = 0 for t ∈ (σ1,σ+) .

Assume from now on that σ1 is not left endpoint of an indivisible interval. Fix a
point t0 ∈ (σ1,σ2) that is not inner point of an indivisible interval and let t ∈ (σ1,t0] be
given. Then

ωh(t;z) = ωh(t0;z)
[
ωh(t;z)−1ωh(t0;z)

]−1
,

i.e. (
At Bt

Ct Dt

)
=

(
At0 Bt0

Ct0 Dt0

)(
Dtt0 −Btt0

−Ctt0 Att0

)

=

(
At0Dtt0 −Bt0Ctt0 −At0Btt0 +Bt0Att0

Ct0Dtt0 −Dt0Ctt0 −Ct0Btt0 +Dt0Att0

)
.

(4.23)

In particular,

Ct(z)
γ(t)z

=
Ct0(z)

z
· Dtt0 (z)

γ(t)
−Dt0(z)

Ctt0(z)(
γ(t)− γ(t0)

)
z

(
1− γ(t0)

γ(t)

)
. (4.24)

As we have noted in Remark 4.12, our assumption (4.18) implies that H satisfies (G2 ).
Thus the application of Lemma 4.10 is justified, which implies that the first and second
derivatives evaluated at z = 0 of the terms on the right-hand side of (4.24) are bounded
when t ↘ σ1 . Moreover,

Ct(z)
γ(t)z

∣∣∣
z=0

=
C′

t (0)
γ(t)

= −1
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by (4.17). Hence −Ct(z)
γ(t)z ∈ Pc for some positive c and therefore the family in (4.19) is

normal by Lemma 4.4.
Consider the family (At(z),Bt (z)) , t ∈ (σ1,σ2) . By Lemma 4.13, the function

At − iBt is of bounded type in the upper half-plane and belongs to the Hermite–Biehler
class H B0 and to the Pólya class. Clearly, (At ,Bt) is a solution of the canonical
system with Hamiltonian H . We see that (At ,Bt) shares the properties (a), (b) and (c)
of (Åt , B̊t) in 4.7. By the uniqueness part of [4, Theorem 41] it follows that

At = Åt , Bt = B̊t , t ∈ (σ1,σ2).

The limit in (4.21) is now nothing else but the limit computed in Lemma 4.9. Moreover,
using (4.21) and the local boundedness of the left-hand side of (4.24) we find that

Bt(z)Ct (z)
z2 = α(t)γ(t) · Bt(z)

zα(t)
· Ct(z)
zγ(t)

= O
(
α(t)γ(t)

)
as t ↘σ1 . This together with Lemma 4.3 implies that Bt(z)Ct (z)→ 0 as t ↘σ1 . Since
AtDt −BtCt = 1, it follows that limt↘σ1 Dt = 1. �

d. The inductive process.

In the following let h be a singular general Hamiltonian that is either positive definite
or indefinite from the class H π

2
. As above write

ωh(t;z) =:

(
At(z) Bt(z)

Ct(z) Dt(z)

)
.

With this notation the conditions (lim π
2
) and (lim ′

π
2
) read as follows

(lim π
2
) lim

t↘σ1
At(z) = lim

t↘σ1
Dt(z) = 1, lim

t↘σ1
Bt(z) = 0;

(lim′
π
2
) lim

t↘σ1

Ct(z)
|α(t)+ γ(t)| · z = 1,

where α , β and γ are as in (4.16). If h is indefinite, then qh ∈ N
(0)

<∞ ; otherwise
qh ∈ N0 .

We shall apply the same inductive process as in [26]. To this end it is necessary
to investigate the transformations of chains employed in this process. In the following
four lemmas we give the necessary supplements to the results in [26, §10].

LEMMA 4.15. Let h be a singular general Hamiltonian that is either positive
definite or indefinite from the class H π

2
satisfying (lim π

2
). Then

ind−
( 1

z2 qh(z)
)

= ind− qh(z)+1.

Let h̃ be the singular general Hamiltonian with Titchmarsh–Weyl coefficient 1
z2

qh(z) .
Then h̃ is indefinite, belongs to H π

2
and satisfies (lim π

2
) and (lim ′

π
2
).



INDEFINITE HAMILTONIAN SYSTEMS 527

Proof. Set κ := ind− h . The function 1
z2

qh(z) is a generalized Nevanlinna func-

tion, and ind− 1
z2

qh(z) � κ +1. However, we have

lim
z→̂i∞

z2κ+1 · 1
z2 qh(z) = lim

z→̂i∞
z2κ−1 ·qh(z) ∈ [0,∞);

if h is positive definite this is trivial, otherwise it follows from Theorem 3.1 and Remark
2.4. Thus 1

z2
qh(z) has a generalized zero of non-positive type with degree of non-

positivity at least κ +1 at ∞ , and therefore ind− 1
z2

qh � κ +1.

Let h̃ be the singular general Hamiltonian with qh̃(z) = 1
z2

qh(z) . By Theorem 3.1,

we already know that h̃ ∈ H π
2
. We compute the maximal chain ωh̃ explicitly and then

read off the required properties. Set αt := −β (t)α(t)− 1
2B′′

t (0) and let s0 ∈ [σ1,σ2)
(or s0 ∈ [σ0,σ1) if κ = 0) be maximal such that (σ1,s0) (or (σ0,s0) , respectively) is
indivisible of type π

2 . Define a function ω̃ by

ω̃(t;z) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎝ 1
z2 0

0 1

⎞⎠ωh(t;z)

⎛⎜⎝ 0 −α(t)z

z
α(t)

1+
αt

α(t)
z

⎞⎟⎠ , t ∈ (s0,σ2),

[
lim
t↗σ2

ω̃(t;z)
]
·

⎛⎜⎜⎝1

(
1

σ2 +1− t
−1

)
z

0 1

⎞⎟⎟⎠ , t ∈ (σ2,σ2 +1)
if lim

t↗σ2

ω̃(t;z) exists,

if κ > 0, and in the same way with σ2 replaced by σ1 if κ = 0.
It was shown in [26, Lemma 10.5] that the chain (ω̃(t;z))t>s0 is an end section of

ωh̃ . Computing ω̃(t;z) explicitly for t ∈ (s0,σ2) (t ∈ (s0,σ1) , respectively) gives

ω̃(t;z) =

⎛⎜⎜⎜⎜⎝
Bt(z)
zα(t)

−α(t)
At(z)

z
+

Bt(z)
z2 +

αt

α(t)
Bt(z)

z

zDt(z)
α(t)

−α(t)zCt (z)+Dt(z)+
αt

α(t)
zDt(z)

⎞⎟⎟⎟⎟⎠ .

Let notation involving a tilde have its obvious meaning. Differentiating C̃t with respect
to z , we find that γ̃(t) = − 1

α(t) . Hence

lim
t↘s0

th̃(t) = lim
t↘s0

(
α̃(t)+ γ̃(t)

)
= −∞

since α̃(t) is non-decreasing, and thus (ω̃(t;z))t>s0 exhausts the last connected com-
ponent of the chain ωh̃ . Moreover,

lim
t↘s0

ω̃(t;z)� ∞ = lim
t↘s0

Bt(z)
z2Dt(z)

= 0
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by the assumption (lim π
2
) for h , and hence the intermediate Weyl coefficient of ωh̃ at

the singularity located at the infimum of the last connected component of its domain
is equal to 0. It follows that the part of ωh̃ to the left of its singularity is just one
indivisible interval of type π

2 and infinite length.
Referring to Lemma 4.14 (or Lemma 4.9 in the case when κ = 0) we obtain

lim
t↘s0

Ãt(z) = lim
t↘s0

Bt(z)
zα(t)

= 1,

lim
t↘s0

αt

α(t)
= lim

t↘s0

(
−β (t)−

(
Bt(z)
zα(t)

)′∣∣∣
z=0

)
= 0.

From this we get limt↘s0 B̃t(z) = 0. Using limt↘s0 α(t)γ(t) = 0 and the fact that the
family in (4.19) is a normal family, we see that

lim
t↘s0

D̃t(z) = lim
t↘s0

(
−α(t)γ(t)z2Ct(z)

γ(t)z
+Dt(z)+

αt

α(t)
zDt(z)

)
= 1.

Hence h̃ satisfies (lim π
2
), which by Remark 4.12 implies that limt↘s0 α̃(t) = 0. Finally,

C̃t(z)
γ̃(t)z

= −Dt(z),

and hence

lim
t↘s0

C̃t (z)
|th̃(t)|z = lim

t↘s0

C̃t(z)
|α̃(t)+ γ̃(t)|z = lim

t↘s0

C̃t(z)
−γ̃(t)z

= 1,

which is (lim ′
π
2
) for h̃ . �

LEMMA 4.16. Let h be a singular general Hamiltonian which is either positive
definite or indefinite from the class H π

2
satisfying (lim π

2
). Then

ind−
( 1

z2 +1
qh(z)

)
= ind− qh(z)+1.

Let h̃ be the singular general Hamiltonian with Titchmarsh–Weyl coefficient 1
z2+1

qh(z) .
Then h̃ is indefinite, belongs to H π

2
and satisfies (lim π

2
) and (lim ′

π
2
).

Proof. Set κ := ind− h . For the same reason as in the proof of Lemma 4.15 the
function 1

z2+1
qh(z) is a generalized Nevanlinna function with negative index κ + 1,

and h̃ ∈ H π
2
.

Again let us compute the maximal chain ωh̃ explicitly. Let s0 ∈ [σ1,σ2) (or s0 ∈
[σ0,σ1) if κ = 0) be maximal such that (σ1,s0) (or (σ0,s0) , respectively) is indivisible

of type π
2 . Set Rt := Re Bt(i)

At(i)
and Jt := Im Bt(i)

At(i)
. Note that Jt > 0 for t > s0 since for

such values of t the function Bt
At

is a non-constant positive definite Nevanlinna function
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(i.e. from the class N0 ) by Lemma 4.13, cf. 2.13. Define a function ω̃ by the following
formulae: if κ > 0, let

ω̃(t;z) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎛⎝ 1
z2+1

0

0 1

⎞⎠ωh(t;z)

⎛⎝1−zRt
Jt

−zJt(1+ R2
t

J2
t
)

z
Jt

1+zRt
Jt

⎞⎠, t ∈ (s0,σ2),

[
lim
t↗σ2

ω̃(t;z)
]
·W(l(t),φ)(z), t ∈ (σ2,σ2 +1)

if lim
t↗σ2

ω̃(t;z) exists,

where l(t) := 1
σ2+1−t −1, φ :=−Arccot

(
limt↗σ2 Rt

)
and W(l,φ) was defined in (2.10);

if κ = 0, use the same formulae with σ2 replaced by σ1 .
We know from [26, Lemma 10.8] that the chain (ω̃(t;z))t>s0 is an end section of

ωh̃ . Let us again compute ω̃(t;z) explicitly for t ∈ (s0,σ2) :

ω̃(t;z) =

⎛⎜⎜⎝ 1
z2+1

[(
1− z Rt

Jt

)
At(z)+ z

Jt
Bt(z)
]

1
z2+1

[
−zJt

(
1+ R2

t
J2
t

)
At(z)+

+
(
1+ z Rt

Jt

)
Bt(z)

]
(1− zRt

Jt
)Ct(z)+ z

Jt
Dt(z) −zJt

(
1+ Rt

Jt

)
Ct (z)+

(
1+ z Rt

Jt

)
Dt(z)

⎞⎟⎟⎠.

From the assumption (lim π
2
), Lemma 4.14 (in the case when h is indefinite), Remark

4.8 and Lemma 4.9 (in the case when h is definite) it follows that

lim
t↘σ1

Bt(z)
α(t)At(z)

= z,

which implies that limt↘σ1
1

α(t) (Rt + iJt) = i and hence

lim
t↘σ1

Rt

α(t)
= 0, lim

t↘σ1

Jt

α(t)
= 1, lim

t↘σ1

Rt

Jt
= 0. (4.25)

If we differentiate C̃t with respect to z and set z = 0, we obtain

γ̃(t) = γ(t)− 1
Jt

. (4.26)

Hence limt↘σ1 th̃(t) = −∞ , and we conclude that (ω̃(t;z))t>σ1 exhausts the last con-
nected component of the chain ωh̃ . The relations in (4.25) imply that limt↘σ1 B̃t(z) =
0. We can write

D̃t = −z2α(t)γ(t)
Jt

α(t)

(
1+

Rt

Jt

)
Ct

γ(t)z
+
(

1+ z
Rt

Jt

)
Dt .

This together with Lemma 4.3, Lemma 4.14 and the relations in (4.25) implies that
limt↘σ1 D̃t(z) = 1. In particular, the intermediate Weyl coefficient of ωh̃ at σ1 is equal
to 0. Next, we compute

lim
t↘σ1

(1+ z2)Ãt(z) = lim
t↘σ1

[(
1− z

Rt

Jt

)
At(z)+

z
Jt

Bt(z)
]

= lim
t↘σ1

[
At(z)− z

Rt

Jt
At(z)+ z2 α(t)

Jt

Bt(z)
zα(t)

]
= 1+ z2.
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By analyticity, thus limt↘σ1 Ãt(z) = 1. As in the previous lemma we therefore have
limt↘σ1 α̃(t) = 0 by Remark 4.12. Finally, using (4.26), (4.25), Lemma 4.3 and Lemma
4.14 we obtain

lim
t↘σ1

C̃t(z)
|th̃(t)|z = lim

t↘σ1

1∣∣α̃(t)+ γ(t)− 1
Jt

∣∣z
[(

1− z
Rt

Jt

)
Ct(z)+

z
Jt

Dt(z)
]

= lim
t↘σ1

1∣∣α(t)α̃(t)+ α(t)γ(t)− α(t)
Jt

∣∣
[

α(t)γ(t)
(

1− z
Rt

Jt

)
Ct(z)
γ(t)z

+
α(t)
Jt

Dt(z)
]

= 1,

which shows that (lim ′
π
2
) is valid for h̃ . �

LEMMA 4.17. Let h be a singular general Hamiltonian which is either positive
definite or indefinite from the class H π

2
satisfying (lim π

2
), (lim ′

π
2
). Moreover, let a∈R .

Then ind− qh(z+a) = ind− qh(z) .
Let h̃ be the singular general Hamiltonian whose Titchmarsh–Weyl coefficient is

qh(z+a); then ind− h̃ = ind− h . If h is indefinite, then h̃ belongs to H π
2

and satisfies
(lim π

2
), (lim ′

π
2
).

Proof. The fact that ind− qh(z + a) = ind− qh(z) is trivial. Hence, in the case
where h is positive definite, there is nothing to prove.

Consider the case when ind− h > 0. The multiplicity of ∞ as a generalized zero of
non-positive type of the function qh(z+a) is the same as its multiplicity of qh . Thus
h̃ ∈ H π

2
.

We claim that on the last component of its domain the maximal chain ωh̃ is (up to
a reparameterization) given by

ω̃(t;z) := ωh(t;z+a)ωh(t;a)−1, t ∈ (σ1,σ2).

The facts that all matrices ω̃(t; ·) appear in the last component of the chain ωh̃ and
that limt↗σ2 th̃(t) = +∞ have been shown in [26, Lemma 10.2]. In order to see that ω̃
exhausts the last component of ωh̃ , it is sufficient to show that the limit limt↘σ1 ω̃(t; ·)
does not exist. Let ν ∈ R∪{∞} be given; then

ω̃(t;z)� ν = ωh(t;z+a)�
(
ωh(t;a)−1 � ν

)
.

Since ωh(t;a)−1 � ν ∈ R∪{∞} ,

lim
t↘σ1

ω̃(t;z)� ν = 0.

In particular, it does not depend on the value of ν ; thus h̃ is in the limit point case and
therefore the limit limt↘σ1 ω̃(t; ·) cannot exist. We also see that the intermediate Weyl
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coefficient at σ1 is equal to 0, and conclude that left of σ1 the chain ωh̃ consists of
just one indivisible interval of type π

2 .
Explicitly, ω̃(t;z) equals(

Dt(a)At(z+a)−Ct(a)Bt(z+a) −Bt(a)At(z+a)+At(a)Bt(z+a)

Dt(a)Ct(z+a)−Ct(a)Dt(z+a) −Bt(a)Ct(z+a)+At(a)Dt(z+a)

)

for t ∈ (σ1,σ2) . Our assumption that h satisfies (lim π
2
) immediately implies that

limt↘σ1 B̃t = 0. By Lemma 4.14 applied to h , we have

lim
t↘σ1

Ct(a)Bt(z+a) = 0, lim
t↘σ1

Bt(a)Ct(z+a) = 0,

and hence
lim
t↘σ1

Ãt(z) = lim
t↘σ1

D̃t(z) = 1.

We need to consider C̃t(z) . First note that limt↘σ1
Ct(z)
zγ(t) = −1 (which is true by the

assumption (lim ′
π
2
)) implies that limt↘σ1

Ct (z)
γ(t) = −z , and hence limt↘σ1

C′
t (z)

γ(t) = −1.

Moreover, Ct (a)
γ(t) is bounded by Lemma 4.14, and limt↘σ1 D′

t(t) = 0 because of the
assumption (lim π

2
). Hence

lim
t↘σ1

γ̃(t)
γ(t)

= lim
t↘σ1

−C′
t(0)

γ(t)
= lim

t↘σ1

[
−Dt(a)

C′
t (a)

γ(t)
+

Ct(a)
γ(t)

D′
t(a)
]

= 1.

It follows that

lim
t↘σ1

−C̃t(z)
|th̃(t)| = lim

t↘σ1

C̃t(z)
γ̃(t)

= lim
t↘σ1

C̃t(z)
γ(t)

= lim
t↘σ1

[
Dt(a)

Ct(z+a)
γ(t)

− Ct(a)
γ(t)

Dt(z+a)
]

= −(z+a)+a = −z,

which implies (lim ′
π
2
) for h̃ . �

LEMMA 4.18. Let h be a singular general Hamiltonian which is either positive
definite or indefinite from the class H π

2
satisfying (lim π

2
), (lim ′

π
2
). Moreover, let r > 0 .

Then ind− qh(rz) = ind− qh(z) .
Let h̃ be the singular general Hamiltonianwith Titchmarsh–Weyl coefficient qh(rz);

then ind− h̃ = ind− h . If h is indefinite, then h̃ belongs to H π
2

and satisfies (lim π
2
),

(lim ′
π
2
).

Proof. Again the fact that ind− qh(rz) = ind− qh(z) is trivial, and therefore we
have nothing to prove if ind− h = 0.
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Assume that ind− h > 0. The multiplicity of ∞ as a generalized zero of non-
positive type of the function qh(rz) is the same as its multiplicity of qh . Thus h̃ ∈ H π

2
.

The same arguments as in Lemma 4.17 show that ωh̃ is, on the last component of
its domain, given by

ω̃(t;z) := ωh(t;rz), t ∈ (σ1,σ2);

see also [26, Lemma 10.1]. The required limit relations of ωh̃ are immediate from this
formula. �

Now we are ready to finish the proof of Theorem 4.1 in the case α = π
2 .

Proof (of Theorem 4.1, case α = π
2 ) . By prolonging h if necessary, we may as-

sume, without loss of generality, that h is singular. Assume that it is from the class H π
2
.

Then, by Theorem 3.1, qh has a generalized zero of non-positive type of multiplicity
κ := ind− qh at ∞ . Thus, it cannot have any zeros in C \R or generalized zeros of
non-positive type on R . By the corollary in [8] we have

qh(z) =
[ κ

∏
l=1

(z−al)(z−al)
]−1

·q0(z),

where a1, . . . ,aκ denote the poles of qh in C+ and the generalized poles of non-
positive type on R (according to their multiplicities) and where q0 is from N0 .

We see that the function qh can be produced starting from q0 (multiplied by a
positive constant) and applying a finite sequence of the transformations studied above.
The Hamiltonian corresponding to q0 is positive definite, i.e. it is in the limit circle
case at its left endpoint and hence satisfies (lim π

2
) trivially. By Lemmas 4.15–4.18

the properties (gHo.s. ), (gH π
2
) and (lim π

2
), (lim ′

π
2
) are inherited in each step of the

induction process. Thus they hold for the maximal chain associated with qh . �

REMARK 4.19. If H does not start with an indivisible interval at σ1 , then it fol-
lows from (4.21) and (lim ′

π
2
) that

lim
t↘σ1

Bt(z)Ct(z)
z2α(t)γ(t)

= 1

locally uniformly on C .

Let us return to the fact already announced in Remark 4.12 (i) .

COROLLARY 4.20. Let H be a Hamiltonian defined on an interval (a,b) which
satisfies the conditions (I−0 ), (HS−

0 ) and Δ−(H) < ∞ . Then (G2 ) holds.

Proof. Set

H0(x) := (x−a)−2ξ π
2

ξ T
π
2
, x ∈ (a−1,a); ö := 0, b1 := 0, d j := 0.
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Since H satisfies (I−0 ), (HS−
0 ) and Δ−(H) < ∞ , the data

a−1,a,b, H0,H, ö,b j,d j, E := {a−1,b}
constitutes a general Hamiltonian h∈H π

2
. By Theorem4.1 we have limt↘a ξ T

0 ωh(t;z)ξ0

= 1 locally uniformly on C . Now (G2 ) follows from Remark 4.12 (iii) . �

e. General values of ααα ∈∈∈ [[[000,,,πππ))) .
Let α ∈ [0,π) and a general Hamiltonian h ∈ Hα be given. It follows from Lemma
2.26 that the general Hamiltonian 	α− π

2
h belongs to H π

2
. By the already proved case

‘α = π
2 ’ of Theorem 4.1 we have

lim
t↘σ1

ξ T
0 ω	α− π

2
h(t)ξ0 = lim

t↘σ1
ξ T

π
2

ω	α− π
2

h(t)ξ π
2

= 1,

lim
t↘σ1

ξ T
0 ω	α− π

2
h(t)ξ π

2
= 0.

(4.27)

However,
ω	α− π

2
h =	α− π

2
ωh = Nα− π

2
ωhN∗

α− π
2

and
N∗

α− π
2

ξ0 = ξα− π
2
, N∗

α− π
2

ξ π
2

= ξα .

Substituting in (4.27), gives

lim
t↘σ1

ξ T
α− π

2
ωh(t)ξα− π

2
= lim

t↘σ1
ξ T

α ωh(t)ξα = 1, lim
t↘σ1

ξ T
α− π

2
ωh(t)ξα = 0,

and this is (limα ). The relation (lim ′
α ) follows in the same way. This concludes the

proof of Theorem 4.1 also for arbitrary values of α .

f. A continuity result for general Hamiltonians of arbitrary form.

We can deduce an interesting continuity result for the fundamental solution of an arbi-
trary general Hamiltonian.

THEOREM 4.21. Let h be a general Hamiltonian with ind− h > 0 given by the
data

σ0, . . . ,σn+1, Hi, öi,bi j,di j, E.

Moreover, let ωh(x;z) be the (finite) maximal chain associated with h and set

th(x) := t
(
ωh(x; ·)), φi := φ−(Hi), i = 1, . . . ,n.

For each i = 1, . . . ,n, there exist real polynomials pi,qi and real and entire functions
ei, fi such that the following statements hold.

(i) For each i = 1, . . . ,n, the polynomials pi and qi satisfy pi(0) = qi(0) = 1 , have
no common zeros and no real zeros. Each pi and qi has even degree which does
not exceed 2ind− h�σi .
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(ii) For each i = 1, . . . ,n, the functions ei and fi satisfy ei(0) = 1 and fi(0) = 0 and
have no common zeros. They are of bounded type in C+ and belong to the Pólya
class (in particular, they have no non-real zeros).

(iii) The intermediate Weyl coefficient qh,σi of h at the singularity σi is represented
as the quotient

qh,σi(z) =
qi(z) fi(z)
pi(z)ei(z)

.

(iv) The following limit relations hold locally uniformly on C:

lim
x→σi

ξ T
φi+ π

2
ωh(x;z)ξφi+ π

2
= pi(z)ei(z),

lim
x→σi

ξ T
φi

ωh(x;z)ξφi+ π
2

= qi(z) fi(z),

lim
x→σi

ξ T
φi+ π

2
ωh(x;z)ξφi

−th(x)
= zpi(z)ei(z),

lim
x→σi

ξ T
φi

ωh(x;z)ξφi

−th(x)
= zqi(z) fi(z).

Proof. Let i ∈ {1, . . . ,n} be fixed. By appropriately prolonging h if necessary,
we can achieve that h is singular. Of course, prolonging h does not influence the
limits under consideration. Moreover, using rotation isomorphisms in the routine way
we see that it is enough to consider the case that φi = 0. If i = 1 and the interval
(σ0,σ1) is indivisible, then the assertions follow immediately from Theorem 4.1 with
p1(z) = q1(z) = e1(z) = 1, f1(z) = 0; note that in this case qh,σ1(z) = 0. Hence in the
following we assume that h�σi is not just one indivisible interval.

Step 1: existence of limits from above.
Set

H̃0(x) := (x−σi)−2ξ π
2

ξ T
π
2
, x ∈ (σi −1,σi),

H̃1(x) := Hi(x), x ∈ (σi,σi+1),

˜̈o := 0, b̃1 := 0, d̃ j := 0,

and choose a point s0 ∈ (σi,σi+1) which is not inner point of an indivisible interval.
Then the data

σi −1, σi, σi+1, H̃0, H̃1, ˜̈o, b̃1, d̃ j, E := {σi−1,s0,σi+1}
constitutes a general Hamiltonian h̃ ∈ H π

2
.

Choose x0 ∈ (σi,σi+1) , and set

M(z) := ωh(x0;z)ωh̃(x0;z)−1, (4.28)
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so that ωh(x0;z) = M(z)ωh̃(x0;z) . Since ωh and ωh̃ both satisfy the canonical differ-
ential equation with Hamiltonian H1 on the interval (σi,σi+1) , we have

ωh(y;z)−1ωh(x;z) = ωh̃(y;z)−1ωh̃(x;z), x,y ∈ (σi,σi+1).

It follows that

ωh(x;z) = M(z)ωh̃(x;z), x ∈ (σi,σi+1). (4.29)

Explicitly, ωh(x;z) has the form⎛⎝m11(z)ωh̃(x;z)11+m12(z)ωh̃(x;z)21 m11(z)ωh̃(x;z)12+m12(z)ωh̃(x;z)22

m21(z)ωh̃(x;z)11+m22(z)ωh̃(x;z)21 m21(z)ωh̃(x;z)12+m22(z)ωh̃(x;z)22

⎞⎠
where M(z) = (mi j(z))2

i j=1 . By Theorem 4.1 we have (locally uniformly on C)

lim
x↘σi

ωh̃(x;z)11 = lim
x↘σi

ωh̃(x;z)22 = lim
x↘σi

ωh̃(x;z)21

−th̃(x)z
= 1,

lim
x↘σi

ωh̃(x;z)12 = 0,

and hence (again locally uniformly on C)

lim
x↘σi

ωh(x;z)12 = m12(z), lim
x↘σi

ωh(x;z)22 = m22(z),

lim
x↘σi

ωh(x;z)11

−th̃(x)
= zm12(z), lim

x↘σi

ωh(x;z)21

−th̃(x)
= zm22(z).

(4.30)

Since th̃ and th are both anti-derivatives of trH , they differ only by a constant, and
hence

lim
x↘σi

th̃(x)
th(x)

= 1.

This shows the existence of the limits in (iv) from above. It follows that the intermedi-
ate Weyl coefficient qh,σi can be computed as follows:

qh,σi(z) = lim
x↘σi

ωh(x;z)� 0 =
m12(z)
m22(z)

. (4.31)

Step 2: the functions pi,qi and ei, fi .
Since the entries of ωh(x0;z) and ωh̃(x;z) are real, entire and of bounded type in C+ ,
also the functions m12 and m22 possess these properties. Moreover, since detM(z) = 1,
they cannot have common zeros. Finally, since M(0) = I , we have m12(0) = 0 and
m22(0) = 1.
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The function qh,σi belongs to the generalized Nevanlinna class N<∞ , and ind− qh,σi

= ind− h�σi . Hence the total multiplicity of poles (or zeros) of qh,σi in C+ does not ex-
ceed ind− h�σi . Denote by dm12(w) the multiplicity of w as a zero of m12 , let dm22(w)
be defined correspondingly, and set

pi(z) := ∏
w∈C

+:
m22(w)=0

[(
1− z

w

)(
1− z

w

)]dm22 (w)
, ei(z) :=

m22(z)
pi(z)

,

qi(z) := ∏
w∈C

+:
m12(w)=0

[(
1− z

w

)(
1− z

w

)]dm12 (w)
, fi(z) :=

m12(z)
qi(z)

.

Clearly, the polynomials pi and qi have all properties stated in (i) , and the functions
ei and fi have the properties (ii) (Pólya class is a consequence of bounded type). The
assertion (iii) is just (4.31). The limits in (iv) , when x approaches σi from above, are
just (4.30).

Step 3: existence of limits from below.

Set V :=
(

1 0
0 −1

)
, and

Ȟ0(x) := (x+ σi)−2ξ π
2

ξ T
π
2
, x ∈ (−σi−1,−σi),

Ȟ1(x) := VHi−1(−x)V, x ∈ (−σi,−σi−1),

ˇ̈o := 0, b̌1 := 0, ď j := 0.

If i > 1, choose a point s0 ∈ (σi−1,σi) which is not inner point of an indivisible interval.
For i = 1, set s0 := σ0 . Then the data

−σi−1,−σi,−σi−1, Ȟ0, Ȟ1, ˇ̈o, b̌1, ď j, E := {−σi−1,−s0,−σi−1}

constitutes a general Hamiltonian ȟ ∈ H π
2
.

The functions ωh(x;z) and Vωȟ(−x;z)−1V are both solutions of the canonical
differential equation with Hamiltonian H1 . Hence, setting (with some fixed x0 ∈
(σi−1,σi))

N(z) := ωh(x0;z)
[
Vωȟ(−x0;z)−1V

]−1

we have

ωh(x;z) = N(z)[Vωȟ(−x;z)−1V
]
, x ∈ (σi−1,σi). (4.32)

Explicitly, this relation reads as

ωh(x;z)=

(
n11(z)ωh̃(−x;z)22+n12(z)ωh̃(−x;z)21 n11(z)ωh̃(−x;z)12+n12(z)ωh̃(−x;z)11

n21(z)ωh̃(−x;z)22+n22(z)ωh̃(−x;z)21 n21(z)ωh̃(−x;z)12+n22(z)ωh̃(−x;z)11

)
.
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Theorem 4.1 gives

lim
x↘−σi

ωȟ(x;z)11 = lim
x↘−σi

ωȟ(x;z)22 = lim
x↘−σi

ωȟ(x;z)21

−tȟ(x)z
=1, lim

x↘−σi
ωȟ(x;z)12 =0,

and hence (note that limx↘σi

tȟ(x)
th(−x) = 1),

lim
x↗σi

ωh(x;z)12 = n12(z), lim
x↗σi

ωh(x;z)22 = n22(z),

lim
x↗σi

ωh(x;z)11

−th(x)
= zn12(z), lim

x↗σi

ωh(x;z)21

−th(x)
= zn22(z).

Step 4: equality of limits from above and below.
For the same reason as in Steps 1 and 2 above, the functions n12 and n22 are real, entire,
of bounded type, satisfy n12(0) = 0, n22(0) = 1, have no common zeros, and represent
the intermediate Weyl coefficient as the quotient

qh,σi(z) =
n12(z)
n22(z)

.

Hence we may factorize

n22(z) = pi(z)ěi(z), n12(z) = qi(z) f̌i(z),

where pi and qi are the polynomials defined in Step 2, and where the functions ěi and
f̌i also have the properties formulated in (ii) and (iii) for ei and fi .

Because of the assumption that h�σi is not just an indivisible interval, the functions
ei, ěi, fi, f̌i are not identically equal to zero. Since they have only real zeros, belong
to the Pólya class, are real, and are of bounded type, they can be represented as the
products

ei(z) = lim
R→∞ ∏

ei(x)=0

|x|�R

(
1− z

x

)dei (x)
, ěi(z) = lim

R→∞ ∏
ěi(x)=0

|x|�R

(
1− z

x

)děi
(x)

,

fi(z) = z lim
R→∞ ∏

fi(x)=0

|x|�R

(
1− z

x

)d fi (x)
, f̌i(z) = z lim

R→∞ ∏
f̌i(x)=0

|x|�R

(
1− z

x

)d f̌i
(x)

,

cf. [40, Theorem V.11]. However, m12(z)
m22(z)

= n12(z)
n22(z)

, and hence the absence of common

zeros implies that the functions ei and ěi , or fi and f̌i , respectively, have the same
zeros including multiplicities. Thus

ei = ěi, fi = f̌i,
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i.e. the limits in (iv) from above and below coincide. �
In (2.14) the intermediate Weyl coefficient qh,σi at a singularity σi was defined

as a limit for non-real z . In the next corollary it is shown that this limit exists also for
certain real z and coincides with the analytic continuation of qh,σi(z) .

COROLLARY 4.22. Let h be a general Hamiltonian and σi be one of its singu-
larities. Further, let qh,σi be the intermediate Weyl coefficient of h at σi and let P be
the set of all poles of qh,σi . Then, for each τ ∈ R∪{∞} , the relation

qh,σi(z) = lim
x→σi

ωh(x;z)� τ (4.33)

holds on C \ (P∪ {0}) where the limit exists locally uniformly on this set (for τ =
cot(φi + π

2 ) even on C\P where φi is as in Theorem 4.21).

Proof. For z �= 0 this is an immediate consequence of the fact that the limits in
Theorem 4.21 (iv) exist locally uniformly on all of C . Next we consider the case z = 0.
For z = 0 the right-hand side of (4.33) is equal to

lim
x→σi

ωh(x;0)� τ = lim
x→σi

I � τ = τ.

To calculate qh,σi(0) , replace the part of h to the right of σi by an indivisible interval
(σi,x0) of type φi + π

2 which is regular at x0 . Let us call this new general Hamiltonian
h̃ . For x ∈ (σi,x0) we have

ωh̃(x;z) = ωh̃(x0;z)W(l(x),φi+ π
2 )(z)

where l(x) is some positive function of x and W(l,φ)(z) is defined in (2.10). Set φ ′ =
φi + π

2 . Then

ωh̃(x;z)� cotφ ′ = ωh̃(x0;z)W(l(x),φ ′)(z)� cotφ ′

= ωh̃(x0;z)�

(
1− l(x)zsinφ ′ cosφ ′)cotφ ′ + l(x)zcos2 φ ′

−l(x)zsin2 φ ′ cotφ ′ +1+ l(x)zsinφ ′ cosφ ′

= ωh̃(x0;z)� cotφ ′.

Hence

qh,σi(z) = lim
x↗σi

ωh(x;z)� cotφ ′ = lim
x↗σi

ωh̃(x;z)� cotφ ′

= lim
x↘σi

ωh̃(x;z)� cotφ ′ = ωh̃(x0;z)� cotφ ′.

For z = 0 we obtain

qh,σi(0) = ωh̃(x0;0)� cotφ ′ = I � cotφ ′ = cot
(

φi +
π
2

)
.

Hence the relation in (4.33) with z = 0 is valid if and only if τ = cot(φi + π
2 ) . �

Note that the exception of the point 0 for τ �= cot(φi + π
2 ) in Corollary 4.22 is

actually necessary as is seen from the proof.
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5. Regularized boundary values

In this section we prove the existence of regularized boundary values and the ex-
istence of a distinguished solution of (1.1) for which the limit towards the singularity
exists. These results are then used to calculate the fundamental solution for a given
Hamiltonian in the class Hα , and to determine how the Titchmarsh–Weyl coefficient
changes when the parameters ö , b j and d j are changed. For P(h) , Γ(h) and ψ(h)
see §2.e.

THEOREM 5.1. Let h ∈ Hα be given by the data

σ0,σ1,σ2, H0,H1, ö,b j,d j, E = {s0, . . . ,sn},

with min(E ∩ (σ1,σ2)) = s1 . Assume that bö+1 = 0 in the case when σ1 is not left
endpoint of an indivisible interval. Moreover, set Δ := Δ−(H1) , and denote by wl ,
l ∈ N0 , the unique absolutely continuous functions on (σ1,σ2) with (cf. (2.12))

w0 ≡ ξα , w′
l+1 = JH1wl , l ∈ N0,

wl(s1) ∈ span{ξα},
wl
∣∣
(σ1,s1)

∈ L2(H|(σ1,s1)), l � Δ.

Let z ∈ C and ψ be a solution of the Hamiltonian system

y′(x) = zJH1(x)y(x), x ∈ (σ1,σ2). (5.1)

Then the boundary value
rbvrψ := lim

x↘σ1
ξ T

αψ(x), (5.2)

and the regularized boundary value

rbvs(z)ψ := lim
x↘σ1

[ Δ

∑
l=0

zl(wl(x)
)T

J

(
ψ(x)− rbvrψ ·

2Δ−l

∑
k=Δ+1

zkwk(x)
)]

+ rbvrψ

( 2Δ

∑
l=1

zldl−1−
ö

∑
l=0

z2Δ+lbö+1−l

) (5.3)

exist. Set
rbv(z)ψ := rbvs(z)ψ ·ξα− π

2
+ rbvrψ ·ξα .

For each z ∈C and a∈C2 there exists a unique solution ψ of (5.1) with rbv(z)ψ= a.
Moreover, for given ψ as above let F be the unique element in P(h) such that

(F ;zF) ∈ Tmax(h) and ψ(h)F =ψ . Then

rbv(z)ψ = πl ◦Γ(h)(F ;zF). (5.4)
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THEOREM 5.2. Let h be a general Hamiltonian as in Theorem 5.1. Let z ∈ C

and ψ be a solution of (5.1). Then

lim
x↘σ1

ξ T
αψ(x) = ξ T

α rbv(z)ψ. (5.5)

For z �= 0 the following are equivalent:

(i) limx↘σ1 ξ T
α− π

2
ψ(x) exists;

(ii) rbv(z)ψ ∈ span{ξα− π
2
} ;

(iii) rbvrψ= 0 ;

(iv) ψ
∣∣
(σ1,s1)

∈ L2(H|(σ1,s1)) .

In this case,
lim

x↘σ1
ψ(x) = rbv(z)ψ. (5.6)

REMARK 5.3. The case ‘z = 0’ is indeed exceptional. For z = 0 all solutions
of (5.1) are constant functions. Moreover, the right-hand side of (5.3) reduces to
rbvs(0)ψ= limx↘σ1 ξ T

α− π
2
ψ(x) and hence

rbv(0)ψ= lim
x↘σ1

ψ(x).

Therefore (i) is satisfied for all solutions of (5.1) but (ii)–(iv) are satisfied only for
multiples of the constant function ξα− π

2
.

According to condition (E2) in Definition 2.18 the interval (σ1,s1) is either a maximal
indivisible interval of type α or σ1 is not left endpoint of an indivisible interval. We
first settle the case when α = π

2 and (σ1,s1) is an indivisible interval.

Proof (of Theorems 5.1 and 5.2 when α = π
2 and (σ1,s1) is indivisible) .

In this case we have to consider the elementary Hamiltonian on (σ0,σ1)∪ (σ1,s1) ,
which is of kind (B) or (C); see [28, Definition 4.1]. By this definition we have d1 = 0.
Since α = π

2 , we can write

H0(x) =
(

0 0

0 h0(x)

)
, x ∈ (σ0,σ1); H1(x) =

(
0 0

0 h1(x)

)
, x ∈ (σ1,s1),

with real-valued functions h0,h1 which are locally integrable on [σ0,σ1) and (σ1,s1] ,
respectively, but not integrable at σ1 . According to [29, Corollary 4.32] we have

ωh(s1;z) =

(
1 0

−zd0 + z2bö+1 + . . .+ zö+2b1 1

)
,
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and with

�−(x) :=
∫ x

σ0

h0(t)dt, x ∈ [σ0,σ1), and �+(x) :=
∫ s1

x
h1(t)dt, x ∈ (σ1,s1],

we therefore obtain

ωh(x;z) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
1 0

−�−(x) 1

)
, x ∈ [σ0,σ1),⎛⎝ 1 0

z
(
�+(x)−d0

)
+ z2bö+1 + . . .+ zö+2b1 1

⎞⎠ , x ∈ (σ1,s1].

An arbitrary solution ψ of (5.1) is a linear combination of the rows of ωh , i.e. with
arbitrary a = (a1, a2)T ∈ C2 ,

ψ(x) = a1

(
ωh(x;z)11

ωh(x;z)12

)
+a2

(
ωh(x;z)21

ωh(x;z)22

)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(
a1−a2�−(x)

a2

)
, x ∈ [σ0,σ1),⎛⎜⎝a1 +a2

(
z
(
�+(x)−d0

)
+

ö

∑
l=0

zl+2bö+1−l

)
a2

⎞⎟⎠ , x ∈ (σ1,s1].

For the calculation of the regularized boundary values we need w0 , w1 and w2 ; note
that Δ = 1 since we have indivisible intervals on both sides of σ1 . On the interval
(σ1,s1] we have

w0(x) =
(

0

1

)
, w1(x) =

(
�+(x)

0

)
, w2(x) = 0.

For rbvrψ we obtain

rbvrψ = lim
x↘σ1

ψ2(x) = a2.
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The expression in (5.3) yields

rbvs(z)ψ = lim
x↘σ1

[
w0(x)∗J

(
ψ(x)−a2z

2w2(x)
)

+ zw1(x)∗Jψ(x)
]

+a2

(
zd0 −

ö

∑
l=0

zl+2bö+1−l

)

= lim
x↘σ1

[(
w0(x)+ zw1(x)

)∗
Jψ(x)

]
+a2

(
zd0−

ö

∑
l=0

zl+2bö+1−l

)

= lim
x↘σ1

(
ψ1(x)− z�+(x)ψ2(x)

)
+a2

(
zd0−

ö

∑
l=0

zl+2bö+1−l

)

= a1−a2zd0 +a2

ö

∑
l=0

zl+2bö+1−l +a2

(
zd0−

ö

∑
l=0

zl+2bö+1−l

)
= a1.

Hence rbv(z)ψ = (a1, a2)T , which shows that for every a ∈ C2 we have a unique
solution ψ of (5.1) with rbv(z)ψ = a . So all assertions of Theorem 5.1 are proved
(relation (5.4) follows from the very definition of ωh in [29, Lemma 4.1, Definition
4.3]).

Equation (5.5) in Theorem 5.2 is valid since both sides are equal to a2 ; note that
ξα = (0, 1)T . It is easy to see that the statements (i) to (iv) are all equivalent to the
fact that a2 = 0. Finally, if a2 = 0, then both sides of (5.6) are equal to a1 . �

Now we turn to the proof of Theorem 5.1 in the case when σ1 is not left endpoint
of an indivisible interval. The core of the proof is the following lemma, where we
rewrite formula (2.21) for a defect element.

LEMMA 5.4. Let h be a regular general Hamiltonian of the form 2.20. Let z∈C ,

F = ( f ;ξ,α) ∈ �

P(h) and assume that (F ;zF) ∈ �
T (h) . Moreover, let wl be as in

(2.15)–(2.17), and let λl be the unique scalars such that

f̃ := f −
Δ−1

∑
l=0

λlwl ∈ L2(H|(σ1,σ2)).

Then the limit

L := lim
x↘σ1

[ Δ

∑
l=0

zl(wl(x)
)∗

J

(
f (x)−λ0

2Δ−l

∑
k=Δ+1

zkwk(x)
)]

exists, and

πl ◦
�
Γ(F ;zF) =

⎛⎜⎝L+ λ0

(
2Δ
∑
l=1

zldl−1−
ö
∑
l=1

z2Δ+lbö+1−l

)
λ0

⎞⎟⎠ . (5.7)
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Proof. We use Proposition 2.22 and Definition 2.21 with the element (F ;zF) , i.e.
g = z f , ηl = zξl , βl = zαl , and, consequently, μl = zλl .

Step 1: computation of β1 .
It follows from Definition 2.21 (i) that λk+1 = μk = zλk , k = 0, . . . ,Δ−2, and hence

λk = zkλ0, μk = zk+1λ0, k = 0, . . . ,Δ−1.

If ö > 0, we obtain from Definition 2.21 (iv) that

αö = zΔλ0b1,

α j = zΔλ0bö− j+1 + zα j+1, k = 1, . . . , ö−1.

By induction,

αk = λ0

(
zΔbö−k+1 + zΔ+1bö−k + . . .+ zΔ+ö−kb1

)
, k = 1, . . . , ö,

and hence

β1 = zα1 = λ0

ö

∑
l=1

zΔ+lbö+1−l.

In order to unify notation, we set β1 := 0 when ö = 0.

Step 2: computation of η0 .
We shall show by induction that, for k = 0, . . . ,Δ−1,

ξk = zΔ−k

σ2∫
σ1

(wΔ)∗H f̃ +
Δ−k−1

∑
l=0

zl(wk+l+1(σ2)
)
2 f (σ2)1

+ λ0

(
1
2

Δ−1

∑
l=0

zldk+l +
Δ−k−1

∑
l=0

zΔ+ldΔ+l+k −
ö

∑
l=1

z2Δ+l−k−1bö+1−l

)
.

(5.8)

For k = Δ−1 we obtain from Definition 2.21 (iii) that

ξΔ−1 =
σ2∫

σ1

(wΔ)∗Hz f̃ +
1
2

Δ−1

∑
l=0

zlλ0dl+Δ−1 + zΔλ0d2Δ−1

+
(
wΔ(σ2)

)
2 f (σ2)1 −β1

= z

σ2∫
σ1

(wΔ)∗H f̃ +
(
wΔ(σ2)

)
2 f (σ2)1

+ λ0

(
1
2

Δ−1

∑
l=0

zldl+Δ−1 + zΔd2Δ−1−
ö

∑
l=1

zΔ+lbö+1−l

)
,
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which is (5.8) for k = Δ−1. Let k ∈ {0, . . . ,Δ−2} and assume that (5.8) is true for k
replaced by k+1. Then, by Definition 2.21 (ii) ,

ξk = zξk+1 +
1
2
zΔλ0dΔ+k +

1
2

λ0dk +
(
wk+1(σ2)

)
2 f (σ2)1

= zΔ−k

σ2∫
σ1

(wΔ)∗H f̃ +
Δ−k−2

∑
l=0

zl+1(wk+l+2(σ2)
)
2 f (σ2)1

+ λ0

(
1
2

Δ−1

∑
l=0

zl+1dk+l+1 +
Δ−k−2

∑
l=0

zΔ+l+1dΔ+l+k+1−
ö

∑
l=1

z2Δ+l−k−1bö+1−l

)

+
1
2
zΔλ0dΔ+k +

1
2

λ0dk +
(
wk+1(σ2)

)
2 f (σ2)1

= zΔ−k

σ2∫
σ1

(wΔ)∗H f̃ +
Δ−k−1

∑
l=1

zl(wk+l+1(σ2)
)
2 f (σ2)1 +

(
wk+1(σ2)

)
2 f (σ2)1

+ λ0

(
1
2

Δ

∑
l=1

zldk+l +
1
2
dk +

1
2
zΔdΔ+k +

Δ−k−1

∑
l=1

zΔ+ldΔ+l+k

−
ö

∑
l=1

z2Δ+l−k−1bö+1−l

)

= zΔ−k

σ2∫
σ1

(wΔ)∗H f̃ +
Δ−k−1

∑
l=0

zl(wk+l+1(σ2)
)
2 f (σ2)1

+ λ0

(
1
2

Δ−1

∑
l=0

zldk+l + zΔdΔ+k +
Δ−k−1

∑
l=1

zΔ+ldΔ+l+k

−
ö

∑
l=1

z2Δ+l−k−1bö+1−l

)
,

which is equal to the right-hand side of (5.8). Thus (5.8) holds for all k∈ {0, . . . ,Δ−1} ,
and it follows that

η0 = zξ0

= zΔ+1

σ2∫
σ1

(wΔ)∗H f̃ +
Δ−1

∑
l=0

zl+1(wl+1(σ2)
)
2 f (σ2)1

+ λ0

(
1
2

Δ−1

∑
l=0

zl+1dl +
Δ−1

∑
l=0

zΔ+l+1dΔ+l −
ö

∑
l=1

z2Δ+lbö+1−l

)
.
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Step 3: first component of the left boundary value.
By (2.21) the first component of the boundary value at the left endpoint σ0 is equal to

(
πl ◦

�
Γ(F ;zF)

)
1 = η0 + f (σ2)1 +

1
2

Δ−1

∑
l=0

zl+1λ0dl

= zΔ+1

σ2∫
σ1

(wΔ)∗H f̃ +
Δ

∑
l=0

zl(wl(σ2)
)
2 f (σ2)1

+ λ0

(
Δ−1

∑
l=0

zl+1dl +
Δ−1

∑
l=0

zΔ+l+1dΔ+l −
ö

∑
l=1

z2Δ+lbö+1−l

)

= zΔ+1

σ2∫
σ1

(wΔ)∗H f̃ +
Δ

∑
l=0

zl(wl(σ2)
)
2 f (σ2)1 (5.9)

+ λ0

(
2Δ

∑
l=1

zldl−1−
ö

∑
l=1

z2Δ+lbö+1−l

)
. (5.10)

Step 4: removing the integral term.
Take an arbitrary x ∈ (σ1,σ2) and apply Green’s identity (2.11) to the interval (x,σ2) :

zΔ+1

σ2∫
x

(wΔ)∗H f̃ +
Δ

∑
l=0

zl(wl(σ2)
)
2 f (σ2)1 (5.11)

= zΔ
σ2∫
x

(wΔ)∗H
(

z f −λ0

Δ−1

∑
k=0

zk+1wk

)
+

Δ

∑
l=0

zl(wl(σ2)
)
2 f (σ2)1

= zΔ

[ σ2∫
x

(wΔ−1)∗H
(

f −λ0

Δ−1

∑
k=0

zk+1wk+1

)

+
(
wΔ(x)

)∗
J

(
f (x)−λ0

Δ−1

∑
k=0

zk+1wk+1(x)
)

− (wΔ(x0)
)∗

J

(
f (σ2)−λ0

Δ−1

∑
k=0

zk+1wk+1(σ2)
)]

+
Δ

∑
l=0

zl(wl(σ2)
)
2 f (σ2)1

= zΔ−1

σ2∫
x

(wΔ−1)∗H
(

z f −λ0

Δ−1

∑
k=0

zk+2wk+1

)

+ zΔ(wΔ(x)
)∗

J

(
f (x)−λ0

Δ−1

∑
k=0

zk+1wk+1(x)
)

+
Δ−1

∑
l=0

zl(wl(σ2)
)
2 f (σ2)1
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= zΔ−1

[ σ2∫
x

(wΔ−2)∗H
(

f −λ0

Δ−1

∑
k=0

zk+2wk+2

)

+
(
wΔ−1(x)

)∗
J

(
f (x)−λ0

Δ−1

∑
k=0

zk+2wk+2(x)
)

− (wΔ−1(σ2)
)∗

J

(
f (σ2)−λ0

Δ−1

∑
k=0

zk+2wk+2(σ2)
)]

+ zΔ(wΔ(x)
)∗

J

(
f (x)−λ0

Δ−1

∑
k=0

zk+1wk+1(x)
)

+
Δ−1

∑
l=0

zl(wl(σ2)
)
2 f (σ2)1

= zΔ−2

σ2∫
x

(wΔ−2)∗H
(

z f −λ0

Δ−1

∑
k=0

zk+2wk+2

)

+ zΔ−1(wΔ−1(x)
)∗

J

(
f (x)−λ0

Δ−1

∑
k=0

zk+2wk+2(x)
)

+ zΔ(wΔ(x)
)∗

J

(
f (x)−λ0

Δ−1

∑
k=0

zk+1wk+1(x)
)

+
Δ−2

∑
l=0

zl(wl(σ2)
)
2 f (σ2)1.

Proceeding inductively, we obtain that the expression in (5.11) equals

Δ

∑
l=0

zl(wl(x)
)∗

J

(
f (x)−λ0

2Δ−l

∑
k=Δ+1−l

zkwk(x)
)

. (5.12)

Step 5: finishing the proof.
Since J∗ = −J , we have(

wl(x)
)∗

Jwk(x)+
(
wk(x)

)∗
Jwl(x) = 0

for k, l ∈ N0 . Hence

Δ

∑
l=0

Δ

∑
k=Δ+1−l

(
wl(x)

)∗
Jwk(x) = ∑

1�k,l�Δ
Δ+1�k+l�2Δ

(
wl(x)

)∗
Jwk(x)

=
1
2 ∑

1�k,l�Δ
Δ+1�k+l�2Δ

((
wl(x)

)∗
Jwk(x)+

(
wk(x)

)∗
Jwl(x)

)
= 0,

which, together with (5.12), implies that the expression in (5.11) is equal to

Δ

∑
l=0

zl(wl(x)
)∗

J

(
f (x)−λ0

2Δ−l

∑
k=Δ+1

zkwk(x)
)

.
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Since the integral in (5.9) exists, we can take the limit as x ↘ σ1 , which shows that

(
πl ◦

�
Γ(F ;zF)

)
1 = lim

x↘σ1

Δ

∑
l=0

zl(wl(x)
)∗

J

(
f (x)−λ0

2Δ−l

∑
k=Δ+1

zkwk(x)
)

+ λ0

(
2Δ

∑
l=1

zldl−1−
ö

∑
l=1

z2Δ+lbö+1−l

)
.

Together with (2.21), the assertion of the lemma follows. �

We also use the following consequence of Theorem 4.1.

LEMMA 5.5. Let h be a regular general Hamiltonian of the form 2.20. Let z∈C ,

F = ( f ;ξ,α) ∈ �

P(h) , and assume that (F ;zF)∈ �
T (h) . Let wl and λl be as in Lemma

5.4. Then
λ0 = lim

x↘σ1
f (x)2.

Proof. Let G1 = (g1;ξ1,α1) , G2 = (g2;ξ2,α2) be the unique elements with

(G1;zG1),(G2;zG2) ∈
�
T (h),

πl ◦
�
Γ(G1;zG1) =

(
1
0

)
, πl ◦

�
Γ(G2;zG2) =

(
0
1

)
.

Then, by the definition of ωh in [29], we have

ωh(x;z) =

(
g1(x)1 g1(x)2

g2(x)1 g2(x)2

)
.

By Theorem 4.1, thus

lim
x↘σ1

g1(x)2 = 0, lim
x↘σ1

g2(x)2 = 1.

If F is any defect element, then F can be written as a linear combination F = a1G1 +
a2G2 . The numbers a1,a2 can be obtained by means of boundary values; in fact, we
have

a1 = πl,1 ◦
�
Γ(F ;zF), a2 = πl,2 ◦

�
Γ(F ;zF).

Remembering (5.7) we obtain

λ0 = πl,2 ◦
�
Γ(F ;zF) = a2 = lim

x↘σ1
f (x)2. �

Proof (of Theorem 5.1 when α = π
2 and (σ1,s1) is not indivisible) .

Let the general Hamiltonian h be given according to the formulation of the theorem
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and let z ∈ C and ψ be a solution of (5.1). Consider the general Hamiltonian h�s1 , i.e.
the general Hamiltonian given by the data

σ0,σ1,s1, H0,H1|(σ1,s1), ö,b j,d j, E = {σ0,s1}.

Then h�s1 is of the form 2.20. Let F = ( f ;ξ,α) ∈ �

P(h�s1) be the unique element such

that (F ;zF) ∈ �
T (h�s1) and πr ◦

�
Γ(h�s1)(F ;zF) = ψ(s1) . Denote the unique absolutely

continuous representative of f again by f . Then f and ψ are both absolutely continu-
ous functions on (σ1,s1] which satisfy the differential equation (5.1) and take the same
boundary value at s1 . Thus

f |(σ1,s1] =ψ|(σ1,s1] (5.13)

and hence
�ψ(h)(F) =ψ , where

�ψ(h) is as in Remark 2.23. Lemmas 5.5 and 5.4 imply
that the limits (5.2) and (5.3) exist and that

rbv(z)ψ = πl ◦
�
Γ(h�s1)(F ;zF), (5.14)

which shows (5.4).

Next let a∈C2 be given. There exists (F ;zF)∈ �
T (h�s1) with πl ◦

�
Γ(h�s1)(F ;zF)=

a . Write F = ( f ;ξ,α) ; then f is a solution of (5.1) which has the required regularized
boundary value. For uniqueness, let z ∈ C and assume that ψ and ψ̃ are two solutions
of (5.1) with

rbv(z)ψ = rbv(z)ψ̃=: a.

Since the defect element (F ;zF) ∈ �
T (h�s1) whose boundary value at s1 equals a is

unique, it follows from (5.13) that ψ= ψ̃ . �

As usual, the proof for general values of α is carried out by applying rotation
isomorphisms.

Proof (of Theorem 5.1, general values of α ∈ [0,π) ) . Let h ∈Hα , z ∈ C and let
ψ be a solution of (5.1). The general Hamiltonian h̃ :=	α− π

2
h is in H π

2
. The function

ψ̃(x) := Nα− π
2
ψ(x)

is a solution of (5.1) with H1 replaced by H̃1 :=	α− π
2

H1 .
We have

ξ T
αψ(x) = ξ T

α NT
α− π

2
·Nα− π

2
ψ(x) = ξ T

π
2
ψ̃(x),

and hence rbvr ψ̃= rbvrψ . Since w̃l = Nα− π
2
wl and N∗

α− π
2
JNα− π

2
= J , we also have

rbvs(z)ψ̃ = rbvs(z)ψ .
The fact that ξα and ξα− π

2
are linearly independent implies that, for each given

a ∈ C2 , there exists a unique solution ψ with rbv(z)ψ = a .
Finally, it follows from (5.14) that

πl ◦
�̃
Γ(F̃ ;zF̃) = rbv(z)ψ̃= rbvs(z)ψ̃ ·ξ0 + rbvr ψ̃ ·ξ π

2
.
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Moreover,

πl ◦
�̃
Γ(F ;zF) = Nπ

2 −α
[
πl ◦

�̃
Γ(F̃ ;zF̃)

]
= rbvs(z)ψ̃ ·ξα− π

2
+ rbvr ψ̃ ·ξα

and hence
πl ◦

�
Γ(F ;zF) = rbv(z)ψ.

Observing Remark 2.23 we obtain (5.4). �

We come to the proof of Theorem 5.2. It relies mainly on Theorem 4.1.

Proof (of Theorem 5.2) . By the usual rotation argument, we can restrict the ex-
plicit proof to the case when α = π

2 .
Let z ∈ C and let a solution ψ be given. Set

ψr(x;z) :=
[
(1, 0)ωh(x;z)

]T
, ψs(x;z) :=

[
(0, 1)ωh(x;z)

]T
, x ∈ (σ1,σ2).

Then ψr(· ;z) and ψs(· ;z) are linearly independent solutions of (5.1), and thus each
given solution ψ can be written as a linear combination ψ = a1ψr(· ;z)+ a2ψs(· ;z) .
As we have already noted in the proof of Lemma 5.5,

rbv(z)ψ =
(

a1

a2

)
.

By Theorem 4.1 we have

lim
x↘σ1

ψr(x;z) =
(

1
0

)
, lim

x↘σ1
ψs(x;z)2 = 1

and
lim

x↘σ1
ψs(x;z)1 = ∞ if z �= 0,

which implies (5.5). Moreover, we see that the equivalence ‘(i)⇔ (ii)’ holds true since
both of (i) and (ii) are equivalent to ‘a2 = 0’. In this case we also have (rbv(z)ψ1 =
limx↘σ1(ψ(x))1 , which, together with (5.5), is (5.6). The equivalence (ii) ⇔ (iii) is
trivial.

In order to establish the equivalence with (iv) , we have to assume that z �= 0 and
we distinguish the cases when z is real and when it is non-real. Assume first that z /∈R .
Green’s identity (2.11) applied on the interval (x,s1) gives

2i Imz

s1∫
x

ψ(t)∗H(t)ψ(t)dt =ψ(x)∗Jψ(x)−ψ(s1)∗Jψ(s1).

Hence the implication ‘(i) ⇒ (iv)’ holds, and we conclude that ψr(· ;z) satisfies (iv) .
However, any two solutions of (5.1) that satisfy (iv) are linearly dependent. Thus each
solution with (iv) must be a scalar multiple of ψr(· ;z) , and hence satisfies (i) . We
therefore see that also the converse implication ‘(iv) ⇒ (i)’ holds.
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Consider now the case that z ∈ R . Assume that ψ ∈ L2(H|(σ1,s1)) . Since H|(σ1,s1)

satisfies (HS− ), the minimal operator in L2(H|(σ1,s1)) is entire. Hence we can choose a
family ψw ∈ L2(H|(σ1,s1)) which is defined and analytic in some open neighbourhood
U of z and solves the equation (5.1) with z replaced by w . Let a1(w) and a2(w) be
the unique functions such that

ψw = a1(w)ψr(· ;w)+a2(w)ψs(· ;w).

Comparing boundary values at s1 we obtain that

ψw(s1) = a1(w)ψr(s1;w)+a2(w)ψs(s1;w).

Since the boundary map is continuous, ψw(s1) depends analytically on w . As ψr

and ψs are linearly independent, this implies that also a1(w) and a2(w) are analytic
functions. By the already proved case ‘z /∈ R’, we have a2(w) = 0 for w ∈U \R . Thus
also a2(w) = 0 for w ∈U ∩R and therefore ψ is a scalar multiple of ψr(· ;z) , which
implies that ψ satisfies (i) . Hence the implication (iv) ⇒ (i) holds. For the converse
remember that the minimal operator in L2(H|(σ1,s1)) has deficiency index (1,1) and
is an entire operator. Therefore we know that there exists a non-trivial solution in
L2(H|(σ1,s1)) . By the above considerations, we know that such a solution must be a
scalar multiple of ψr(· ;z) , which implies that ψr(· ;z) ∈ L2(H|(σ1,s1)) . This proves the
implication (i) ⇒ (iv) also in the case when z ∈ R . �

REMARK 5.6. Let h be as in Theorem 5.1 and h̃ a reparameterization of h in the
sense of [29, Remark 3.38]. Then qh̃ = qh . Hence h̃ again belongs to Hα by Theorem
3.1, and there exists an isomorphism of the form (ϖ , id× id) of the corresponding
boundary triples by [29, Remark 3.39]. Denote by r̃bv(z) the generalized boundary
value as in Theorem 5.1 for h̃ . Then r̃bv(z)ψ̃ = rbv(z)ψ whenever ψ= ψ(h)F , ψ̃ =
ψ(h̃)F̃ and ϖF = F̃ .

As a corollary we obtain a construction of the fundamental solution and the Tit-
chmarsh–Weyl coefficient that is exactly analogous to the classical (positive definite)
case.

COROLLARY 5.7. Let h be a singular general Hamiltonian as in Theorem 5.1
and let

θ(x;z) =
(
θ1(x;z),θ2(x;z)

)T
, ϕ(x;z) =

(
ϕ1(x;z),ϕ2(x;z)

)T
be the unique solutions of (5.1) with

rbv(z)θ(· ;z) =
(

1
0

)
, rbv(z)ϕ(· ;z) =

(
0
1

)
.

Then

ωh(x;z) =

(
θ1(x;z) θ2(x;z)

ϕ1(x;z) ϕ2(x;z)

)
, x ∈ (σ1,σ2).
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The Titchmarsh–Weyl coefficient qh can be obtained as the limit (which is independent
of τ ∈ R∪{∞} )

qh(z) = lim
x↗σ2

θ1(x;z)τ +θ2(x;z)
ϕ1(x;z)τ +ϕ2(x;z)

, z ∈ C\R,

or as the unique function with

θ(· ;z)−qh(z)ϕ(· ;z) ∣∣(s1,σ2)
∈ L2(H1|(s1,σ2)),

where s1 ∈ (σ1,σ2) .

Proof. For a solution ψ of (5.1) the vector rbv(z)ψ is exactly the boundary value
at σ0 of the defect element (F ;zF) with f |(σ1,σ2) = ψ (where F = ( f ;ξ ,α)). Hence
the asserted formula for ωh is merely its definition. The statements about the Titchma-
rsh–Weyl coefficient are immediate. �

REMARK 5.8. Viewing the above formulae from a slightly different point, leads
to the following way to compute ωh which may sometimes be more practical. Let
x ∈ (σ1,σ2) , and let θ̂(· ;z) and ϕ̂(· ;z) be the solutions of (5.1) with

θ̂(x;z) =
(

1
0

)
, ϕ̂(x;z) =

(
0
1

)
.

Then
ωh(x;z)T =

(
rbv(z)θ̂; rbv(z)ϕ̂

)−1
.

We close this section by answering the question how the Titchmarsh–Weyl coeffi-
cient of a general Hamiltonian h ∈ Hα transforms when the data part ‘ ö,b j,d j ’ of h is
altered but the Hamiltonian function H1 is kept fixed (note that H0 is, up to reparam-
eterization, the same for all general Hamiltonians in the class Hα ). This generalizes
the case ‘(σ0,σ1) indivisible’ of a previous result in [37] to higher negative indices. In
[37, Theorem 5.4] we answered the corresponding question for general Hamiltonians
with ind− h = 1 (not necessarily satisfying (gHα )). However, the case when (σ0,σ1)
is indivisible already there played a special role, cf. [37, Corollary 5.5].

For simplicity, we restrict our attention to the case when α = 0. As usual, the cor-
responding versions for other values of α ∈ [0,π) can be deduced by applying rotation
isomorphisms. Note that in [37, Corollary 5.5] the case α = π

2 was considered; in this
situation one has to replace qh by − 1

qh
and qh0 by − 1

qh0
in the corollary below.

COROLLARY 5.9. Let h be a general Hamiltonian h ∈ H0 which is given by the
data

σ0,σ1,σ2, H0,H1, ö,b j,d j, E,

where bö+1 = 0 when σ1 is not left endpoint of an indivisible interval, and denote by
h0 the general Hamiltonian given by

σ0,σ1,σ2, H0,H1, ö0 := 0, b0,1 := 0, d0, j := 0, E.
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Then

qh(z) = qh0(z)+
2Δ

∑
l=1

zldl−1−
ö

∑
l=1

z2Δ+lbö+1−l.

Proof. We use Corollary 5.7 to compute ωh and ωh0 . Let ϕ(· ;z) and θ(· ;z) be
the solutions of (5.1) whose regularized boundary values with respect to the general
Hamiltonian h are equal to

rbvh(z)θ(· ;z) =
(

1
0

)
, rbvh(z)ϕ(· ;z) =

(
0
1

)
,

i.e.

rbvh
r θ(· ;z) = 1, rbvh

s (z)θ(· ;z) = 0,

rbvh
r ϕ(· ;z) = 0, rbvh

s (z)ϕ(· ;z) = −1.

Since rbvr is given as a limit of the function itself (the data ö,b j,d j do not enter the
formula), we have

rbvh0
r ϕ(· ;z) = rbvh

r ϕ(· ;z) = 0, rbvh0
r θ(· ;z) = rbvh

r θ(· ;z) = 1.

The functions wl also do not depend on the data ö,b j,d j , which implies that

rbvh
s (z)ϕ(· ;z) = lim

x↘σ1

[ Δ

∑
l=0

zl(wl(x)
)∗

Jϕ(x;z)
]

= rbvh0
s (z)ϕ(· ;z).

Set

p(x) :=
2Δ

∑
l=1

zldl−1−
ö

∑
l=1

z2Δ+lbö+1−l

and
ϕ0(· ;z) :=ϕ(· ;z), θ0(· ;z) := θ(· ;z)− p(z)ϕ(· ;z).

Then

rbvh0(z)ϕ0(· ;z) = rbvh0(z)ϕ(· ;z) = rbvh(z)ϕ(· ;z) =
(

0
1

)
,

rbvh0
r θ0(· ;z) = rbvh

r θ0(· ;z) = rbvh
r θ(· ;z)− p(z) rbvh

r ϕ(· ;z) = 1

and

rbvh0
s (z)θ0(· ;z) = rbvh0

s (z)θ(· ;z)− p(z) rbvh0
s (z)ϕ(· ;z)

= lim
x↘σ1

[
Δ

∑
l=0

zl(wl(x)
)∗

J

(
θ(x;z)−

2Δ−l

∑
k=Δ+1

zkwk(x)
)]

+ p(z)

= rbvh
s (z)θ(· ;z) = 0,
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i.e. rbvh0(z)θ0(· ;z) =
(1
0

)
. Hence the fundamental solutions ωh and ωh0 are given by

ωh(x;z) =

(
θ1(x;z) θ2(x;z)

ϕ1(x;z) ϕ2(x;z)

)
,

ωh0(x;z) =

(
θ1(x;z)− p(z)ϕ1(x;z) θ2(x;z)− p(z)ϕ2(x;z)

ϕ1(x;z) ϕ2(x;z)

)
.

It follows that

qh0(z) = lim
x↗σ2

ωh0(x;z)� ∞ = lim
x↗σ2

θ1(x;z)− p(z)ϕ1(x;z)
ϕ1(x;z)

= lim
x↗σ2

θ1(x;z)
ϕ1(x;z)

− p(z) = qh(z)− p(z),

which implies the asserted formula. �
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[29] M. KALTENBÄCK, H. WORACEK, Pontryagin spaces of entire functions V, Acta Sci. Math. (Szeged)
77 (2011), 223–336.
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