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Abstract. The equation Φ = P1Q2 + P2Q1 is studied where Φ , Q1 , Q2 are known real poly-
nomials while P1 and P2 are unknown polynomials. Condition are obtained for the solution
(P1,P2 ) to exist and to be such that P−1

1 Q1 and P−1
2 Q2 are Stieltjes functions. This result is

used to prove the existence of a tree with two complementary subtrees of Stieltjes strings such
that the spectrum of the Neumann boundary value problem on the tree is exactly the set of zeros
of Φ and the spectra of Dirichlet problems on the subtrees are the sets of zeros of Q1 and Q2 .

This result is generalized to the equation Φ =
q
∑
i=1

[
Pi ∏

j �=i
Q j

]
, which is then applied to solve the

inverse several spectra problem for trees of Stieltjes strings.

1. Introduction

The problem of interlacing sequences appears in rather different areas of finite and
infinite dimensional analysis connected with inversion procedure. Strict interlacing of
the eigenvalues of two boundary value problems is involved in the necessary and suf-
ficient conditions of existence of the solution for the inverse Sturm-Liouville problem
by two spectra [16], [17], [18]. Also we meet strictly interlacing sequences in finite
dimensional case solving inverse problem for the so-called Stieltjes string [9] (see also
[13]). In linear algebra it is known that the so-called tree-patterned matrix can be found
for a pair of strictly interlacing sequences such that one of the sequences is the spectrum
of the matrix while the other is the spectrum of its principal submatrix [7], [19].

The direct problem for a Stieltjes string was first studied in the monograph [9].
The problem arises from mechanical systems and is interesting in that the solution of
the inverse spectral problem can be expressed in terms of a continued fraction. This
simple finite-dimensional model was used in [14] and [8] to describe certain effects
in a train vibrations. It should be mentioned that the same equations appear in the so-
called Cauer method in the synthesis of electrical circuits [4]. A nice historical excursus
into the applications can be found in the review article [5] where experiments are also
described.
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Then the so-called inverse three spectral problem was studied in [3], with the tools
of Nevanlinna functions developed in [12] (see also [1]). The three spectral problems
[24], [10], [11], [6], [3] lead to non-strictly interlacing sequences of Dirichlet and Neu-
mann boundary value problems.

The spectral problem on a star graph of Stieltjes strings was solved in [2] (see [20]
for the case of much more general strings and [21], [22] for the Sturm-Liouville case).

The inverse problem on a star graph can be considered as a particular case of an
inverse problem on a tree where the spectra of the Dirichlet and Neumann boundary
value problems are also non-strictly interlaced (see [23] where the relations between
the Neumann and Dirichlet characteristic functions of a tree and its complementary
subtrees established in [15] were used).

In this paper, we are interested in the following several spectra problem. Let T be
a metric tree with q complementary subtrees Ti (i = 1, · · · ,q) . That is ∪q

i=1Ti = T , and
Ti∩Tj = {v} , where v is the root of T . Now given q+1 sequences of positive numbers

{λk}n
k=1 and {ν(i)

k }ni
k=1 (i = 1, · · · ,q) such that n = ∑q

1 ni , we want to find distribution
of point masses on the edges of T such that the spectra of the corresponding Dirichlet

problems on T and Ti are exactly {λk}n
k=1 and {ν(i)

k }ni
k=1 respectively.

2. A polynomial identity

Consider the identity

Φ(z) = P1(z)Q2(z)+P2(z)Q1(z) (1)

where Φ is a polynomial of degree n , P1,Q1 are polynomials of degree n1 , and P2 ,
Q2 are polynomials of degree n2 . Suppose that Φ , Q1 and Q2 are known such that
Φ(0),Q1(0),Q2(0) �= 0. Our aim is to find polynomials P1 and P2 such that P1(0) =
C(1)

1 , a given constant. The method of reconstruction is as follows. Let the set of zeros

of Φ be denoted by {λk}n
k=1 , the sets of zeros of Q1 and Q2 be denoted by {ν(1)

k }n1
k=1

and {ν(2)
k }n2

k=1 respectively. Then (1) implies

P1(ν
(1)
k ) =

Φ(ν(1)
k )

Q2(ν
(1)
k )

, P2(ν
(2)
k ) =

Φ(ν(2)
k )

Q1(ν
(2)
k )

Also we let P1(0) = C(1)
1 . Similarly we want

C(2)
1 =

Φ(0)−C(1)
1 Q2(0)

Q1(0)
.

Thus, by Lagrange interpolation, for i = 1,2,

Pi(z) =
ni

∑
k=1

⎡
⎣ Φ(ν(i)

k )

∏ j �=i Q j(ν
(i)
k )

z

ν(i)
k

ni

∏
j=1, j �=k

z−ν(i)
j

v(i)
k − v(i)

j

⎤
⎦+C(i)

1

ni

∏
j=1

z−ν(i)
j

−ν(i)
j

. (2)
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This procedure works if all the ν(1)
k ’s and ν(2)

k ’s are different, and nonzero. In this
case, the solution of our problem exists and is unique.

However, in general, the situation is more complicated. To deal with it, we need
the notion of a Nevanlinna function. It is also called R-function or Herglotz function.
Its definition also varies. In this paper, we use the definition below.

DEFINITION. A function f (z) is said to be a Nevanlinna function if

(i) it is analytic in the half-planes Imz > 0 and Imz < 0;

(ii) f (z) = f (z) , when Imz �= 0;

(iii) ImzIm f (z) � 0, when Imz �= 0.

DEFINITION.

(a) A Nevanlinna function f (z) analytic on C\ [0,∞) is said to be an S -function if
f (z) � 0 when z is real and z < 0;

(b) A meromorphic S -function is said to be a S0 -function if 0 is not a pole.

In this paper, we study about polynomials. If f is a rational function with a posi-
tive leading coefficient, then it is an S -function if and only if its zeros {zi}n

i=1 and poles
{wi}m

i=1 are all simple and strictly interlaced in the following way:

n = m, w1 < z1 < · · · < wn < zn; or n = m+1, z1 < w1 < · · · < wn < zn+1

We remark that in [1, Appendix II], there is a concise and interesting discussion on the
properties of Nevanlinna functions.

LEMMA 2.1. Suppose that f and g are Nevanlinna functions, then f + g and
− 1

f are also Nevanlinna functions.

In general, it is possible that the points {λk} , {ν(1)
k } and {ν(2)

k } may overlap. It

is also desirable to have each Qi(z)
Pi(z)

to be an S0 -function.

THEOREM 2.2. Let the sets of distinct positive numbers {λk}n
k=1 , {ν(1)

k }n1
k=1 and

{ν(2)
k }n2

k=1 be given (n = n1 +n2 ) together with the positive numbers C, Ci
0 and C(1)

1 .
For i = 1,2 denote by

Φ(z) = C
n

∏
k=1

(
1− z

λk

)
, Qi(z) = C(i)

0

ni

∏
k=1

(
1− z

ν(i)
k

)
. (3)

Also let {ζk}n
k=1 = {ν(1)

k }n1
k=1∪{ν(2)

k }n2
k=1 satisfying

(i) 0 < λ1 � ζ1 � · · · � λn � ζn ;

(ii) λk = ζk−1 if and only if λk = ζk ;

(iii) Let C(1)
1 > 0 satisfy C > C(1)

1 C(2)
0 .
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Then the equation (1) possesses a solution (P1(z),P2(z)) which are polynomials of

degree n1 and n2 , such that P1(0) = C(1)
1 , P2(0) = C−C(1)

1

C(1)
0

and each Qi(z)
Pi(z)

is an S0 -

function. In addition, if {ν(1)
k }n1

k=1∩{ν(2)
k }n2

k=1 = /0 , then this solution is unique.

Proof. The case {ν(1)
k }n1

k=1 ∩ {ν(2)
k }n2

k=1 = /0 was discussed above. By Lagrange
interpolation, each Pi has ni + 1 nodes of interpolation and so its degree is ni . Thus
(P1,P2) is uniquely determined. It remains to show that Q1(z)Q2(z)

Φ(z) is an S0 -function.

Notice that in this case, due to (ii), the interlacing between {λk}n
k=1 and {ζk}n

k=1

is strict in (i). Let ζk = ν(1)
p and ζk+s = ν(1)

p+1 . Then

Φ(ν(1)
p )(−1)k = Φ(ζk)(−1)k > 0 and Φ(ν(1)

p+1)(−1)k+s = Φ(ζk+s)(−1)k+s > 0.

Also Q2(ν
(1)
p )(−1)p−k > 0 and Q2(ν

(1)
k+1)(−1)p+1−k−s > 0. Therefore,

Φ(ν(1)
p )

Q2(ν
(1)
p )

(−1)p > 0,
Φ(ν(1)

p+1)

Q2(ν
(1)
p+1)

(−1)p+1 > 0,

for p = 1, . . . ,n1−1. That means, P1(ν
(1)
p )(−1)p > 0 for p = 1, . . . ,n1 . Since P1(0) =

C(1)
1 > 0 and degP1 = n1 , P1 has exactly one zero μ (1)

p+1 between ν(1)
p and ν(1)

p+1 . That
is,

0 < μ (1)
1 < ν(1)

1 < · · · < μ (1)
n1 < ν(1)

n1 .

Thus Q1
P1

is an S0 -function. Similarly one can show that the zeros of P2 and Q2 inter-

lace strictly, and so Q2
P2

is also an S0 -function.

Next we consider the case when ν(1)
k j

= ν(2)
p j for j = 1, . . . ,r . Here we choose

arbitrary real numbers C(1)
k1

,. . . ,C(1)
kr

such that

(−1)k jC(1)
k j

> 0 and |C(1)
k j

| < |Φ′(ν(1)
k j

)| |Q′
2(ν

(1)
k j

)|−1

Letting these C(1)
k j

be the values of P1(ν
(1)
k j

) , we have

P1(z) =
n1

∑
k=1,k �=k j

⎡
⎣ Φ(ν(1)

k )

Q2(ν
(1)
k )

z

ν(1)
k

∏
j �=k

z−ν(1)
j

v(1)
k − v(1)

j

⎤
⎦+C(1)

1

n1

∏
j=1

z−ν(1)
j

−ν(1)
j

+
r

∑
j=1

C(1)
k j

z

ν(1)
k j

∏
s �=k j

z−ν(1)
s

v(1)
k j

− v(1)
s

.

Now (ii) implies Φ(ν(1)
k j

) = 0 and Φ′(ν(1)
k j

) �= 0. Thus we may define

C(2)
p j =

Φ′(ν(1)
k j

)−Q′
2(ν

(1)
k j

)C(1)
k j

Q′
1(ν

(1)
k j

)
. (4)
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Hence we can construct P2 as

P2(z) =
n2

∑
k=1,k �=k j

⎡
⎣ Φ(ν(2)

k )

Q1(ν
(2)
k )

z

ν(2)
k

∏
j �=k

z−ν(2)
j

v(2)
k − v(2)

j

⎤
⎦+

C−C(1)
1 C(2)

0

C(1)
0

n2

∏
j=1

z−ν(2)
j

−ν(2)
j

+
r

∑
j=1

C(2)
p j

z

ν(2)
p j

∏
s �=p j

z−ν(2)
s

v(2)
p j − v(2)

s

.

To prove that (P1,P2) given above is a solution of (1), we let

Ω(z) = Φ(z)−P1(z)Q2(z)−P2(z)Q1(z).

With the definition of these polynomials at 0 , it is easy to verify that Ω(0) = 0. Then

since Q1(ν
(1)
k ) = 0, we have Ω(v(1)

k ) = 0 for each k �= k j . Then at k j ’s, Φ(ν(1)
k j

) =

Q1(ν
(1)
k j

) = Q2(ν
(1)
k j

) = 0. Thus Ω vanishes there too. Similarly, Ω(ν(2)
k ) = 0 for each

k = 1, . . . ,n2 . By (P1,P2) constructed above and (4), we have Ω′(ν(1)
k j

) = 0. So the

polynomial Ω(z) of degree n1 +n2 = n has at least n+1 zeros, counting multiplicities.
Therefore Ω ≡ 0.

Finally, it is trivial to see that Q1
P1

is an S0 -function. Then we observe that

(−1)k jQ′
1(ν

(1)
k j

) > 0, (−1)p jQ′
2(ν

(1)
k j

) > 0, (−1)k j+p jΦ′(ν(1)
k j

) > 0.

Thus, (−1)p jC(2)
p j > 0. This implies (−1)p jP2(ν

(1)
k j

) > 0. Therefore, the zeros of P2

and Q2 interlace strictly and so Q2
P2

is an S0 -function. �

Next, we consider the more general polynomial equation

Φ(z) =
q

∑
i=1

[
Pi(z)∏

j �=i

Q j(z)

]
. (5)

where Φ(z) is a polynomial of degree n , and Pi , Qi are polynomials of degree ni

( i = 1, . . . ,q ), with n = ∑ni . We also let Φ and each Qi be as given in (3), with real

positive zeros {λk}n
k=1 and {ν(i)

k }ni
k=1 respectively, and C,C(i)

0 > 0.

THEOREM 2.3. Define {ηk}n
k=1 =∪q

i=1{ν(i)
k }ni

k=1 . Suppose that the conditions (i)
and (ii) in Theorem 2.2 and (iii’) below hold.

(iii’) Let C( j)
1 ( j = 1, . . . ,q−1) such that

C−
q−1

∑
j=1

[
C( j)

1

q

∏
i�= j,i=1

C(i)
0

]
> 0. (6)
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Then the identity (5) possesses a solution (P1, . . . ,Pq) , where each Pi are degree ni

polynomials, and Pi(0) = C(1)
i for i = 1, . . . ,q− 1 . Furthermore, each Qi

Pi
is an S0 -

function. If in addition, ∩q
i=1{ν(i)

k }ni
k=1 = /0 , then the solution is unique.

Proof. When ∩q
i=1{ν(i)

k }ni
k=1 = /0 , then we let

C(q)
1 :=

C−∑q−1
i=1 C(i)

1 ∏ j �=iC
( j)
0

∏q−1
i=1 C(i)

1

> 0.

Noting that from (5),

Pi(ν
(i)
k ) =

Φ(ν(i)
k )

∏ j �=i Q j(ν
(i)
k )

.

Thus we may define the polynomial Pi as in (2) uniquely by Lagrange interpolation.

Furthermore, the interlace is strict. Let ηk = ν(1)
p (k � p) and ηk+s = ν(1)

p+1 . Then

Φ(ν(1)
p )(−1)k = Φ(ηk)(−1)k > 0, and Φ(ν(1)

p+1)(−1)k = Φ(ηk+s)(−1)k > 0. Also,

∏ j �=1 Qj(ν
(1)
p )(−1)k−p > 0 and ∏ j �=1 Qj(ν

(1)
p+1)(−1)(s+k)−(p+1) > 0. Hence

P1(ν
(1)
p )(−1)p =

Φ(ν(1)
p )

∏ j �=1 Qj(ν
(1)
p )

(−1)p > 0.

Since P1(0) , Q1(0) > 0 and deg(P1) = deg(Q1) , this means that the zeros of P1 and
Q1 are strictly interlacing. Therefore Q1

P1
∈ S0 . The proof for other i’s is similar.

When the zeros of Qi ’s overlap, the situation is more complicated. We give some
typical cases.

Case 1. If ν(1)
k j

= ν(2)
p j , j = 1, · · · ,r , while ∩i�=1{ν(i)

k }ni
k=1 = ∩i�=2{ν(i)

k }ni
k=1 = /0 .

Choose C(1)
k j

, j = 1, · · · ,r to satisfy (−1)k jC(1)
k j

> 0, P1(ν
(1)
k j

) = C(1)
k j

, and

|C(1)
k j

| < |Φ′(ν(1)
k j

)|(|Q′
2(ν

(1)
k j

)∏
l �=1

Ql(ν
(1)
k j

)|)−1.

Also we let

P2(ν
(2)
p j ) = C(2)

p j :=
Φ′(ν(1)

k j
)−C(1)

k j
Q′

2(ν
(1)
k j

)∏l�3 Ql(ν
(1)
k j

)

Q′
1(ν

(1)
k j

)∏l�3 Ql(ν
(1)
k j

)
.

Construct the Lagrange interpolating polynomials for Pi as follows:

P1(z) =
n1

∑
k=1,k �=k j

⎡
⎣ Φ(ν(1)

k )

∏l �=1 Ql(ν
(1)
k )

z

ν(1)
k

∏
j �=k

z−ν(1)
j

ν(1)
k −ν(1)

j

⎤
⎦

+
r

∑
j=1

C(1)
k j

z

ν(1)
k j

∏
s �=k j

z−ν(1)
s

ν(1)
k j

−ν(1)
s

+C(1)
1

n1

∏
j=1

z−ν(1)
j

−ν(1)
j

,
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P2(z) =
n2

∑
k=1,k �=p j

Φ(ν(2)
k )

∏l �=2 Ql(ν
(2)
k )

z

ν(2)
k

∏
j �=k

z−ν(2)
j

ν(2)
k −ν(2)

j

+
r

∑
j=1

C(2)
p j

z

ν(2)
p j

∏
s �=p j

z−ν(2)
s

ν(2)
p j −ν(2)

s

+C(2)
1

n2

∏
j=1

z−ν(2)
j

−ν(2)
j

,

The other polynomials Pi ’s can be defined as in (2). To prove (P1, . . . ,Pq) is a solution
of (3) consider the polynomial

Ω(z) = Φ(z)−
q

∑
i=1

[
Pi(z)∏

j �=i

Q j(z)

]
.

It is not difficult to see that Ω(0)= Ω(ν(i)
ki

)= 0, ki = 1,2,3, · · · ,ni with i = 1,2,3, · · · ,q ,

and Ω′(ν(1)
k j

) = 0, j = 1,2, · · · ,r . This implies that Ω ≡ 0 in this case.

Then we show Qi
Pi

∈ S0 , i = 1,2, · · · ,q . i = 1 is ok by the assumption of C(1)
k j

,

we have that (−1)k jP1(ν
(1)
k j

) = (−1)k jC(1)
k j

> 0. By interlacing of zeros, we have that

(−1)p jC(2)
p j = (−1)p jP2(ν

(2)
p j ) > 0. And (−1)kPi(ν

(i)
k ) > 0 for all the other i’s.

Case 2. ν(1)
k j

= ν(2)
p j = ν(3)

g j := μ j , j = 1,2,3, · · · ,r , and no other common zeros
between any two zero sets of Qi .

Choose P1(ν
(1)
k j

) = C(1)
k j

and C(2)
p j = P2(ν

(2)
p j ) such that (−1)k jC(1)

k j

> 0, (−1)p jC(2)
p j > 0, and at z = μ j ,

2|C(1)
k j

Q′
2Q

′
3 ∏

l>3

Ql|+2|C(2)
p j Q′

1)Q
′
3 ∏

l>3

Ql| < |Φ′′|.

Define

C(3)
g j =

Φ′′ −2C(1)
k j

Q′
2Q

′
3 ∏l>3 Ql +2C(2)

p j Q′
1Q

′
3 ∏l>3 Ql

2Q′
1Q

′
2 ∏l>3 Ql

∣∣∣∣∣∣
z=μ j

. (7)

Hence (P1, . . . ,Pq) can be determined. Furthermore Ω ≡ 0.

Then we show that Qi
Pi

∈ S0 , i = 1,2,3. By the choices of C(1)
k j

and C(2)
p j , i = 1,2

are ok. From (7), we have (−1)g jC(3)
g j = (−1)g jP3(ν

(3)
g j ) > 0. So i = 3 is also ok. The

rest is trivial.

Case 3. ν(1)
k j

= ν(2)
p j , j = 1,2,3, · · ·r , and ν(1)

h j
= ν(3)

l j
, j = 1,2, · · ·m , where k j �=

h j .

Choose C(1)
k j

and C(1)
h j

to satisfy (−1)k jC(1)
k j

> 0, (−1)h jC(1)
h j

> 0, and

|C(1)
k j

| < |Φ′(ν(1)
k j

)|(|Q′
2(ν

(1)
k j

)∏
l>2

Ql(ν
(1)
k j

)|)−1

|C(1)
h j

| < |Φ′(ν(1)
h j

)|(|Q′
3(ν

(1)
h j

) ∏
l �=1,3

Ql(ν
(1)
h j

)|)−1.



610 C. K. LAW, V. PIVOVARCHIK AND W. C. WANG

Define

C(2)
p j =

Φ′(ν(1)
k j

)−C(1)
k j

Q′
2(ν

(1)
k j

)∏l>2 Ql(ν
(1)
k j

)

Q′
1(ν

(1)
k j

)∏l>2 Ql(ν
(1)
k j

)

C(3)
l j

=
Φ′(ν(1)

h j
)−C(1)

h j
Q′

3(ν
(1)
h j

)∏l �=1,3 Q2(ν
(1)
h j

)

Q′
1(ν

(1)
h j

)∏l �=1,3 Q2(ν
(1)
h j

)
.

Then (P1, . . . ,Pq) can be determined. The rest is similar �

3. An existence problem

Let T be a metric tree rooted at v , having q = d(v) complementary subtrees Ti

( i = 1, . . . ,q ). Thus ∪q
i=1Ti = T , and Ti ∩Tj = {v} . For each i , let Ti have γi edges,

and each edge ei, j has length Li, j ( j = 1, . . . ,γi ).
It is assumed that the tree T of Stieltjes strings is stretched and vibrates in the

direction orthogonal to the equilibrium position of the strings. The transverse displace-

ment of the mass mi, j
k is denoted by w(i, j)

k (t) . Let v be the root of T and all the edges
ei, j are directed towards v , i.e., the local coordinates of its endpoints are 0 and Li, j

associated with vertices v1 and v2 respectively. We say ei, j is outgoing from v1 and
ingoing to v2 , while the displacement at v1 and v2 associated with ei, j is denoted

by w(i, j)
0 and w(i, j)

τi, j respectively. Using such notation vibrations of the graph can be
described by the system of equations

w(i, j)
k (t)−w(i, j)

k+1(t)

l(i, j)k

+
w(i, j)

k (t)−w(i, j)
k−1(t)

l(i, j)k−1

+m(i, j)
k

∂ 2w(i, j)
k

∂ t2
(t) = 0

(k = 1,2, . . . ,τi, j; j = 1,2, ...,γi) . For each interior vertex v with ingoing edges ei, j ’s

and outgoing edge ei,r we impose the continuity conditions w(i,r)
0 (t) = w(i, j)

τi, j+1(t) . Bal-
ance of forces at v implies

w(i,r)
1 (t)−w(i,r)

0 (t)

l(i,r)0

= ∑
j

w(i, j)
1 (t)−w(i, j)

0 (t)

l(i, j)τi, j

For an edge ei, j incident with a pendant vertex, we impose Dirichlet boundary con-

dition wi, j
0 (t) = 0. The continuity conditions at the root v are w(i, j)

τi, j+1(t) = w(i,r)
τi,r+1(t)

for all pairs of edges incident with v . We need to impose one more condition at the

root. We consider two cases: Dirichlet case with w(i, j)
τi, j+1(t) = 0; and Neumann case

∑
j

w
(i, j)
τi, j+1(t)−w

(i, j)
τi, j (t)

l(i, j)τi, j

= 0.
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Substituting w(i, j)
k (t) = eiρt u(i, j)

k into the above equations, we obtain the Dirichlet
problem described below. For each edge:

u(i, j)
k −u(i, j)

k+1

l(i, j)k

+
u(i, j)

k −u(i, j)
k−1

l(i, j)k−1

−m(i, j)
k λu(i, j)

k = 0, λ = ρ2. (8)

(k = 1,2, . . . ,τi, j, j = 1,2, ...,γi) . For each interior vertex with incoming edges e j and
outgoing edge er we have

u(i,r)
0 = u(i, j)

τi, j+1. (9)

u(i,r)
1 −u(i,r)

0

l(i,r)0

= ∑
j

u(i, j)
τi, j+1 −u(i, j)

τi, j

l(i, j)τi, j

. (10)

For each edge ei, j incident with a pendant vertex,

u(i, j)
0 = 0. (11)

At the root v :
u(i, j)

τi, j+1 = 0 (12)

for all of edges incident with v .
The conditions

u(i,k)
τi,k+1 = u(i, j)

τi, j+1 (13)

for all pair of edges ei,k and ei, j incident with the root together with

∑
j

u(i, j)
τi, j+1−u(i, j)

τi, j

l(i, j)τi, j

= 0 (14)

we call Neumann conditions at the root. If the root is a pendant vertex than (13), (14)
are equivalent to the usual Neumann condition. In what follows problem (8)–(12) is
called Dirichlet problem at v for the tree T and problem (8)–(11), (13), (14) is called
Neumann problem at v .

We let z = λ 2 and R(i, j)
k (z) be polynomials (see [9]) which satisfy the initial con-

ditions R(i, j)
0 (z) = 1, R(i, j)

−1 (z) = 1
l0j

such that u(i, j)
k = R(i, j)

2k−2(z) on the edge ei, j is a

solution to (8), while

R( j)
2k−1(z) =

R(i, j)
2k (z)−R(i, j)

2k−2(z)

l(i, j)k

,

Then these polynomials satisfy the relations [9]:⎧⎨
⎩

R(i, j)
2k−1(z) = −zm(i, j)

k R(i, j)
2k−2(z)+R(i, j)

2k−3(z),

R(i, j)
2k (z) = l(i, j)k R(i, j)

2k−1(z)+R(i, j)
2k−2(z)

. (15)
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Associated with the root v for T , we define φN to the characteristic function with
continuity and Kirchhoff conditions (or Neumann condition) at v , and φD to be the
characteristic function with Dirichlet condition at v . We call φN Neumann character-

istic function and φD Dirichlet characteristic function. Similarly we let φ (i)
N and φ (i)

D
the Neumann and Dirichlet characteristic function for the subtree Ti respectively. As
proved in [23, Corollary 2.2], we have

THEOREM 3.1.

φN =
q

∑
i=1

(
φ (i)

N ∏
j �=i

φ ( j)
D

)
, φD =

q

∏
i=1

φ (i)
D .

It is well known that on the interval, the Weyl-Titchmarsh m-function, which is a
ratio of characteristic functions for different boundary conditions, uniquely determines
the potential function. Furthermore this m-function is equivalent to the spectral func-
tion, and is a Nevanlinna function. So, as an analog, for any tree T of Stieltjes strings,
we define its M-function at v to be φD

φN
.

THEOREM 3.2. The M-function at v , φD
φN

, for the tree T is a S0 function.

The above theorem was proved in [23, Theorem 2.8]. We shall give a simpler
proof in the appendix. Now we are going to state the main theorem of this paper. We
define

Problem I : Neumann (continuity and Kirchhoff) conditions at v .
Problem Ii : Dirichlet conditions at the root v of subtrees Ti ( i = 1, . . . ,q )

THEOREM 3.3. Suppose q+1 sequence Λ = {λk}n
k=1 and V (i) = {ν(i)

k }ni
k=1 dis-

joint positive numbers be given such that n = ∑q
i=1 ni . Let {ζk}n

k=1 = ∪q
i=1V

(i) such
that conditions (i) and (ii) in Theorem 2.2 are satisfied. Let also a tree T be given
together with its complementary subtrees TJ ( j = 1,2, ...q) and the lengths Li, j of the
edges.

Then there exist sequences of real numbers M i, j,k = {m(i, j)
k : 1 � k � τi, j, 1 � j �

γi, 1 � i � q} , and L i, j,k = {l(i, j)k : 0 � k � τi, j, 1 � j � γi, 1 � i � q}} , such that

∑γi
j=1 τi, j = ni , ∑

τi, j
k=0 l(i, j)k = Li, j , and all m(i, j)

k ’s and l(i, j)k ’s are positive while l(i, j)0 ’s
are nonnegative. Furthermore, with the tree of Stieltjes string thus formed, the spectra

of Problem I and Problems Ii are exactly {λk}n
k=1 and {ν(i)

k }ni
k=1 .

REMARK. Hence we use 2n eigenvalues plus ∑q
i=1 γi constants to recover totally

n masses and n+ ∑q
i=1 γi lengths.

Before the proof is given, we need a few symbols to express some operations with
continued fractions. It is customary to use [a1,a2, . . . ,a j] to denote a continued fraction

a1 +
1

a2 + 1
a3+···+ 1

a j

.
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Hence if A = [a1,a2, . . . ,a j] , then

A−1 =
1
A

= [0,a1,a2, . . . ,a j].

Let B = [b1,b2, . . . ,bk] be another continued fraction. We define a composition of A
and B to be

[A;B] := [a1, . . . ,a j,b1, . . . ,bk].

For simplicity, we also let [A;B;C] = [A; [B;C]] , and so on.
In [9, 2], it was shown that for a q -star graph with root at the interior vertex v ,

M -function Gi(z) at v of each edge ei is given by

Gi(z) =
R(i)

2ni
(z)

R(i)
2ni−1(z)

= [lni ,−mniz, lni−1,−mni−1z, . . . ,−m1z, l0],

while the M -function G(z) of the q -star graph at v , by Theorem 3.3, is

G(z) = (
q

∑
i=1

Gi(z)−1)−1.

Note that Gi(0) = Li , length of the i th edge ei . Hence G(0) = (∑q
i=1 L−1

i )−1 . Induc-
tively, for any tree T , the value of the M -function at z = 0 can be given as a rational
function of its edgelengths, or more precisely, as a continued fraction of its edgelengths.
Assuming each Fi is the M -function for Dirichlet problem for the i th edge, The M -
function F associated with continuity and Kirchhoff conditions at v is given by

F(z) =
{
F−1

1 +F−1
2 +[F3;F4;F5]−1}−1

.

Proof of Theorem 3.3. Let Fi(z) = φ (i)
D (z)

φ (i)
N (z)

be the M -function of the subtree Ti at

v . By the recursive formulas given in Theorem 3.1, the M -function F(z) of T at v is
given by

F(z) = (
q

∑
i=1

Fi(z)−1)−1. (16)

We define

Qi(z) = C(i)
0

ni

∏
k=1

(
1− z

ν(i)
k

)
.

We also let

Φ(z) = C
n

∏
k=1

(
1− z

λk

)
.

Here C(i)
0 = Fi(0) and C = F(0) . Then the equation (3) is formed, while the conditions

(i) , (ii) and (iii′) in Theorem 2.3 are satisfied. Hence we may apply Theorem 2.3 to
solve (3) for the polynomials Pi(z) ( i = 1, . . . ,q ) and each quotient Qi

Pi
is a S0 function.
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Now as the polynomial Qi is a scalar multiple of φ (i)
D , by uniqueness, we conclude that

Pi is also a scalar multiple of φ (i)
N , and Fi = Qi

Pi
is the M -function of the subtree Ti at

v . Therefore F(z) can be recovered by (16). Furthermore, the Dirichlet spectrum and
Neumann spectrum of Ti at v are now known. Thus by [23, Theorem 3.1], there exists

sets Mi, j and Li, j representing the point masses {m(i, j)
k } and {l(i, j)k } respectively. �

REMARK. In general, the solutions might not be unique. If Γ and V are not
strictly interlaced, there might be multiple solutions of (P1, . . . ,Pq) . For each solution,
Qi
Pi

is an S0 function, plus the zeros of Pi and Qi are different and strictly interlaced.
Hence by [23, Theorem 3.1], zeros of Qi and Pi represent the Dirichlet and Neumann
spectra of the subtree Ti at the point v , and so there exists masses Mi, j and lengths
Li, j ( j = 1, . . . ,γi) on the subtree Ti of Stieltjes string. Even when Γ and V are strictly
interlaced, there is only one solution (P1, . . . ,Pq) . However the resulting M -function
Fi = Qi

Pi
might be associated with different point mass distribution, as the subtree Ti

might be too complicated. In case Γ and V are strictly interlaced, and T is a star
graph, there exists a unique solution.

4. Appendix

Here we give a simple proof of Theorem 3.2:

First consider the case of an interval. Let f = φD
φN

be the M -function for an interval.
Let φD and φN be both polynomials of degree n . With notations similar to those in

(15), we have f (z) =
R2n(z)

R2n−1(z)
, where R0(z) = 1 and R−1(z) = 1/l0 . Also we have

the system of difference equations

R2k+1(z) = R2k−1(z)− zmkR2k−2(z) (17)

R2k(z) = lkR2k−1(z)+R2k−2(z) (18)

Obviously f (z) = [ln,−mkz, ln−1, · · · ,−m1z, l0] , and so f (z) = f (z) and f (0) = ln > 0.
For z � 0, f (z) > 0. So for this case, it remains to show Imz Im f (z) � 0 whenever
Imz �= 0. From (17), we have

(R2k+1−R2k−1)R2k = −zmk+1|R2k|2.

Hence
Im
(
R2k+1R2k −R2k−1R2k−2

)
= −(Imz)mk+1|R2k|2. (19)

Also from (18),
R2k−1(R2k −R2k) = lk|R2k−1|2 ∈ R.

Hence Im(R2kR2k) = Im(R2k−1R2k−2 . Thus (19) becomes

Im
(
R2k−1R2k −R2k−1R2k−2

)
= −(Imz)mk+1|R2k|2.
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Now sum from k = 0 to k = n−1 to obtain

Im
(
R2n−1R2n−R−1R−2

)
= −(Imz)

n−1

∑
k=0

mk+1|R2k|2.

That is

Im
(R2n−1

R2n

)
=

−Imz
|R2n|2

n−1

∑
k=0

mk+1|R2k|2.

Thus Im f = Im( R2n
R2n−1

) has the same sign as Imz .
In general, consider a tree T which is the union of complementary subtrees Ti

( i = 1, . . . ,q ) connected at a vertex v . By Theorem 3.1,

φN

φD
=

q

∑
i=1

φ (i)
N

φ (i)
D

.

Hence if each M -function fi = φ (i)
D

φ (i)
N

of Ti at v is an S0 function, then φD
φN

is also an S0

function. The proof is complete. �
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abhängigkeit, Arch. für Electrotech. 17, 4 (1926), 355–388.
[5] S. COX, M. EMBREE AND J. HOKANSON, One can hear the composition of a string: experiments

with an inverse eigenvalue problem, SIAM Review 54, 1 (2012), 157–178.
[6] M. DRIGNEI, Uniqueness of solutions to inverse Sturm-Liouville problems with L2(0,a) potentials

using three spectra, Adv. Appl. Math. 42, 4 (2009), 471–482.
[7] A. DUARTE, Construction of analytic matrices from spectral data, Linear Algebra and Its Applications

113 (1989), 173–182.
[8] A. F. FILIMONOV AND A. D. MYSHKIS,On properties of large wave effect in classical problem bead

string vibration, J. Difference Equations and Applications 10, 13–15 (2004), 1171–1175.
[9] F. R. GANTMAKHER AND M. G. KREIN, Oscillating Matrices and Kernels and Vibrations of Me-

chanical Systems (Russian), GITTL, Moscow-Leningrad, 1950. German translation: Akademie Ver-
lag, Berlin, 1960.

[10] F. GESZTESY AND B. SIMON, On the determination of a potential from three spectra, in: Advances in
Mathematical Sciences, V. Buslaev and M. Solomyak, eds., Amer. Math. Soc. Transl. (2) 189 (1999),
85–92.



616 C. K. LAW, V. PIVOVARCHIK AND W. C. WANG

[11] R. O. HRYNIV AND YA. V. MYKYTYUK, Inverse spectral problems for Sturm–Liouville operators
with singular potentials. Part III: Reconstruction by three spectra, J. Math. Anal. Appl. 284, 2 (2003),
626–646.

[12] I. S. KAC AND M. G. KREIN, R-functions – analytic functions mapping the upper half-plane into
itself, Amer. Math. Soc. Translations Ser. 2 103 (1974), 1–18.

[13] M. G. KREIN, On some new problems of the theory of vibrations of Sturm systems, Prikladnaya
Matematika i Mekhanika 16, 5 (1952), 555–568 (Russian).

[14] P. F. KURCHANOV, A. D. MYSHKIS AND A. M. FILIMONOV, Train vibrations and Kronecker’s
theorem, Prikladnaya Matematika i Mekhanika 55, 6 (1991), 989–995 (Russian).

[15] C. K. LAW AND V. PIVOVARCHIK, Characteristic functions of quantum graphs, J. Phys. A: Math.
Theor. 42 (2009), 035302 (11p).

[16] B. M. LEVITAN AND M. G. GASYMOV,Determination of a differential equation by two of its spectra,
Uspekhi Mat. Nauk 19, 2(116) (1964), 3–63 (Russian).

[17] B. M. LEVITAN, Inverse Sturm-Liouville Problems (Russian), Moscow, Nauka, 1984. English trans-
lation: VNU Science Press BV, Utrecht.

[18] V. MARCHENKO, Sturm-Liouville Operators and Applications (Russian), Naukova Dumka, Kiev,
1977. English translation: Oper. Theory Adv. Appl. 22, Birkhäuser Verlag, Basel, 1986.
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