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Abstract. This paper deals with a system of parallel non-staggered half planes as scatterers for
plane wave fields incident perpendicularly to the edges. In cases with first or second kind bound-
ary conditions, the determinant of the positive definite real part of the corresponding L2 -lifted
Wiener–Hopf matrix HN (ε) , with ε = ε1, ..,εN−1 to lie in the unit circle, is shown to satisfy an
inequality with lower and upper bounds for any positive spacings between the scatterers. The
main result is based upon a sharpening of Hadamard’s inequality. The derived relations can be
used to prove a priori estimates in the construction of the inverses by operator Neumann series.
The matrices which appear in the estimates are suitable to test the computation accuracy by ma-
chines via Corollary 3.1 and are related to infinite products of certain determinants, which could
be of interest for number theory.

1. Introduction

In this article a set of complex–valued matrices (see Definition 2.1) is under con-
sideration, which are Fourier symbols of pseudo differential operators for boundary
value problems to linear wave equations. The matrices were derived in the paper of
Meister, Rottbrand and Speck [15] in 1991, and have their origin back to the diploma
thesis of the author. More precisely, they represent convolution kernels for quadratic
systems of Wiener–Hopf boundary integral equations in the Lebesgue sense L2 (R).
We make the real line a closed contour by going over infinity in the complex plane. So-
lutions of the boundary value problems are sought in H s Sobolev energy norm spaces,
that is s = 1 in particular. An exact analytical solution requires a suitable factorization
of non-rational matrix functions with respect to the involved spaces. In the function the-
oretical sense this is solving discontinuous Riemann–Hilbert boundary value problems
as matricial coupling problems for the left and right of certain contours. See the article
of Meister [14] for instance. Introductory work in this field can be found in the books
of Meister [13] and Muskhelishvili [18]. Clearly, to obtain an exact factorization often
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fails, and a numerical treatment is indicated instead. So, good error estimation formulas
are needed when approximating inverse operators. Invertibility by a Neumann series as
application of Banach’s fixed point principle is assured for strongly elliptic operators,
which is positive definiteness of the real part of the symbol matrix in this context. It
is noted that invertibility and equivalently zero partial indices are a consequence of the
strong ellipticity property. Fundamental theoretical work with applications in this di-
rection is given by Meister and Speck [17], and the books of Speck [20], Litvinchuk
and Spitkovsky [12], Clancey and Gohberg [6], Gohberg and Krupnik [9]. For a well
working technique lower/upper bounds of determinants are of particular interest.

The matrices we are concerned with, have a special symmetric structure (Section
2). They are Toeplitz matrices and seem not investigated in detail in the existing litera-
ture. Our Wiener–Hopf Fourier symbol matrices stem from diffraction of plane waves
by a set of parallel screens of vanishing thickness, say Sommerfeld half planes, with
physically balancing boundary conditions of the first or second kind when approaching
the banks.

The basic results presented in this work are not contained anywhere else to the
author’s best knowledge. Especially the determinant inequalities (Theorem 3.1 and 3.2,
Example 3.1 and 3.2, where the program MatLab 5.3 was used). An alternative general
proof of the determinant inequalities for N = 4 starts with equation (18), and ends with
(21), (22) in systematic manner representation with inner products. In Corollary 3.1
the lower and upper bounds in det[HN(|ε|)] � det[ℜHN ] � det[HN(ℜε)](� 1), both
correspond to diagonal matrices with less amount of operations for the determinants (=
products). The inequality on the right is sharper than the Hadamard inequality, from
which (det[HN(ℜε)])1/2 would follow only.

Section 4 contains auxiliary formulas which serve to generate some (infinite) ma-
trices and determinants, which can be of interest for testing accuracy of calculations
by machines and for number theory. See Remark 4.2 and 4.3 for inverting matrices,
Lemma 2.1 for infinite products, and the final part with the Riemann zeta function.

2. Sommerfeld parallel half planes problem matrices

DEFINITION 2.1. (SP-matrices.) Let ξ ∈R , ζ the extension of ξ to the complex
plane, N ∈ N , hm ∈ R , m ∈ {1, ..,N−1} , κ ∈ C+ , and

√
ξ 2−κ2 be defined with

branch cut half lines drawn from the branching points ±κ parallel to the imaginary axis
to ±(κ + i∞) in order to have a positive real part in the strip |ζ | < |κ | containing the
real axis, and set εm := exp(−[hm+1 − hm]

√
ξ 2−κ2) , where hm+1 > hm is assumed.

We call the squared array

HN :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ε1 ε1ε2 ε1ε2ε3 ε1ε2ε3ε4 ε1ε2ε3ε4ε5 · · ·
ε1 1 ε2 ε2ε3 ε2ε3ε4 ε2ε3ε4ε5 · · ·

ε1ε2 ε2 1 ε3 ε3ε4 ε3ε4ε5 · · ·
ε1ε2ε3 ε2ε3 ε3 1 ε4 ε4ε5 · · ·

ε1ε2ε3ε4 ε2ε3ε4 ε3ε4 ε4 1 ε5 · · ·
ε1ε2ε3ε4ε5 ε2ε3ε4ε5 ε3ε4ε5 ε4ε5 ε5 1 · · ·

...
...

...
...

...
...

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(1)
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to be a N -screen Sommerfeld parallel half planes problem matrix with respect to L2(R) .
The components can be written as

HN;i, j(ε1, ..,εN−1) :=
max(i, j)−1

∏
m=min(i, j)

εm. (2)

It belongs to the class of Toeplitz matrices in case of equidistant screens with one
εm = ε . Let δm = hm+1 − hm . It should be mentioned that (the L∞) norms |εm| �
exp(−δm|ℑκ |) < 1.

REMARK 2.1. (On the background.) This is a Fourier symbol matrix in ξ which
belongs to a to L2 -lifted Wiener-Hopf system on the real line being equivalent to
pure Dirichlet (Neumann) boundary value problems to the Helmholtz equation (Δ2 +
κ2)u(x,y) = 0 to hold in the exterior of N parallel half planes x > 0, y = hm to repre-
sent scatterers for given plane waves exp(iκ(xcosθ + ysinθ )) with angle of incidence
θ . For a formulation of such problems see the joint paper of Meister, Rottbrand and
Speck [15]. For methods to obtain solutions by approximation techniques we refer to
Speck [20] and the work of Brannan, Duan, Ervin and Razoumov [4],[5], where partic-
ular items can be found. For N = 3 equidistant half planes see the pioneering article of
Jones [10], who obtained a function-theoretic Wiener-Hopf factorization. Meister and
Rottbrand [16], [19] investigated elasto-dynamical scattering of several parallel crack
half planes. Those works contain the N-screen Dirichlet (and Neumann) diffraction
problem for the Helmholtz equation, and are the origin (see p. 102, p. 101) of the in-
equalities given in Corollary 3.1.

REMARK 2.2. In the general case the absolute value of the εm depends upon a
polar angle φ : Letting

√
ξ 2−κ2 = r(cosφ + isinφ) , while r > 0, and cosφ > 0, we

face the products involved as

ℜ[εm · . . . · εp] = exp(−
p

∑
n=m

rδn cosφ) cos(
p

∑
n=m

rδn sinφ).

THEOREM 2.1. (Matrix of symmetric structure.) Let N ∈ N , εm ∈ C , m ∈
{1, ..,N} , and define the N×N matrix HN through its components

HN;i, j(ε1, ..,εN−1) :=
max(i, j)−1

∏
m=min(i, j)

εm.

The following four statements (i)-(iv) hold:

(i) det[HN ] =
N−1
∏

m=1
(1− ε2

m) .

(ii) While all εm �= ±1 , m = 1, ..,m = N −1 , the inverse matrix GN =H−1
N exists and
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is of symmetrical triple diagonal form. The elements on the diagonal read

GN;1,1 =
1

1− ε2
1

,

GN; j, j =
1− ε2

j−1ε2
j

(1− ε2
j−1)(1− ε2

j )
, j = 2, ..,N−1,

GN;N,N =
1

1− ε2
N−1

,

and the upper off diagonal elements

GN; j, j+1 = − ε j

1− ε2
j

, j = 1, ..,N−1.

(iii) det[HN(...,−εm, ...)] = det[HN(...,εm, ...)] .
(iv) Let all εm lie in unit circles |εm| < 1 , m = 1, ..,N −1 . Then the real part ℜHN is
positive definite.

Proof. See the joint paper of Meister and Rottbrand [16]. �

LEMMA 2.1. (List of basic infinite product formulas.) Let the numbers λn,μn >
0 , n ∈ N be zeroes of Bessel functions, J0(λn) = 0 = J1(μn) . It holds that

π
4

=
∞

∏
n=1

(
1−
(

1
2n+1

)2
)

, (3)

J0(x) =
∞

∏
n=1

(
1− x2

λ 2
n

)
, (4)

J1(x)
x

=
∞

∏
n=1

(
1− x2

μ2
n

)
, (5)

cos
(π

2
x
)

=
∞

∏
n=1

(
1−
(

x
2n−1

)2
)

, (6)

sin(πx)
πx

=
∞

∏
n=1

(
1− x2

n2

)
. (7)

Proof. The first, fourth and fifth relation follow directly by Lemma 4.2. The sec-
ond and third equality can be found in Abramowitz and Stegun [1]. �

REMARK 2.3. (Infinite matrices.) Let κ ∈ iR in Definition 2.1. Then all εm ∈
(−1,1) ⊂ R , and positive definiteness of HN is directly seen by the determinant for-
mula applied to the Hurwitz criterion. Lemma 2.1 can be used to generate sets of infinite
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matrices and formulas for their inverse matrices and determinants. For instance,

det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1
3

1
15

1
105

1
945

1
10395 · · ·

1
3 1 1

5
1
35

1
315

1
3465 · · ·

1
15

1
5 1 1

7
1
63

1
693 · · ·

1
105

1
35

1
7 1 1

9
1
99 · · ·

1
945

1
315

1
63

1
9 1 1

11 · · ·

1
10395

1
3465

1
693

1
99

1
11 1 · · ·

...
...

...
...

...
...

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
π
4

. (8)

Such matrices can be useful for testing accuracy of computer calculations, similar as
Hilbert matrices are used.

REMARK 2.4. The first equality in Lemma 2.1 is known as Wallis’ formula and
used in equation (8).

3. The determinant inequalities

LEMMA 3.1. (A basic determinant inequality.) Let the matrix Z=A+iB with A to
be positive definite, and B real symmetric.
It holds |det[Z]| � det[A] .

Proof. This can be found as an exercise in the book of Bellman [3], p. 126. �

REMARK 3.1. (On Lemma 3.1.) It is an extension of the statement for complex
numbers, that |α + iβ | � α .

THEOREM 3.1. (Inequality for determinants.) Under assumption of positive def-
inite matrices ℜHN in accordance with Theorem 2.1 (iv) we have the lower/upper
bounds

N−1

∏
m=1

(1−|εm|2) � det[ℜHN(ε1, ..,εN−1)] �
N−1

∏
m=1

|1− ε2
m|. (9)

Proof. The last inequality is immediate due to the previous Lemma 3.1. The left
represents the smallest value of the term on the right. This will be demonstrated in-
ductively. In the real case both terms coincide. Let εm = |εm|(cosφm + i sinφm) lie
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in the unit circle. We write the positive definite matrix ℜHN(ε1, ..,εN−1) in the block
partition

ℜHN =
(

ℜHN−1 |εN−1|b
|εN−1|bT 1

)
(10)

where the last column vector of ℜHN−1 is given by

a(φ1, ..,φN−2) =

⎛⎜⎜⎜⎜⎜⎝
|ε1| · ·|εN−2|cos(φ1 + ..+ φN−2)
|ε2| · ·|εN−2|cos(φ2 + ..+ φN−2)

...
|εN−2|cos(φN−2)

1

⎞⎟⎟⎟⎟⎟⎠ ,

and

b(φ1, ..,φN−2,φN−1) =

⎛⎜⎜⎜⎜⎜⎝
|ε1| · ·|εN−2|cos(φ1 + ..+ φN−2 + φN−1)
|ε2| · ·|εN−2|cos(φ2 + ..+ φN−2 + φN−1)

...
|εN−2|cos(φN−2 + φN−1)

cos(φN−1)

⎞⎟⎟⎟⎟⎟⎠ .

Be det[ℜHN−1] � (1− |ε1|2) · . . . · (1− |εN−2|2) = det[HN−1(|ε1|, .., |εN−2|)] fulfilled.
That is φ1 = 0, ..,φN−2 = 0 (modulo π due to symmetry! in the determinant for-
mula for HN−1 ), and b(0, ..,0,φN−1) = a(0, ..,0) · cosφN−1 . It follows (note that an
inverse matrix multiplied with the last column of the original matrix gives the unit vec-
tor (0, ..,0,1)T )

det[ℜHN ] � det[HN−1(|ε1|, .., |εN−2|)](1−|εN−1|2
(cosφN−1)2) a(0, ..,0)T [HN−1(|ε1|, .., |εN−2|)]−1a(0, ..,0))

= det[HN−1(|ε1|, .., |εN−2|)](1−|εN−1|2(cosφN−1)2)
� (1−|ε1|2) · . . . · (1−|εN−1|2),

and thus the left determinant inequality. �
Another proof of the left inequality is the following: Consider the hermitian N×N

matrix H̃N = AN + i CN given through equation (26) with AN to be positive definite
(with symmetric square-root) being the real part of HN also, and CN to be real skew-
symmetric. We split

H̃N = A1/2
N (IN + iYN)A1/2

N , YT
N = −YN

real skew-symmetric with YN = A−1/2
N CNA−1/2

N . We multiply H̃N with its complex
conjugate, that is, (IN + iY )(IN− iYN) = (IN + iYN)(IN + iYT

N ) = IN−YNYT
N + i(YN +YT

N ) .
The symmetric matrix YNYT

N is at least positive semidefinite, and is subtracted from the

unit matrix. Hence det[H̃N ]det[H̃N ] � det[AN ]det[AN ] together with the determinant
formula (27) completes the proof, which includes the general situation in Remark 2.2.
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DEFINITION 3.1. (Gramian determinant.) Determinants, being quadratic and
symmetric with entries Gi j built up by inner products of vectors x i , x j in Euklidean
N -space, N ∈ N , are called Gramian determinants G(1, ..,N) .

LEMMA 3.2. (Generalized Hadamard inequality.) Let G(1, ..,N) , N ∈ N , be a
positive Gramian determinant, and p ∈ {1, ..,N} . It holds that

G(1, ..,N) � G(1, .., p)G(p+1, ..,N).

Proof. See Gantmacher’s book [8] on matrix theory. �

REMARK 3.2. (Special case of the generalized Hadamard inequality.) It follows
that

G(1, ..,N) �
N

∏
j=1

G( j, j).

The volume of a parallel epiped is at most equal to the product of its edges. The equality
holds only for orthogonal geometries. See Gantmacher [8], p. 264.

THEOREM 3.2. (Sharper inequality for determinants.) It holds

det[ℜHN(ε1, ..,εN−1)] �
N−1

∏
m=1

(1− (ℜεm)2). (11)

Proof. The cases N = 1,2 are obvious. Let HN = AN + iBN , N � 3. We know
that AN is positive definite, and BN real-symmetric, where we have due to the given
structure that

HN =
[

HN−1 ξN−1

ξ T
N−1 1

]
, ξN−1 = εN−1ξN−2.

In the following ℑ shall denote the imaginary part. One obtains

aN−1 := ℜξN−1 = aN−2ℜεN−1 −ℑεN−1ℑξN−2.

Hence we can express the positive definite matrix by ℜHN =⎡⎢⎢⎢⎢⎣
[

AN−2 aN−2

aT
N−2 1

]
ℜεN−1

[
aN−2

1

]
−ℑεN−1

[
ℑξN−2

0

]

ℜεN−1

[
aN−2

1

]T

−ℑεN−1

[
ℑξN−2

0

]T

1

⎤⎥⎥⎥⎥⎦ .
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After some operations with rows and columns to obtain ZN = LNℜHNLT
N , with IN−2

denoting a unit matrix in

LN =

⎛⎝ IN−2

1
−ℜ εN−1 1

⎞⎠ , (12)

and (as a convention) zeroes in the empty places, we see that the determinant is equal to

the determinant of the positive definite matrix Z = (LNℜH
1
2
N )(LNℜH

1
2
N )T , which reads

Z =

⎡⎢⎢⎢⎢⎣
[

AN−2 aN−2

aT
N−2 1

]
−ℑεN−1

[
ℑξN−2

0

]

−ℑεN−1

[
ℑξN−2

0

]T

1− (ℜεN−1)2

⎤⎥⎥⎥⎥⎦ .

Now application of the generalized Hadamard inequality in Lemma 3.2 completes the
proof. �

COROLLARY 3.1. We collect the results: Let ε = ε j , j = 1,2, ..,N−1 lie in the
unit circle, and HN be defined as in Theorem 2.1. The following inequalities hold,

det[HN(|ε|)] =
N−1

∏
j=1

(
1−|ε j|2

)
� det[ℜHN ] �

N−1

∏
j=1

(
1− (ℜε j)2)= det[HN(ℜε)]

�
N−1

∏
j=1

∣∣1− ε2
j

∣∣= |det[HN(ε)]|.

EXAMPLE 3.1. (The case N = 3.) We face a complex-valuedmatrix Z = A+ iB,
A := ℜZ, B := ℑZ of the form

Z =

⎛⎝ 1 ε1 ε1ε2

ε1 1 ε2

ε1ε2 ε2 1

⎞⎠ , |ε j| < 1. (13)

We write ε1 = a+ iα , ε2 = b+ iβ to furnish the real part of Z as

ℜZ =

⎛⎝ 1 a ab−αβ
a 1 b

ab−αβ b 1

⎞⎠ .

Direct calculation gives us that

(1−a2)(1−b2) � (1−a2)(1−b2)−α2β 2 = det[ℜZ], (14)
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and

det[ℜZ] � (1−a2)(1−b2)−α2β 2−α2(1−|ε2|2)−β 2(1−|ε1|2), (15)

where the expression on the right coincides with
2
∏
j=1

(1−|ε j|2) .

EXAMPLE 3.2. (On the case N = 4.) Let us set Z := HN ,

ε1 =
1
10

(8+1i), ε2 =
1
10

(8−2i), ε3 =
1
10

(5+4i). (16)

Then we have

Z(ℜε1,ℜε2,ℜε3) =

⎡⎢⎢⎣
1.00 0.80 0.64 0.32
0.80 1.00 0.80 0.40
0.64 0.80 1.00 0.50
0.32 0.40 0.50 1.00

⎤⎥⎥⎦ ,

ℜZ(ε1,ε2,ε3) =

⎡⎢⎢⎣
1.000 0.800 0.660 0.362
0.800 1.000 0.800 0.480
0.660 0.800 1.000 0.500
0.362 0.480 0.500 1.000

⎤⎥⎥⎦ ,

and

Z(|ε1|, |ε2|, |ε3|) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
√

65
10

√
4420
100

√
181220
1000

√
65

10 1
√

68
10

√
2788
100

√
4420
100

√
68

10 1
√

41
10

√
181220
1000

√
2788
100

√
41

10 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The determinant inequalities (obtained with MatLab 5.3) then read (see Corollary 3.1)

0.066080... � det[ℜZ] = 0.094311... � 0.0972 � 0.20526... (17)

In general we have a complex-valued matrix Z = A + iB, A := ℜZ, B := ℑZ of the
form

Z =

⎛⎜⎜⎝
1 ε1 ε1ε2 ε1ε2ε3

ε1 1 ε2 ε2ε3

ε1ε2 ε2 1 ε3

ε1ε2ε3 ε2ε3 ε3 1

⎞⎟⎟⎠ , |ε j| < 1. (18)

Let ε1 = a+ iα , ε2 = b+ iβ , ε3 = c+ iγ to represent the real part of Z as

ℜZ =

⎛⎜⎜⎝
1 a ab−αβ abc−αβc−aβ γ−αbγ
a 1 b bc−β γ

ab−αβ b 1 c
abc−αβc−aβ γ−αbγ bc−β γ c 1

⎞⎟⎟⎠ .
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We obtain

det[ℜZ] = (1−a2)(1−b2)(1− c2)−α2b2γ2(1−b2−β 2) (19)

−β 2γ2(1−a2−α2β 2)−α2β 2(1− c2− γ2b2),

and

3

∏
j=1

[1−|ε j|2] = (1−a2)(1−b2)(1− c2)−α2(1−b2)(1− c2) (20)

−β 2(1−a2−α2)(1− c2− γ2)− γ2(1−a2−α2)(1−b2).

It remains to show

α2(1−b2)(1− c2)+ β 2(1−a2−α2)(1− c2− γ2)+ γ2(1−a2−α2)(1−b2) �
α2b2γ2(1−b2−β 2)+ β 2γ2(1−a2−α2β 2)+ α2β 2(1− c2− γ2b2).

This is equivalent to

α2(1−b2)(1− c2−b2γ2)+ β 2(1−a2−α2)(1− c2− γ2)+ γ2(1−a2−α2)(1−b2) �
−α2b2γ2β 2 + β 2γ2(1−a2−α2β 2)+ α2β 2(1− c2− γ2b2).

Hence it should hold

α2(1−b2−β 2)(1− c2−b2γ2)+ β 2(1−a2−α2)(1− c2− γ2)
+γ2(1−a2−α2)(1−b2) � β 2γ2(1−a2−α2(b2 + β 2)).

Noting that a2 +α2 < 1, b2 +β 2 < 1, thus 1−b2 > β 2 on the left hand, c2 + γ2 < 1,
we arrive at

α2(1−b2−β 2)(1− c2− γ2(b2 + β 2))+ β 2(1−a2−α2)(1− c2− γ2) � 0,

which holds always true, indeed.
Now let us take the block partition (10) with vector d instead of b there, and note

that det[ℜHN ] = det[ℜHN−1](1−|εN−1|2dT [ℜHN−1]−1d) . It should be mentioned that
for N = 3 the inner product

(ab−αβ ,b)
1−a2

(
1 −a
−a 1

)(
ab−αβ

b

)
=

b2(1−a2)+ α2β 2

1−a2 � b2 + β 2 = |ε2|2. (21)

For N = 4 the corresponding inner product reads (det = (1−a2)(1−b2)−α2β 2 > 0)(
c(ab−αβ )− γ(aβ +αb)

cb− γβ
c

)T ( 1 a ab−αβ
a 1 b

ab−αβ b 1

)−1( c(ab−αβ )− γ(aβ +αb)
cb− γβ

c

)

=
c2det + γ2(β 2 + α2b2−α2b4−β 2a2−β 4α2 −2α2b2β 2)

det
� c2 + γ2 = |ε3|2.

(22)
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This can be seen after rewriting the γ2 multiplier as

β 2(1−a2)−β 2α2(b2 + β 2)+b2α2(1−b2−β 2) �
β 2(1−a2)−β 2α2(b2 + β 2)+ (1−β 2)α2(1−b2−β 2) =

β 2(1−a2)−α2β 2 + α2(1−b2−β 2) �
(1−a2)(β 2 +1−b2−β 2)−α2β 2 = det,

where for obtaining the first inequality, b2 < 1−β 2 , and for obtaining the second in-
equality, α2 < 1−a2 are used. Hence we have verified that det[ℜH4] � (1−|ε1|2)(1−
|ε2|2)(1−|ε3|2) .

We remark that in case of absolute values of |ε| about 1− δ , δ > 0 small, com-
puter calculation programs do not always tell the truth: For instance, the entries ε j

for HN in Definition 2.1, calculated from ξ = 1, k = 0.01+ 0.001i, h1 = 0.000001,
h2 = 0.00001, h3 = 0.0001, and h4 = 0.001, produce wrong digits. The output ob-
tained by Matlab 5.3 for Corollary 3.1 is:

5.825312658629375e−012

= 5.825312658625181e−012

� 5.825312658630094e−012

� 5.825312658625900e−012

= 5.825312658630094e−012

� 5.825312659499649e−012

= 5.825312659503842e−012.

The values ξ = 1, k = 0.501+0.5001i, h1 = 0.2000001, h2 = 0.400001, h3 = 0.60001,
and h4 = 0.8001 lead to the output

0.03840941041282

= 0.03840941041282

� 0.03894630331134

� 0.03894852511313

= 0.03894852511313

� 0.04163377676650

= 0.04163377676650.

The entries ε1 = 0.1+ 0.2i , ε2 = 0.2− 0.5i , ε3 = 0.3+ 0.8i , ε4 = 0.4− 0.5i , ε5 =
0.5+0.7i from the interior of the unit circle, give us

0.02793644100000

= 0.02793644100000

� 0.26400081064711

� 0.54486432000000
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= 0.54486432000000

� 3.39134679807819

= 3.39134679807819.

The last example shows how Corollary 3.1 can be applied in order to test errors due to
different amount of calculation operations needed for full matrices and diagonal matri-
ces. The next section includes some more examples of matrices for testing accuracy in
inverting matrices (note the use of Hilbert matrices), and for infinite products as special
determinants (note the connection with Euler’s identity and the Riemann zeta function).

4. Auxiliary formulas

LEMMA 4.1. (A multiplicative splitting.) Let HN be the matrix in Definition 2.1,
and

DN := diag[1− ε2
1 , ....,1− ε2

N−1,1], (23)

UN :=

⎡⎢⎢⎣
1 −ε1

1
. . .
1 −εN−1

1

⎤⎥⎥⎦ . (24)

It holds that

UNHNUT
N = DN . (25)

Proof. Direct calculation. We refer to Rottbrand [19]: p. 96. �

REMARK 4.1. This is not a diagonalization with eigenvalues.

We define the hermitian N×N matrix with ε1, . . . ,εN−1 ∈ C ,

H̃N :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ε1 ε1ε2 ε1ε2ε3 ε1ε2ε3ε4 ε1ε2ε3ε4ε5 · · ·

ε 1 1 ε2 ε2ε3 ε2ε3ε4 ε2ε3ε4ε5 · · ·

ε 1ε 2 ε 2 1 ε3 ε3ε4 ε3ε4ε5 · · ·

ε 1ε 2ε 3 ε 2ε 3 ε 3 1 ε4 ε4ε5 · · ·

ε 1ε 2ε 3ε 4 ε 2ε 3ε 4 ε 3ε 4 ε 4 1 ε5 · · ·

ε 1ε 2ε 3ε 4ε 5 ε 2ε 3ε 4ε 5 ε 3ε 4ε 5 ε 4ε 5 ε 5 1 · · ·

...
...

...
...

...
...

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (26)
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After operations with rows one finds the determinant formula

det[H̃N ] =
N−1

∏
j=1

(1−|ε j|2). (27)

In the proof of Theorem 3.1 all |εm|< 1 is assumed. This is for positive definiteness of
the real part of the matrix HN (see Theorem 2.1), and thus of the real part of H̃N too!

REMARK 4.2. (Inverse matrices GN = H−1
N with rational entries.) Let a , b of

integer multiplied with a fixed complex–valued parameter to build Pythagorean triples

on the unit circle u2 + v2 = 1 given through (u,v) = (a2−b2, 2ab)
a2+b2 , and set ε1 = . . . =

εN−1 := u in Theorem 2.1 (ii), or equation (1), respectively. Hence the parameter can-
cels out. Then the inverse matrix reads as follows (triple diagonal form!):

GN =
1

4a2b2 ×⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(a2 +b2)2 −(a2 +b2)(a2 −b2)

−(a2 +b2)(a2 −b2) (a2 +b2)2 +(a2 −b2)2 −(a2 +b2)(a2 −b2)

. . .
. . .

. . .

−(a2 +b2)(a2 −b2) (a2 +b2)2 +(a2 −b2)2 −(a2 +b2)(a2 −b2)

−(a2 +b2)(a2 −b2) (a2 +b2)2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The values a = 5λ , b = 1λ , λ ∈ C , give us ε j = u = 12
13 , det[HN ] =

(
25
169

)N−1
,

H−1
N =

1
100

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

676 −624

−624 1252 −624

. . .
. . .

. . .

−624 1252 −624

−624 676

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and, a = 2λ , b = 1λ , λ ∈ C , give us ε j = u = 3
5 , det[HN ] =

(
16
25

)N−1
,

H−1
N =

1
16

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

25 −15

−15 34 −15

. . .
. . .

. . .

−15 34 −15

−15 25

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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which is equal to

1
10000

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

15625 −9375

−9375 21250 −9375

. . .
. . .

. . .

−9375 21250 −9375

−9375 15625

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

All the rational inverse matrices in Remark 4.2 are strictly diagonal dominant!

REMARK 4.3. (On Definition 2.1.) Let a,b, ã, b̃ of integer, ξ = ã2 − b̃2 , κ =
i 2ãb̃ , and hm+1−hm = 1

ã2+b̃2 ln
(

a2+b2

a2−b2

)
for m = 1, . . . ,N−1. Then each εm = a2−b2

a2+b2

is a rational number. Clearly, one may also choose (λa,λb) , (μ ã,μ b̃) , where λ ,μ ∈
C .

4.1. Entries of infinite matrices in Remark 2.3

The aim of this section is to present some further interesting examples for other
possible entries.

DEFINITION 4.1. (Gamma function.)

Γ(x) :=
∞∫

0

e−t tx−1dt, ℜx > 0. (28)

REMARK 4.4. (Properties of Γ .)

Γ(x+1) = xΓ(x), Γ(
1
2
) =

√
π,

Γ(n+1) =
n

∏
m=1

m =: n! (factorial n, when n ∈ N).

DEFINITION 4.2. (Bessel functions of the first kind.)

Jν(x) :=
∞

∑
n=0

(−1)n

n!Γ(ν +n+1)

( x
2

)ν+2n
, ν ∈ R. (29)

For real zeroes of Bessel functions J0 and J1 see Abramowitz and Stegun [1], no
9.5.
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LEMMA 4.2. (Infinite Products.) Let k,n ∈N , k ∈ {1, ..,n} , a j,b j >−1 satisfy-

ing
k
∑
j=1

(a j −b j) = 0 , and set Pn :=
k
∏
j=1

n+a j
n+b j

to define the infinite product P := ∏
n∈N

Pn .

It holds

P =
k

∏
j=1

Γ(1+b j)
Γ(1+a j)

.

Proof. This formula is due to Leonard Euler, confer Knuth [11], section 1.2.5,
exercise 17 therein, where Stirling’s formula is used and alternatively Fichtenholtz II
[7], p. 808. �

EXAMPLE 4.1. (A concrete computation.) Let

P =
∞

∏
n=1

(
1+

1
n(n+2)

)
.

Thus we have Pn = n+1
n

n+1
n+2 , with a1 = a2 = 1, b1 = 0, b2 = 2, and obtain

P =
Γ(1)
Γ(2)

Γ(3)
Γ(2)

=
0! 2!
1! 1!

= 2.

Another type of entries can be generated by the following function (Apostol [2]):

DEFINITION 4.3. (Riemann zeta function) Let s = σ + it a fixed complex number
with real part σ > 1. Then

ζ (s) :=
∞

∑
k=1

k−s. (30)

The series is known to be absolutely convergent. An analytic continuation (excepted
the single pole s = 1) is given by

ζ (s) :=
1

1−21−s

∞

∑
k=1

(−1)k−1k−s, σ > 0, (31)

with the sum defining the eta function η(s) . The Riemann zeta function stands in
relation with prime numbers by Euler’s identity:

ζ (s) =
∞

∏
j=1

1

1− p−s
j

= ∏
p prime

1
1− p−s , σ > 1. (32)

This means entries ε j = p−s/2
j for det[H∞(ε)] = 1

ζ (s) with positive real part for all

σ > 1. The entries ε j = (1− exp((−1) j/ js))
1
2 lead to an infinite determinant taking

the value exp(−η(s)) . It should be mentioned that the condition |ε j|2 < 1 leads to

exp

[
(−1) j+1 cosln( jt )

jσ

]
cos

(
sin ln( jt)

jσ

)
>

1
2
, (33)
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with the expression on the left taking the maximal and minimal values exp( j−σ ) , and

exp(− j−σ ) , respectively. For this one has to solve sin(t ln j + (−1) j+1

jσ sin(t ln j)) = 0,

which gives us t = kπ
ln j , k = 0,±1,±2, .. . The last inequality obviously holds for j = 1,

and j large enough such that σ > − ln ln2
ln j . Note that ε j = 0 can not be satisfied for all

j , because this leads to the condition cosh( cos ln( jt)
jσ ) = cos( sinln( jt)

jσ ). Thus in order to
have the infinite determinant to be equal one: that is η(s) = 0 (Riemann’s hypothesis
ζ (s) = 0), there should appear factors with absolute values less than one and greater
than one also. The question arises whether such a product can be constructed with
almost all ε j to lie in the unit circle. Note the last inequality in Corollary 3.1.
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