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ON THE SPECTRA AND PSEUDOSPECTRA OF A CLASS OF

NON–SELF–ADJOINT RANDOM MATRICES AND OPERATORS

SIMON N. CHANDLER-WILDE, RATCHANIKORN CHONCHAIYA

AND MARKO LINDNER

Abstract. In this paper we develop and apply methods for the spectral analysis of non-self-
adjoint tridiagonal infinite and finite random matrices, and for the spectral analysis of analo-
gous deterministic matrices which are pseudo-ergodic in the sense of E. B. Davies (Commun.
Math. Phys. 216 (2001), 687–704). As a major application to illustrate our methods we focus
on the “hopping sign model” introduced by J. Feinberg and A. Zee (Phys. Rev. E 59 (1999),
6433–6443), in which the main objects of study are random tridiagonal matrices which have
zeros on the main diagonal and random ±1’s as the other entries. We explore the relation-
ship between spectral sets in the finite and infinite matrix cases, and between the semi-infinite
and bi-infinite matrix cases, for example showing that the numerical range and p -norm ε -
pseudospectra (ε > 0 , p ∈ [1,∞] ) of the random finite matrices converge almost surely to their
infinite matrix counterparts, and that the finite matrix spectra are contained in the infinite matrix
spectrum Σ . We also propose a sequence of inclusion sets for Σ which we show is convergent
to Σ , with the n th element of the sequence computable by calculating smallest singular values
of (large numbers of) n× n matrices. We propose similar convergent approximations for the
2-norm ε -pseudospectra of the infinite random matrices, these approximations sandwiching the
infinite matrix pseudospectra from above and below.
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[6] A. BÖTTCHER AND S. M. GRUDSKY, Spectral Properties of Banded Toeplitz Matrices, SIAM,
Philadelphia 2005.
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