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FURTHER RESULTS ON GENERALIZED
BOTT-DUFFIN INVERSES
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(Communicated by N.-C. Wong)

Abstract. Let A be a bounded linear operator, P, be an orthogonal projection with range .#
and P, 4 be an idempotent with range .# and kernel .4". This paper presents some novel
relations between Bott-Duffin inverse A;/ =Py(AP,+P ,.)" and generalized Bott-Duffin
inverse AJ;/ =Py v(APy y+Py, )" . Furthermore, the representations for the Bott-
Duffin inverse and generalized Bott-Duffin inverse are presented.

1. Introduction

Let s and J# be Hilbert spaces over the same field. We denote the set of
all bounded linear operators from ¢ into .#" by HB(,%) and by HB(.#°) when
H =K. For Ae B(H, %), let A*, Z#(A) and £ (A) be the adjoint, the range
and the null space of A, respectively. An operator P € Z(.7¢) is said to be idempo-
tent if P> = P. An idempotent P is called an orthogonal projection if P> = P = P*.
The orthogonal projection onto the closed subspace .# C .77 is denoted by P . Let
P 4.y denote the idempotent with Z(P 4 ) = .# and (P 4 ) = .4 . For closed
subspaces .# and .4, the direct sum and the orthogonal direct sum are denoted by
MSN and M DN, respectively. It is clear Z(Py )+ H (Py) = M &+ M+ =
A and %(P//A/)-F,%/(P///V) =MBN =

The Moore-Penrose inverse (for short, MP inverse) of T is denoted by 77, and it
is the unique solution to the following four operator equations ([5, 16]),

TXT =T, XTX=X, TX=(TX)*, XT=(XT)".

If Z(T) is closed, then T has MP inverse and the MP inverse of T is unique with
(T*)* = (T*)*, T+ = T*(TT*)" = (T*T)*T*, TT* = Pypy and T*T = Pyyre).
And T, as an operator from Z(T*) ® # (T ) onto Z(T)&® # (T"), can be written as
T =T, &0, where Tj is invertible. T+ =T~ lpo= T (TT" + Py (r+) )~ (see [11-[3],
[51, [111-[20]).

Mathematics subject classification (2010): 47A05, 15A09.
Keywords and phrases: Generalized Bott-Duffin inverse, idempotent, orthogonal projection.

Supported by the National Natural Science Foundation of China under grant 11171222 and the Doctoral Program of
the Ministry of Education under grant 20094407120001.
Supported by the National Natural Science Foundation of China under grant 11171197.

© MV, Zagreb 713
Paper OaM-07-39


http://dx.doi.org/10.7153/oam-07-39

714 C. Y. DENG AND H. K. DU

For A € #(7¢), the constrained linear equations
Ax+y=b, xeH, yeH* (1.1)

arise in electrical network theory. It is readily found that the equation is consistent with
the linear equation (AP +P ,1)z=b and (x,y) is a solution if and only if x = P 4z,
y=P, 1 z=b—AP 7. If AP, +P , isinvertible, then, for all b € .77, there exists
the unique solution

x=PyAPy+P,. ) 'b, y=b—Ax

In general, let A € #(J¢) and .# be a closed subspace of 7. If AP, +P ,. is
MP invertible, the Bott-Duffin inverse (see [4],[6]-[10],[21]) of A with respect to .Z,
denoted by A%, is defined by

Ay =Py(APy+P )" (1.2)

This kind of inverse contains group inverse and Drazin inverse. Ben-Israel and Greville
in [2] and G. Wang, Y. Wei and S. Qiao in [16] have mentioned many properties of
Bott-Duffin inverse and some applications in constrained linear equations.

In this paper, we will consider the general case. For the idempotent operator
P ..y, the generalized Bott-Duffin inverse Af//  of A with respect to .# and .4
is defined by

Ay v =Puv@BPyy+Py.u) (1.3)

Several authors have considered the problem when the dimension of .77 is finite. Chen
in [6] and B. Deng et al. in [10] have defined the generalized Bott-Duffin inverse and
established some of its properties. In [7, 8] G. Chen, G. Liu and Y. Xue have discussed
the perturbation theory of the generalized Bott-Duffin inverse. In this paper, we will
study the properties and give the expressions for generalized Bott-Duffin inverse of
operators on a Hilbert space. Some relations between Aj// and AJ;//  are obtained.

2. Main results

First, we state one useful result. When consider the MP inverse representation for

2 x 2 upper-triangular operator matrix (‘§ §), we need the following result.

LEMMA 2.1. ([11, Theorem 6]) Let B be invertible. The 2 by 2 block operator
valued triangular matrices (‘3 g) and (‘l“) g) are MP invertible if and only if Z(A) is
closed, in which case

(A C)+ _ <A+7A+CAC* (I-AAT) 7A+CAB*> (
0B ’

0)+ _ (AT —(I-ATA)D*VDA' (I-A*A)D*V
AC*(I-AAT) AB* B ’

B —B*VDA' B*V

(ol

where /\ = (B*B+C*(I —AAT)C)~!,V = (BB* +D(I-ATA)D*)~ 1.
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Recall that any matrix is MP invertible. In an arbitrary Hilbert space, it is not
true that every element is MP invertible. For every operator A € ZA(), we know
that A*, in (1.2) exists <= (AP, +P ,.)" exists. And A,t//,/ in (1.3) exists <=
(AP w.v+Py., )T exists. Concerning to background of (1.1), we always give a nat-
ural hypothesis that AM C N*. First, we get the following result.

THEOREM 2.1. Let P4 _y be an idempotent and A € () be such that AM C
N*. Then
Aj// exists <= Aj// y exists.

Proof. Since .# = %Py, v ) is closed and P4 is an orthogonal projection on
M , we can write A, P, and P ;. as

A=(aan). Pa=(58) and P,=(3Y) @1

with respect to the space decomposition # = .# & .#~*. Then, by Lemma 2.1,
APy +P 41 = < ; i 0) is MP invertible if and only if A;; is MP invertible. As for the
idempotents P4 4, Py, and orthogonal projection P 4 , they can be written as

Pur=(8), Pra=(3) ad Py=(g) (2.2)

with respect to the space decomposition 7 = .# & .4~ . From PZW =Py =P we
get O] =01, 0} = Q4 and

01=01+0:05, 0:=010:+0:04, 04=050:+07. (2.3)
Since ' =R Py )+H Pyy)=M+N=RPy)+RPy)=RPy+Py),
the positive operator P, + Py = (HQI Q2> is invertible. We get Qy is invertible.

Since
PuvPy= (") (g; gﬁ) - (QIJTQZ Q2+§IQ4> =0,

It follows that P, = —Q2Q4 and Q; Q2QZ1Q§. The condition AM C N+ implies

_ (0207105 00 (A1 0 _ (020, 05411402421 0 _
PyAPa = < 0 ) <A21 0) - < 03A11+Q4Ay;  0) 0.

We get Ay = —Q;1Q§A11 and

_ An A 1 —Q2Q71> (0 Q2Q71>
APy v +Py .y = <—QZIQ§A11 An) (0 20" ) 4 (00204

2.4
_ Al 00,4020 -
—0;' 0341 1+0; ' 0541100, " )

As we know, an operator T is MP invertible if and only if 2(T) is closed. If E and F
are invertible such that ETF = §, then Z(T) is closed if and only if Z(S) is closed.
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. . . . -1
Since there exists an invertible operator S = ((I) QZ% ) such that

g1 Apy 0,0, '-A110,0;" g— A11+Q2Q4 03411 0
~-0,'03A11 1+0; ' 054110207 " -o;'osAn 1)

we get AP 4 y + Py, is MP invertible if and only if % ((I—!—QQQZzQ;)An) is
closed by Lemma 2.1. Since positive operator I+ Q> QZZQE is automatically invertible,
we obtain that AP 4 4 + Py 4 is MP invertible if and only if Aj; is MP invertible,
which gives us the desired result. []

It is clear that AP 4 4 = [AP//; +R///L:|R/[7=/1/. If AP +P ,. is invertible, we
build the following relations between A, and A", .

THEOREM 2.2. Let Py _y be an idempotent and A € () be such that AM C
N*. Then

APy v +Py n isinvertible <= AP ,+P , isinvertible. (2.5)
If AP 4 +P ,. is invertible, then Aj//.w = AJ;//(P;/ )T =Py(APy, +Py)!

Proof. By the proof in Theorem 2.1, it is easy to obtain that AP, 4 + Py _»
(resp. AP+ P ,1) is invertible if and only if Aj; is invertible. Hence, (2.5) holds.
Note P 4+ P 4 is always invertibleand P 4 4 =P (P4 +P. )~ ! for arbitrary idem-
potent P, 4 and relative orthogonal projections P, and Py . If AP, +P ,. isin-
vertible, by the definition of Atfl, _y» we know Af//  has the simple representation
as

AY v =PuvAPy y+Py g)!

_ _ _171—1
=Py(Py+Py) ' [APy(Py+Py) ' +Py(Py+Py)"]

=Py(APy+Py)"!
Moreover, by (2.1-2.4), we get A", = A[]' ©0 and

Py yv@APy.y+Py.y)!

:<17Q2Q21> A 007411001 )
0 0 -0, 05 A 140, 05A110,0; !

. -1
(1 —QZQ;1> (1 QZQ;1> A11+0:,0,205A11 0 (1 —QZQ;1>
0 0 0 I ~otosan 1 0 I

AL I+Q2Q42Q2) 10) (1 —QZQ;‘)
0 0 1

(PuvPy ) Pu.v

A
At (P, ). O

+
M
+

M
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It is worth pointing out that AJ;//  in Theorem 2.2 can represent MP inverse,
group inverse or Drazin inverse when .# and ./~ are defined as some different partic-
ular subspaces:

Case 1. If A is MP invertible and APy 4) + P41 is invertible, then

71 .
AT =A% 40 s an = Py APz + Paan) s

Case 2. If A is group invertible and AZ(A) C Z(A*), then

# —1.
AT =A% .1 a) = Paa) APz + Pr)

Case 3. If A is Drazin invertible and AZ(A') C % (A')*, then
_ -1
B(A), (A1) P%’(A’) (AR%(A’) +P.)£/(A’)) )

forevery [ > k andind (A) =k > 1.

THEOREM 2.3. Let A€ HB(H) and Py, 4 be an idempotent. Then
A;/’W exists <= P,y yAPy is MP invertible.

Proof. By (2.1) and (2.2), we know that

—1 —1
_ (A A 1 -0 Q*1> (0 0 Q’1> _ [ An @04 —AnQ20,
APy.v +Py = (Azl A22> <0 204 + 0 214 T\ Ay 1-A2,0:07"

_ (1 QzQ;1> (Au—QzQ;1A21 0) (1 —QzQ;‘)
0 1 Ary 1 0 1

and Py yAP 4 = (A1 — 0,0, 'As) ®0. Since ((I) QZ?ZI> is invertible, we derive

that AJ/F// - exists if and only if Ay — QZQZlAzl is MP invertible by Lemma 2.1,
which is equivalent to that P4 _yAP 4 is MP invertible. [J

. . . +
We continue to discuss the properties of A”,.

THEOREM 2.4. Let A € B(H) such that A”,, exists. Then the following state-
ments are equivalent:

() A[Py— (P4AP4)" (P 4AP 4)] =0.
(i)AT, =A",P,.

(iii) AT, A = (P 4AP 4)*A.

(iv) AY, = (P4AP,)*.

) Al N+ ={0}.
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Proof. Let A, P, and P, 4 have the forms as in (2.1) and (2.2). By Lemma
2.1, we get

Ay =PaAPy+P ) =GO [(042) 09+ GN] =G ()
=(}9) (Aﬁ—(l—/i_fﬁl)ﬁlﬂf*zﬂﬁ (I—ABAAM)A’EIA>
21401
= <A1+1_(I_ABAII)AEHAAZIAB (I_A1+1A11)A31A>,
’ ’ (2.6)

where A = [I+A21(I—AT1A11)A§1]71

(i)=(ii): Note that
0 0
APy —(P4AP4) (P4AP )| = (AZI(I—ATIAU) o) :

If item (i) holds, then (I —A[|A11)A5 A = [A*Ay (I —AfAn)]* = 0. So, by (2.6),
item (ii) holds.
(ii)=(iii): If item (ii) holds, it is clear that Aj// = (P 4AP,)" by 2.6.
(ili)==(iv): Let A? denote the positive square root of positive operator /A. By
(2.6), we have

At A= (AﬁAw(IfAﬁAu>A§1AA21(IfAmAu) AT1A12+(17AT1A1I)AEIA(AerzIAﬁAm)
. 0 0

and (PyAyPy) A= (ABOAH Aﬁg‘w) Since A®, A = (P4AP 4)*A, we derive that

(I Af AL )AS Ay (I — AT A1) =0
— [A2 A (I—AF AL [A2 A (T—AHAL)] =0
— A2Ay(I—AHAL) =0
— Ay (I_AEAII) =0.
Hence, by (2.6), item (iv) holds.
(iv)==(v): Let A have the form as in (2.1). Since .#Z = %#(A},) ® (A1) =
H(A11) ® H (A},), the operator Ay can be decomposed as Ay =AY, &0, where AY,

as an operator from Z(Aj,) onto Z(A11) is invertible. If (iv) holds, then A (I —
AﬁAn) =0. Thatis ¢ (A;1) C # (A1) and therefore AP, has the form as

A% 00 R(A3)) Z(A11)
ane=(18) (£) - ()= () (F6) - (740

The invertibility of A%, implies that A.Z N.#Z*+ = {0}.
(v)=(: Note that AP, = (1410} If A N2t = {0}, then # (A1)
 (Az1). Hence, Ayi (I — A A11) = 0 and therefore

0 0
A[P‘///_ (P%/AP///)-’_(P///AP///)] = (A21(17A1+1A11) 0) =00
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Theorem 2.4 presents a list of equivalent conditions, which help us easier to check
that Aj// = (P 4AP )" . Moreover, a representation for Aj// can be derived by the
proof of Theorem 2.4.

THEOREM 2.5. Let A € B(A’) such that A”,, exists. Then
Aly=PyAPy)" + [Py — (PuAPy)" (PyAP4)|A"®T [P 41 —A(P.4AP4)"],
where ® =P , 1 A[P.y — (PyAP 4)" (P 4AP 4)|A*P ;1 +P 41

Proof. By the proof of Theorem 2.4, we get

+ + * + + *
Aj/[ =PyAPy+P )" = <A11_(I_AUABI)AMAAZIAU (I_AUAOII)A21A> ,

where A = [I+A21(I—ATIA11)A§1] ~! Note that A, Py and P4 4 have the forms
as in (2.1) and (2.2). The result is obtained from the fact that @ = 0@ A and
(P///AP///)+ :A-ﬂ@o. |

Representations for the MP inverse for block matrices were given in the literature
under certain conditions. In the paper of Miao [13], Tian [14] and Cvetkovi¢-Ili¢ et al.
[9], the MP-inverse was considered for the class of matrices M = (g‘ g) . Baksalary
and Styan [1] have given the necessary and sufficient conditions for the representation
of the MP-inverse of M by the Banachiewicz-Schur form. The details are given as
follows. If M = (4 B) is a given matrix and S = D —CA™B is the generalized Schur
complement of A in M, then

+ _ (AT+ATBSTCAT —ATBST
M - ( _S+CA+ S+ (27)

if and only if
B(I-STS)=0, (I-S$")C=0, CI-ATA)=0, (I-AAT)B=0. (2.8)

Applying this result, we get a representation for the generalized Bott-Duffin inverse.

THEOREM 2.6. Let A € B(H), M and N be closed subspaces of H such
that AM C N*+ and [Py — (P 4AP 4)(P4AP 4) Py 4 =0. Then

Ay y=A0— A=A +IPyPy 4P 4

Proof. Let A, P, and P, 4 have the forms as in (2.1) and (2.2). In the proof of
Theorem 2.1, we obtain that P,y = ((I) 7Q20Q;' ) Py = (8 QZ?f) and by (2.4)

A (I-A11)0:0;
-0, ' O5AL 140, 03A110,0, 1

APy v +Py .y = (
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If [Py —(PyAPy)(P#AP 4)"|Py 4 =0, then (I—A11A])020, ' =0. So the gen-
eralized Schur complement

S=14+0;'05410:0;" + 0, ' ®3A1AT, (220, —ANL2:0, ") =1+ 0,1 050:0;
is invertible and 0@ S~ = (PjV +F w.«)". Ttis clear that the corresponding condi-

tions in (2.8) hold and, by (2.7),

APy v +Py )t = (ATI_ATI(I_AII)QzQA‘IS1Q41Q§ _A1+1(1—A11)Q2Q41S1)

S—IQZIQE 571

Since Ay; = —Q; 'Q3A 11, we get (I—A[|A11)AS, = [Ay(I-Aj ;A1) =0and AT, =
A], ®0 by (2.6). Hence,

ALYy vy =PuvPuvA+Py a)*

_ (1—Q2QZ'> A AT (1-411)00, 170,10 —Af (1-411) 0,0, 157!
00 510,103 5!

(Aﬁ (Af+-A11411)020, 15710105 —(Af +HI-AT A1) 020, 'S )
0 0

=AY, —[A,I=APs+P4 Py 4Py yPr.a) Py y

=AY, —[AS,(I-A)+1]PyPy 4P} 4, O

Theorems 2.5 and 2.6 provide some formulas for computing the Bott-Duffin in-
verse and generalised Bott-Duffin inverse, respectively. The formulas are easy to com-
pute by using projector methods. Moreover, we get the following result.

THEOREM 2.7. Let A € B(I), Py .y be an idempotent operator such that
RH(Py vAP 4 x) is closed and AM C NL. Then

A-i/_///l/ (P////VAP////V) <:></V:.//J'.

Proof. Sufficiency. If N = .#"* then o M N.#M*+={0} and Py y =P 4. The
result follows immediately by (iv) <= (v) in Theorem 2.4.

Necessity. Let P, and A have the representations as in (2.1), Py 4, Py and
P 4 have the representations as in (2.2). If Af// =Py vAPy y)", then

RAY ) =Py yAPy ) CR(Py ) C N

and therefore PJVA;A:/V =PyPy yv(APy v+ PJV7,///)+ =0.
Hence Py Py v (P%, ,A*+P% ,)=0. Note that

« «_ (20,'03 Q2> <I—Q2Q )( 1 0) (AL —A’;IQfo)
PaPavPy A = (5% & -0;'030) \ay, a3,

kokok kokok
= (QE(H‘QzQZZQE)ATl ~03(1+2:0,703)A}, 220y ! )
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and PP p* _ 00,103 02 (1 -0,0;" 0 0
R SN/ N M QE 04 0 0 QZIQ;I

o sk sk skksk

= (Q’Z‘QzQZZQE 0;0:0;" ) ’
where ++# can be gotten by the production of relative matrices. Since Py P ;. WP% AT
=-PyPy vP% ,,comparethe two sides of the above matrices, we get

0502 = —05(I+ 020,72 03)A}, 0, (a)
050,0,%05 = O5(I1+0:,0,203)A%,. (D)

Multiplying Q, from right in item (b), we get Q;QQQZzQEQQ = —050; by item (a).
Since QEQQQZZQEQQ >0 and Q30, > 0, we get 050, = 0. Thatis O, = 0. Since
Qg is invertible and .# N .4 = {0}, The orthogonal projestion P 4 in (2.2) has the
form Py =0@®1. Hence A =.#" and # = .4 &+ v . O
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