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A POLYNOMIAL IDENTITY AND ITS APPLICATION TO

INVERSE SPECTRAL PROBLEMS IN STIELTJES STRINGS

C. K. LAW, V. PIVOVARCHIK AND W. C. WANG

Abstract. The equation Φ = P1Q2 + P2Q1 is studied where Φ , Q1 , Q2 are known real poly-
nomials while P1 and P2 are unknown polynomials. Condition are obtained for the solution
(P1,P2 ) to exist and to be such that P−1

1 Q1 and P−1
2 Q2 are Stieltjes functions. This result is

used to prove the existence of a tree with two complementary subtrees of Stieltjes strings such
that the spectrum of the Neumann boundary value problem on the tree is exactly the set of zeros
of Φ and the spectra of Dirichlet problems on the subtrees are the sets of zeros of Q1 and Q2 .

This result is generalized to the equation Φ =
q
∑
i=1

[
Pi ∏

j �=i
Q j

]
, which is then applied to solve the

inverse several spectra problem for trees of Stieltjes strings.
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