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Abstract. Let A be a bounded linear operator, PM be an orthogonal projection with range M
and PM ,N be an idempotent with range M and kernel N . This paper presents some novel
relations between Bott-Duffin inverse A+

M = PM (APM + PM⊥)+ and generalized Bott-Duffin
inverse A+

M ,N = PM ,N (APM ,N + PN ,M )+ . Furthermore, the representations for the Bott-
Duffin inverse and generalized Bott-Duffin inverse are presented.

1. Introduction

Let H and K be Hilbert spaces over the same field. We denote the set of
all bounded linear operators from H into K by B(H ,K ) and by B(H ) when
H = K . For A ∈ B(H ,K ) , let A∗ , R(A) and K (A) be the adjoint, the range
and the null space of A , respectively. An operator P ∈ B(H ) is said to be idempo-
tent if P2 = P . An idempotent P is called an orthogonal projection if P2 = P = P∗.
The orthogonal projection onto the closed subspace M ⊆ H is denoted by PM . Let
PM ,N denote the idempotent with R(PM ,N ) = M and K (PM ,N ) = N . For closed
subspaces M and N , the direct sum and the orthogonal direct sum are denoted by
M ⊕N and M ⊕⊥ N , respectively. It is clear R(PM )+K (PM ) = M ⊕⊥ M⊥ =
H and R(PM ,N )+K (PM ,N ) = M ⊕N = H .

The Moore-Penrose inverse (for short, MP inverse) of T is denoted by T+ , and it
is the unique solution to the following four operator equations ([5, 16]),

TXT = T, XTX = X , TX = (TX)∗, XT = (XT )∗.

If R(T ) is closed, then T has MP inverse and the MP inverse of T is unique with
(T ∗)+ = (T+)∗ , T+ = T ∗(TT ∗)+ = (T ∗T )+T ∗ , TT+ = PR(T) and T+T = PR(T∗) .
And T , as an operator from R(T ∗)⊕K (T ) onto R(T )⊕K (T ∗) , can be written as
T = T1⊕0, where T1 is invertible. T+ = T−1

1 ⊕0 = T ∗(TT ∗+PK (T ∗))−1 (see [1]–[3],
[5], [11]–[20]).
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For A ∈ B(H ) , the constrained linear equations

Ax+ y = b, x ∈ M , y ∈ M⊥ (1.1)

arise in electrical network theory. It is readily found that the equation is consistent with
the linear equation (APM +PM⊥)z = b and (x,y) is a solution if and only if x = PM z,
y = PM⊥z = b−APM z. If APM +PM⊥ is invertible, then, for all b ∈ H , there exists
the unique solution

x = PM (APM +PM⊥)−1b, y = b−Ax.

In general, let A ∈ B(H ) and M be a closed subspace of H . If APM + PM⊥ is
MP invertible, the Bott-Duffin inverse (see [4],[6]–[10],[21]) of A with respect to M ,
denoted by A+

M , is defined by

A+
M = PM (APM +PM⊥)+. (1.2)

This kind of inverse contains group inverse and Drazin inverse. Ben-Israel and Greville
in [2] and G. Wang, Y. Wei and S. Qiao in [16] have mentioned many properties of
Bott-Duffin inverse and some applications in constrained linear equations.

In this paper, we will consider the general case. For the idempotent operator
PM ,N , the generalized Bott-Duffin inverse A+

M ,N of A with respect to M and N
is defined by

A+
M ,N = PM ,N (APM ,N +PN ,M )+. (1.3)

Several authors have considered the problem when the dimension of H is finite. Chen
in [6] and B. Deng et al. in [10] have defined the generalized Bott-Duffin inverse and
established some of its properties. In [7, 8] G. Chen, G. Liu and Y. Xue have discussed
the perturbation theory of the generalized Bott-Duffin inverse. In this paper, we will
study the properties and give the expressions for generalized Bott-Duffin inverse of
operators on a Hilbert space. Some relations between A+

M and A+
M ,N are obtained.

2. Main results

First, we state one useful result. When consider the MP inverse representation for
2×2 upper-triangular operator matrix

(
A C
0 B

)
, we need the following result.

LEMMA 2.1. ([11, Theorem 6]) Let B be invertible. The 2 by 2 block operator
valued triangular matrices

(
A C
0 B

)
and

(
A 0
D B

)
are MP invertible if and only if R(A) is

closed, in which case

(
A C
0 B

)+ =
(

A+−A+C�C∗(I−AA+) −A+C�B∗
�C∗(I−AA+) �B∗

)
,
(

A 0
D B

)+ =
(

A+−(I−A+A)D∗∇DA+ (I−A+A)D∗∇
−B∗∇DA+ B∗∇

)
,

where � = (B∗B+C∗(I−AA+)C)−1,∇ = (BB∗ +D(I−A+A)D∗)−1.
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Recall that any matrix is MP invertible. In an arbitrary Hilbert space, it is not
true that every element is MP invertible. For every operator A ∈ B(H ) , we know
that A+

M in (1.2) exists ⇐⇒ (APM +PM⊥)+ exists. And A+
M ,N in (1.3) exists ⇐⇒

(APM ,N +PN ,M )+ exists. Concerning to background of (1.1), we always give a nat-
ural hypothesis that AM ⊆ N⊥. First, we get the following result.

THEOREM 2.1. Let PM ,N be an idempotent and A∈B(H ) be such that AM ⊆
N⊥ . Then

A+
M exists ⇐⇒ A+

M ,N exists.

Proof. Since M = R(PM ,N ) is closed and PM is an orthogonal projection on
M , we can write A , PM and PM⊥ as

A =
(

A11 A12
A21 A22

)
, PM =

(
I 0
0 0

)
and PM⊥ =

(
0 0
0 I

)
(2.1)

with respect to the space decomposition H = M ⊕⊥ M⊥ . Then, by Lemma 2.1,

APM +PM⊥ =
(

A11 0
A21 I

)
is MP invertible if and only if A11 is MP invertible. As for the

idempotents PM ,N , PN ,M and orthogonal projection PN , they can be written as

PM ,N =
( I P1

0 0

)
, PN ,M =

(0 −P1
0 I

)
and PN =

(
Q1 Q2
Q∗

2 Q4

)
(2.2)

with respect to the space decomposition H = M ⊕⊥M⊥ . From P2
N = PN = P∗

N we
get Q∗

1 = Q1 , Q∗
4 = Q4 and

Q1 = Q2
1 +Q2Q

∗
2, Q2 = Q1Q2 +Q2Q4, Q4 = Q∗

2Q2 +Q2
4. (2.3)

Since H = R(PM ,N )+K (PM ,N ) =M +N = R(PM )+R(PN ) = R(PM +PN ) ,

the positive operator PM + PN =
(

I+Q1 Q2
Q∗

2 Q4

)
is invertible. We get Q4 is invertible.

Since
PM ,N PN =

( I P1
0 0

)(Q1 Q2
Q∗

2 Q4

)
=
(

Q1+P1Q
∗
2 Q2+P1Q4

0 0

)
= 0,

It follows that P1 = −Q2Q
−1
4 and Q1 = Q2Q

−1
4 Q∗

2. The condition AM ⊆ N⊥ implies

PN APM =
(

Q2Q−1
4 Q∗

2 Q2
Q∗

2 Q4

)(
A11 0
A21 0

)
=
(

Q2Q
−1
4 Q∗

2A11+Q2A21 0
Q∗

2A11+Q4A21 0

)
= 0.

We get A21 = −Q−1
4 Q∗

2A11 and

APM ,N +PN ,M =
(

A11 A12

−Q−1
4 Q∗

2A11 A22

)(
I −Q2Q

−1
4

0 0

)
+
(

0 Q2Q−1
4

0 I

)

=
(

A11 Q2Q−1
4 −A11Q2Q

−1
4

−Q−1
4 Q∗

2A11 I+Q−1
4 Q∗

2A11Q2Q
−1
4

)
.

(2.4)

As we know, an operator T is MP invertible if and only if R(T ) is closed. If E and F
are invertible such that ETF = S , then R(T ) is closed if and only if R(S) is closed.
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Since there exists an invertible operator S =
(

I Q2Q
−1
4

0 I

)
such that

S−1
(

A11 Q2Q−1
4 −A11Q2Q

−1
4

−Q−1
4 Q∗

2A11 I+Q−1
4 Q∗

2A11Q2Q
−1
4

)
S =

(
A11+Q2Q

−2
4 Q∗

2A11 0

−Q−1
4 Q∗

2A11 I

)
,

we get APM ,N + PN ,M is MP invertible if and only if R
(
(I +Q2Q

−2
4 Q∗

2)A11
)

is
closed by Lemma 2.1. Since positive operator I+Q2Q

−2
4 Q∗

2 is automatically invertible,
we obtain that APM ,N +PN ,M is MP invertible if and only if A11 is MP invertible,
which gives us the desired result. �

It is clear that APM ,N =
[
APM +PM⊥

]
PM ,N . If APM +PM⊥ is invertible, we

build the following relations between A+
M and A+

M ,N .

THEOREM 2.2. Let PM ,N be an idempotent and A∈B(H ) be such that AM ⊆
N⊥ . Then

APM ,N +PN ,M is invertible ⇐⇒ APM +PM⊥ is invertible. (2.5)

If APM +PM⊥ is invertible, then A+
M ,N = A+

M (P∗
M ,N )+ = PM (APM +PN )−1.

Proof. By the proof in Theorem 2.1, it is easy to obtain that APM ,N + PN ,M

(resp. APM +PM⊥ ) is invertible if and only if A11 is invertible. Hence, (2.5) holds.
Note PM +PN is always invertible and PM ,N = PM (PM +PN )−1 for arbitrary idem-
potent PM ,N and relative orthogonal projections PM and PN . If APM +PM⊥ is in-
vertible, by the definition of A+

M ,N , we know A+
M ,N has the simple representation

as

A+
M ,N = PM ,N (APM ,N +PN ,M )−1

= PM (PM +PN )−1
[
APM (PM +PN )−1 +PN (PM +PN )−1

]−1

= PM (APM +PN )−1.

Moreover, by (2.1-2.4), we get A+
M = A−1

11 ⊕0 and

PM ,N (APM ,N +PN ,M )−1

=
(

I −Q2Q−1
4

0 0

)(
A11 Q2Q

−1
4 −A11Q2Q−1

4

−Q−1
4 Q∗

2A11 I+Q−1
4 Q∗

2A11Q2Q−1
4

)−1

=
(

I −Q2Q−1
4

0 0

)(
I Q2Q−1

4
0 I

)(
A11+Q2Q

−2
4 Q∗

2A11 0

−Q−1
4 Q∗

2A11 I

)−1(
I −Q2Q

−1
4

0 I

)

=
(

A−1
11 (I+Q2Q

−2
4 Q∗

2)
−1 0

0 0

)(
I −Q2Q

−1
4

0 I

)
= A+

M (PM ,N P∗
M ,N )+PM ,N

= A+
M (P∗

M ,N )+. �
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It is worth pointing out that A+
M ,N in Theorem 2.2 can represent MP inverse,

group inverse or Drazin inverse when M and N are defined as some different partic-
ular subspaces:

Case 1. If A is MP invertible and APR(A) +PR(A)⊥ is invertible, then

A+ = A+
R(A∗),K (A∗) = PR(A∗)(APR(A∗) +PK (A∗))

−1;

Case 2. If A is group invertible and AR(A) ⊆ R(A∗) , then

A# = A+
R(A),K (A) = PR(A)(APR(A) +PK (A))

−1;

Case 3. If A is Drazin invertible and AR(Al) ⊆ K (Al)⊥ , then

AD = A+
R(Al),K (Al) = PR(Al)(APR(Al) +PK (Al))

−1,

for every l � k and ind(A) = k > 1.

THEOREM 2.3. Let A ∈ B(H ) and PM ,N be an idempotent. Then

A+
M ,N exists ⇐⇒ PM ,N APM is MP invertible.

Proof. By (2.1) and (2.2), we know that

APM ,N +PN ,M =
(

A11 A12
A21 A22

)(
I −Q2Q

−1
4

0 0

)
+
(

0 Q2Q−1
4

0 I

)
=
(

A11 Q2Q
−1
4 −A11Q2Q−1

4

A21 I−A21Q2Q
−1
4

)

=
(

I Q2Q
−1
4

0 I

)(
A11−Q2Q

−1
4 A21 0

A21 I

)(
I −Q2Q

−1
4

0 I

)

and PM ,N APM =
(
A11−Q2Q

−1
4 A21

)⊕ 0. Since
(

I Q2Q
−1
4

0 I

)
is invertible, we derive

that A+
M ,N exists if and only if A11 −Q2Q

−1
4 A21 is MP invertible by Lemma 2.1,

which is equivalent to that PM ,N APM is MP invertible. �

We continue to discuss the properties of A+
M .

THEOREM 2.4. Let A ∈ B(H ) such that A+
M exists. Then the following state-

ments are equivalent:

(i) A
[
PM − (PMAPM )+(PM APM )

]
= 0 .

(ii) A+
M = A+

M PM .

(iii) A+
M A = (PM APM )+A.

(iv) A+
M = (PM APM )+ .

(v) AM ∩M⊥ = {0}.
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Proof. Let A, PM and PM ,N have the forms as in (2.1) and (2.2). By Lemma
2.1, we get

A+
M = PM (APM +PM⊥)+ =

(
I 0
0 0

)[(A11 A12
A21 A22

)(
I 0
0 0

)
+
(

0 0
0 I

)]+
=
(

I 0
0 0

)(A11 0
A21 I

)+

=
(

I 0
0 0

)(A+
11−(I−A+

11A11)A∗
21�A21A

+
11 (I−A+

11A11)A∗
21�

−�A21A
+
11 �

)
=
(

A+
11−(I−A+

11A11)A∗
21�A21A

+
11 (I−A+

11A11)A∗
21�

0 0

)
,

(2.6)
where � =

[
I +A21(I−A+

11A11)A∗
21

]−1 .
(i)=⇒(ii): Note that

A
[
PM − (PM APM )+(PM APM )

]
=
(

0 0
A21(I−A+

11A11) 0

)
.

If item (i) holds, then (I −A+
11A11)A∗

21� = [�∗A21(I − A+
11A11)]∗ = 0. So, by (2.6),

item (ii) holds.
(ii)=⇒(iii): If item (ii) holds, it is clear that A+

M = (PM APM )+ by 2.6.

(iii)=⇒(iv): Let � 1
2 denote the positive square root of positive operator � . By

(2.6), we have

A+
M A =

(
A+

11A11+(I−A+
11A11)A∗

21�A21(I−A+
11A11) A+

11A12+(I−A+
11A11)A∗

21�(A22−A21A
+
11A12)

0 0

)

and (PM AM PM )+A =
(

A+
11A11 A+

11A12
0 0

)
. Since A+

M A = (PM APM )+A , we derive that

(I−A+
11A11)A∗

21�A21(I−A+
11A11) = 0

=⇒ [� 1
2 A21(I−A+

11A11)]∗[� 1
2 A21(I−A+

11A11)] = 0

=⇒ � 1
2 A21(I−A+

11A11) = 0
=⇒ A21(I−A+

11A11) = 0.

Hence, by (2.6), item (iv) holds.
(iv)=⇒(v): Let A have the form as in (2.1). Since M = R(A∗

11)⊕K (A11) =
R(A11)⊕K (A∗

11) , the operator A11 can be decomposed as A11 = A0
11⊕0, where A0

11
as an operator from R(A∗

11) onto R(A11) is invertible. If (iv) holds, then A21(I −
A+

11A11) = 0. That is K (A11) ⊂ K (A21) and therefore APM has the form as

APM =
(

A11 0
A21 0

)(
M

M⊥
)
→
(

M
M⊥
)

=

(
A0

11 0 0
0 0 0

A0
21 0 0

)(
R(A∗

11)
K (A11)

M⊥

)
→
(

R(A11)
K (A∗

11)
M⊥

)
.

The invertibility of A0
11 implies that AM ∩M⊥ = {0}.

(v)=⇒(i): Note that APM =
(

A11 0
A21 0

)
. If AM ∩M⊥ = {0} , then K (A11) ⊂

K (A21) . Hence, A21(I−A+
11A11) = 0 and therefore

A
[
PM − (PM APM )+(PM APM )

]
=
(

0 0
A21(I−A+

11A11) 0

)
= 0. �
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Theorem 2.4 presents a list of equivalent conditions, which help us easier to check
that A+

M = (PM APM )+ . Moreover, a representation for A+
M can be derived by the

proof of Theorem 2.4.

THEOREM 2.5. Let A ∈ B(H ) such that A+
M exists. Then

A+
M = (PM APM )+ +

[
PM − (PM APM )+(PM APM )

]
A∗Φ+ [PM⊥ −A(PM APM )+

]
,

where Φ = PM⊥A
[
PM − (PM APM )+(PM APM )

]
A∗PM⊥ +PM⊥ .

Proof. By the proof of Theorem 2.4, we get

A+
M = PM (APM +PM⊥)+ =

(
A+

11−(I−A+
11A11)A∗

21�A21A
+
11 (I−A+

11A11)A∗
21�

0 0

)
,

where � =
[
I +A21(I−A+

11A11)A∗
21

]−1
. Note that A, PM and PM ,N have the forms

as in (2.1) and (2.2). The result is obtained from the fact that Φ+ = 0 ⊕� and
(PM APM )+ = A+

11⊕0. �

Representations for the MP inverse for block matrices were given in the literature
under certain conditions. In the paper of Miao [13], Tian [14] and Cvetković-Ilić et al.
[9], the MP-inverse was considered for the class of matrices M =

(
A B
C D

)
. Baksalary

and Styan [1] have given the necessary and sufficient conditions for the representation
of the MP-inverse of M by the Banachiewicz-Schur form. The details are given as
follows. If M =

(
A B
C D

)
is a given matrix and S = D−CA+B is the generalized Schur

complement of A in M , then

M+ =
(

A++A+BS+CA+ −A+BS+

−S+CA+ S+

)
(2.7)

if and only if

B(I−S+S) = 0, (I−SS+)C = 0, C(I−A+A) = 0, (I−AA+)B = 0. (2.8)

Applying this result, we get a representation for the generalized Bott-Duffin inverse.

THEOREM 2.6. Let A ∈ B(H ) , M and N be closed subspaces of H such
that AM ⊆ N⊥ and

[
PM − (PM APM )(PM APM )+

]
PN ,M = 0 . Then

A+
M ,N = A+

M − [A+
M (I−A)+ I

]
PM PN ,M P+

N ,M .

Proof. Let A, PM and PM ,N have the forms as in (2.1) and (2.2). In the proof of

Theorem 2.1, we obtain that PM ,N =
(

I −Q2Q
−1
4

0 0

)
, PN ,M =

(
0 Q2Q−1

4
0 I

)
and by (2.4)

APM ,N +PN ,M =
(

A11 (I−A11)Q2Q
−1
4

−Q−1
4 Q∗

2A11 I+Q−1
4 Q∗

2A11Q2Q
−1
4

)
.
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If
[
PM −(PM APM )(PM APM )+

]
PN ,M = 0, then (I−A11A

+
11)Q2Q

−1
4 = 0. So the gen-

eralized Schur complement

S = I +Q−1
4 Q∗

2A11Q2Q
−1
4 +Q−1

4 Q∗
2A11A

+
11

(
Q2Q

−1
4 −A11Q2Q

−1
4

)
= I +Q−1

4 Q∗
2Q2Q

−1
4

is invertible and 0⊕ S−1 = (P∗
N ,M PN ,M )+. It is clear that the corresponding condi-

tions in (2.8) hold and, by (2.7),

(APM ,N +PN ,M )+ =
(

A+
11−A+

11(I−A11)Q2Q
−1
4 S−1Q−1

4 Q∗
2 −A+

11(I−A11)Q2Q−1
4 S−1

S−1Q−1
4 Q∗

2 S−1

)
.

Since A21 =−Q−1
4 Q∗

2A11 , we get (I−A+
11A11)A∗

21 =
[
A21(I−A+

11A11)
]∗ = 0 and A+

M =
A+

11⊕0 by (2.6). Hence,

A+
M ,N = PM ,N (PM ,N A+PN ,M )+

=
(

I −Q2Q
−1
4

0 0

)(
A+

11−A+
11(I−A11)Q2Q

−1
4 S−1Q−1

4 Q∗
2 −A+

11(I−A11)Q2Q
−1
4 S−1

S−1Q−1
4 Q∗

2 S−1

)

=
(

A+
11−(A+

11+I−A+
11A11)Q2Q

−1
4 S−1Q−1

4 Q∗
2 −(A+

11+I−A+
11A11)Q2Q

−1
4 S−1

0 0

)
= A+

M − [A+
M (I−A)PM +PM

]
PN ,M (P∗

N ,M PN ,M )+P∗
N ,M

= A+
M − [A+

M (I−A)+ I
]
PM PN ,M P+

N ,M . �

Theorems 2.5 and 2.6 provide some formulas for computing the Bott-Duffin in-
verse and generalised Bott-Duffin inverse, respectively. The formulas are easy to com-
pute by using projector methods. Moreover, we get the following result.

THEOREM 2.7. Let A ∈ B(H ) , PM ,N be an idempotent operator such that
R(PM ,N APM ,N ) is closed and AM ⊆ N⊥ . Then

A+
M ,N = (PM ,N APM ,N )+ ⇐⇒ N = M⊥.

Proof. Sufficiency. If N = M⊥ , then A M ∩M⊥ = {0} and PM ,N = PM . The
result follows immediately by (iv) ⇐⇒ (v) in Theorem 2.4.

Necessity. Let PM and A have the representations as in (2.1), PM ,N , PN ,M and
PN have the representations as in (2.2). If A+

M ,N = (PM ,N APM ,N )+, then

R(A+
M ,N ) = R(P∗

M ,N A∗P∗
M ,N ) ⊂ R(P∗

M ,N ) ⊂ N ⊥

and therefore PN A+
M ,N = PN PM ,N (APM ,N +PN ,M )+ = 0.

Hence PN PM ,N (P∗
M ,N A∗ +P∗

N ,M ) = 0. Note that

PN PM ,N P∗
M ,N A∗ =

(
Q2Q

−1
4 Q∗

2 Q2
Q∗

2 Q4

)(
I −Q2Q

−1
4

0 0

)(
I 0

−Q−1
4 Q∗

2 0

)(
A∗

11 −A∗
11Q2Q

−1
4

A∗
12 A∗

22

)
=
( ∗∗∗ ∗∗∗

Q∗
2(I+Q2Q−2

4 Q∗
2)A∗

11 −Q∗
2(I+Q2Q−2

4 Q∗
2)A

∗
11Q2Q

−1
4

)
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and
−PN PM ,N P∗

N ,M = −
(

Q2Q
−1
4 Q∗

2 Q2
Q∗

2 Q4

)(
I −Q2Q

−1
4

0 0

)(
0 0

Q−1
4 Q∗

2 I

)
=
( ∗∗∗ ∗∗∗

Q∗
2Q2Q

−2
4 Q∗

2 Q∗
2Q2Q

−1
4

)
,

where ∗∗∗ can be gotten by the production of relative matrices. Since PN PM ,N P∗
M ,N A∗

= −PN PM ,N P∗
N ,M , compare the two sides of the above matrices, we get

⎧⎨
⎩

Q∗
2Q2 = −Q∗

2(I +Q2Q
−2
4 Q∗

2)A
∗
11Q2, (a)

Q∗
2Q2Q

−2
4 Q∗

2 = Q∗
2(I +Q2Q

−2
4 Q∗

2)A
∗
11. (b)

Multiplying Q2 from right in item (b), we get Q∗
2Q2Q

−2
4 Q∗

2Q2 = −Q∗
2Q2 by item (a).

Since Q∗
2Q2Q

−2
4 Q∗

2Q2 � 0 and Q∗
2Q2 � 0, we get Q∗

2Q2 = 0. That is Q2 = 0. Since
Q4 is invertible and M ∩N = {0} , The orthogonal projestion PN in (2.2) has the
form PN = 0⊕ I. Hence N = M⊥ and H = M ⊕⊥ N . �
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