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SPECTRAL PROPERTIES BETWEEN

OPERATOR MATRICES AND HELTON CLASS

JI EUN LEE

(Communicated by H. Bercovici)

Abstract. In this paper, we study properties of Helton class of an operator matrix. In particular,
we show that some upper operator matrix belongs to Helton class of an operator matrix have
the property (β)ε . As an application, we get that such operators have nontrivial invariant sub-
spaces. Finally, we prove that Helton class preserves the generalized Weyl’s theorem under some
conditions.

1. Introduction

Let H be a separable complex Hilbert space and let L (H ) denote the algebra
of all bounded linear operators on H . If T ∈ L (H ) , then we shall use the notations
σ(T ) , σp(T ) , σap(T ) , σsu(T ) , and σe(T ) for the spectrum, the point spectrum, the
approximate point spectrum, the surjective spectrum, and the essential spectrum of T ,
respectively.

The following concept which is a generalization of the ordinary intertwining con-
dition RA = AS where R and S are in L (H ) stems from [5] and [17]. Let C(R,S) :
L (H )→L (H ) be defined by C(R,S)(A) = RA−AS . The higher order intertwining
condition

C(R,S)n(A) =
n

∑
j=0

(−1)n− j
(

n
j

)
RjASn− j. (1)

In particular, if A = I in (1), then

C(R,S)n(I) =
n

∑
j=0

(−1)n− j
(

n
j

)
RjSn− j. (2)

For an operator R ∈ L (H ) if there is an integer n � 1 such that an operator S
satisfies C(R,S)n(I) = 0, then we say that S belongs to Helton class of R with order
n . We denote this by S ∈ Heltonn(R) . Such an operator S in Helton class of R with
order n has been called an intertwining of R and S by the identity I .
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We remark that C(R,S)n(I) = 0 does not imply that C(S,R)n(I) �= 0 in general.
For example, define two operator matrices S and R acting on C3 by

S =

⎛
⎝0 1 2011

0 0 0
0 0 0

⎞
⎠ and R =

⎛
⎝0 0 1

0 0 1
0 0 0

⎞
⎠ .

Then it is easy to verify that C(R,S)n(I) = 0, but C(S,R)n(I) �= 0 for some integer
n � 2. In 2005, Helton class was defined by Y. Kim, E. Ko, and J. Lee (see [12]). In
[12]–[16], and [18], the authors have been studied spectral and local spectral properties
of this class of an operator. Moreover, Y. M. Han and J. Lee (see [8]) gave the result
which is related to a -Browder’s theorem under Helton class condition.

In this paper, we study spectral properties of Helton class of an operator matrix.
In particular, we show that some upper operator matrix belongs to Helton class of an
operator matrix have the property (β )ε . As a corollary, we get that such operators
have nontrivial invariant subspaces. Finally, we prove that Helton class preserves the
generalized Weyl’s theorem under some conditions.

2. Spectral properties

Now we focus on local spectral theory, one of the most important topics in oper-
ator theory. This theory is related to the invariant subspace problem, i.e., does every
bounded operator T on a separable Hilbert space H over C have a non-trivial invari-
ant subspace? Whether every operator in L (H ) has a nontrivial invariant subspace is
an unsolved problem, but some special classes of operators are known to have nontrivial
invariant subspaces. Another achievement of local spectral theory gives the concept of
the property (β ) or (β )ε . It is known that if an operator T ∈ L (H ) has the property
(β ) with thick spectra, then T has a nontrivial invariant subspace (see [10]). Hence
the property (β ) or (β )ε is closely connected to the invariant subspace problem which
is still unsolved. So we focus our research to operators which have the property (β )ε .
An operator T ∈ L (H ) is said to have the single-valued extension property at z0

if for every neighborhood D of z0 in C and any analytic function f : D → H , with
(T −z) f (z)≡ 0, it results f (z)≡ 0. An operator T ∈L (H ) is said to have the single-
valued extension property (or SVEP) if it has the single-valued extension property at
every z in C.

Let R(T ) = {λ ∈ C | T fails to SVEP at λ} be an analytic residuum of T . It
is a open subset of C contained in the point spectrum σp(T ) of T . If T has the
single-valued extension property, then R(T ) = /0 . For an operator T ∈ L (H ) and
for x ∈ H we can consider the set ρT (x) of elements z0 in C such that there exists
an analytic function f (z) defined in a neighborhood of z0 , with values in H , which
verifies (T −z) f (z)≡ x . We let σT (x) = C\ρT (x) and HT (F)= {x∈H : σT (x)⊆F} ,
where F is a subset of C . An operator T ∈ L (H ) is said to have property (β ) if
for every open subset G of C and every sequence fm : G →H of H -valued analytic
functions such that (T − z) fm(z) converges uniformly to 0 in norm on compact subsets
of G , then fm(z) converges uniformly to 0 in norm on compact subsets of G .
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Let E (U ,H ) be the Fréchet space of all H -valued C ∞ -functions on U ⊂ C

endowed with the topology of uniform convergence on compact subsets of U of all
derivatives. An operator T ∈L (H ) is said to have the property (β )ε if for each open
set U in C , the operator

λ −T : E (U ,H ) → E (U ,H ), f → (λ −T ) f

is a topological monomorphism, i.e., (λ −T ) fm → 0 in E (U ,H ) implies fm → 0 in
E (U ,H ) for any fm ∈ E (U ,H ) . It is well known from [17] that

property (β )ε ⇒ Property (β ) ⇒ SVEP.

It can be shown that the converse implications do not hold in general as can be seen
from [5] and [17].

For given operators R1,S1 ∈ L (H1) and R3,S3 ∈ L (H2) , we denote by MR2

and MS2 the operator acting on H1 ⊕H2 of the form

MR2 =
(

R1 R2

0 R3

)
and MS2 =

(
S1 S2

0 S3

)

where two operators R2,S2 are in L (H2,H1) .
Generally, if MS2 ∈ Heltonn(MR2) , then Si ∈ Heltonn(Ri) for i = 1,3. But the

converse statement does not hold even if n = 2 (See [14] or [18]). So we consider
spectral and local spectral properties between operator matrices MR2 , MS2 , and Helton
class (i.e., Si ∈ Heltonn(Ri) for i = 1,3). We begin with the following lemma.

LEMMA 2.1. If S ∈ Heltonn(R) , then R(S)⊂ R(R) .

Proof. Assume that λ0 �∈ R(R) . Let f : Dλ0
→ H be an analytic function such

that (λ −S) f (λ ) ≡ 0 for all λ ∈ Dλ0
. Since the terms of the below equation are equal

to zero when j + s �= r , it suffices to consider only the case of j + s = r . This ensures
the following equations:

n

∑
j=0

(
n
j

)
(R−λ ) j(λ −S)n− j

=
n

∑
j=0

j

∑
r=0

n− j

∑
s=0

(−1)n−(s+r)
(

n
j

)(
j
r

)(
n− j

s

)
Rrλ j+s−rSn−( j+s)

=
n

∑
j=0

(−1)n− j
(

n
j

)
RjSn− j.
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Hence we have
n

∑
j=0

(−1)n− j
(

n
j

)
RjSn− j f (λ )− (R−λ )n f (λ )

=
n

∑
j=0

(
n
j

)
(R−λ ) j(λ −S)n− j f (λ )− (R−λ )n f (λ )

=
n−1

∑
j=0

(
n
j

)
(R−λ ) j(λ −S)n− j f (λ )

= [
n−1

∑
j=0

(
n
j

)
(R−λ ) j(λ −S)n− j−1](λ −S) f (λ ) = 0.

Since ∑n
j=0(−1)n− j

(
n
j

)
RjSn− j = 0, we get that (R−λ )n f (λ ) = 0 for all λ ∈ Dλ0

.

Since R has the single-valued extension property at λ0 , it follows that (R−λ )n−1 f (λ )
= 0 for all λ ∈ Dλ0

. By induction, we have that f (λ ) ≡ 0 for all λ ∈ Dλ0
. So we

conclude that S has the single-valued extension property at λ0 . Hence λ0 �∈ R(S) , and
the proof is finished. �

THEOREM 2.2. Let R = MR2 and let S = MS2 be above defined where Si ∈
Heltonn(Ri) for i = 1,3 and for n � 2. Then the following relations hold.
(i) If S1

∗ has the single-valued extension property, then

σp(S) ⊂ σp(R), and σap(S) ⊂ σap(R).

(ii) If R3 has the single-valued extension property, then

σsu(R) ⊂ σsu(S), and σ(R) ⊂ σ(S).

(iii) If R(S1)∪R(S3) ⊂ R(S) , then R(S) ⊂ R(R).

Proof. (i) Assume that λ ∈ σap(S) . Then there is a sequence {xn ⊕ yn} of unit
vectors in H1 ⊕H2 such that

(S−λ )(xn⊕ yn) → 0.

Then we obtain that limn→∞[(S1 − λ )xn + S2yn] = 0 and limn→∞[(S3 − λ )yn] = 0. If
yn → 0, then (S1 − λ )xn → 0. We note that ‖xn ⊕ yn‖2 = ‖xn‖2 + ‖yn‖2 = 1 for all
n ∈ N . It means that xn does not converge to 0. Thus λ ∈ σap(S1) . If yn does
not converge to 0, then it is clear that λ ∈ σap(S3) . From Theorem 3.6.1 in [18],
if Si ∈ Heltonn(Ri) with i = 1,2, then σap(S1) ⊂ σap(R1) and σap(S3) ⊂ σap(R3) .
Hence we have σap(S) ⊂ σap(R1)∪σap(R3) . It is well known from [22] that

σap(R)∪R(R1
∗) = σap(R1)∪σap(R3)∪R(R1

∗).

Moreover, note from [18] that if S1
∗ has the single-valued extension property and

S1 ∈ Heltonn(R1) , then R1
∗ ∈ Heltonn(S1

∗) and so R1
∗ has the single-valued exten-

sion property. Thus we get that σap(R) = σap(R1)∪ σap(R3) . Therefore we have
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σap(S) ⊂ σap(R) . By using a similar way, we have σp(S) ⊂ σp(R) .

(ii) Let λ ∈ σsu(R) . Then we know that λ ∈ σsu(R1) or λ ∈ σsu(R3) . If S1 ∈
Heltonn(R1) and S3 ∈ Heltonn(R3) , then this relations imply from [18] that σsu(R1) ⊂
σsu(S1) and σsu(R3) ⊂ σsu(S3) . This ensures that λ ∈ σsu(S1)∪ σsu(S3) . As you
see from Theorem 2 in [12] that S3 has the single-valued extension property when
R3 has the single-valued extension property. Since we notice from [22] that σsu(S)∪
R(S3) = σsu(S1)∪σsu(S3)∪R(S3) , it follows that σsu(S) = σsu(S1)∪σsu(S3) . Hence
λ ∈ σsu(S) . The second inclusion holds by a similar method.

(iii) If you apply to Lemma 2.1 in the statement (iii) of Proposition 2.2, then we
get this result. �

LEMMA 2.3. ([22]) For an injective operator B with CBm = 0 for some m � 1,
the following equation holds: for each x⊕ y in H1 ⊕H2 ,

σMC (x⊕Bmy) = σA(x)∪σB(y).

LEMMA 2.4. Let MC =
(

A C
0 B

)
, and Y =

(
I X
0 I

)
be operatormatrices. If σ(A)∩

σ(B) = /0 , then for every x⊕ y in H1 ⊕H2 ,

σMC (x⊕ y) = σM0(z⊕ y)

where z = x+Xy .

Proof. Let λ0 �∈σMC (x⊕y) . There is an analytic function f : ρMC(x⊕y) →H1⊕H2

such that (MC −λ ) f (λ ) = (x⊕ y). Since σ(A)∩σ(B) = /0 , it ensures that(
A 0
0 B

)
=

(
I X
0 I

)(
A C
0 B

)(
I −X
0 I

)
.

Since (M0 − λ )Y = Y (MC − λ ) for all λ ∈ C , we deduce that Y (MC − λ ) f (λ ) =
(M0 −λ )Y f (λ ) . Take a function h(λ ) := Y f (λ ) . Then h is an analytic function from
ρMC(x⊕y) onto H1⊕H2 such that (M0−λ )h(λ )=Y (x⊕y)= (z⊕y) where z = x+Xy .
Hence λ0 �∈ σM0(z⊕ y) . We obtain the reverse inclusion in a similar fashion. �

PROPOSITION 2.5. Let R = MR2 and let S = MS2 be above defined in Proposition
2.2. Then the following assertions hold.
(i) If R1 and R3 have the single-valued extension property, then

σR(x⊕0)⊂ σS(x⊕0) for all x ∈ H1.

(ii) If S3 is invertible where R2R3 = 0 and R2 = S2 , then

σR(x⊕R3y) ⊂ σS(x⊕S3
my)

for every x⊕ y ∈ H1 ⊕H2 and for some integer m � 1.
(iii) If R1 and R3 have the single-valued extension property, and σ(S1)∩σ(S3) = /0 ,
then σR(x⊕ y) = σS(x⊕ y) for every x⊕ y ∈ H1 ⊕H2 .
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Proof. (i) Suppose that λ0 �∈ σS(x⊕ 0) . Then there exists a neighborhood D of
λ0 and an analytic function f = f1 ⊕ f2 : D → H1 ⊕H2 where f1 and f2 are analytic
functions such that

(S−λ )( f1(λ )⊕ f2(λ )) ≡ (x⊕0).

Thus (S1 −λ ) f1(λ )+ S2 f2(λ ) ≡ x and (S3 −λ ) f2(λ ) ≡ 0. Since S3 has the single-
valued extension property by hypothesis and Theorem 2 in [12], it follows that f2(λ )≡
0. Thus we have (S1−λ ) f1(λ )≡ x . Hence λ0 �∈ σS1(x) . From Theorem 3.6.4 in [18],
if R has the single-valued extension property and S ∈ Heltonn(R) , then σR(x) ⊂ σS(x)
for all x ∈ H . Thus λ0 �∈ σR1(x) and it means that there exists a neighborhood D of
λ0 and an analytic function f1 : D → H such that (R1 −λ ) f1(λ ) ≡ x. Then

(R−λ )( f1(λ )⊕0) = ((R1−λ ) f1(λ )⊕0) = (x⊕0).

Hence λ0 �∈ σR(x⊕0) . So we complete the proof.
(ii) Since S3 is invertible, it follows from [18] that σ(R3) ⊂ σ(S3) . This means

that R3 also is invertible. The assertion R2R3 = 0, R2 = S2 , and S3 ∈ Heltonn(R3)
imply S2S3

m = 0 for a fixed integer m . From Theorem 3.6.4 in [18], we obtain that
σR1(x) ⊂ σS1(x) for all x ∈ H1 and σR3(y) ⊂ σS3(y) for all y ∈ H2 . By Lemma 2.3,
we obtain that for a fixed integer m

σR(x⊕R3y) = σR1(x)∪σR3(y) ⊂ σS1(x)∪σS3(y) = σS(x⊕S3
my).

Hence the second statement holds.
(iii) By Theorem 2 in [12], the inclusion σ(R) ⊂ σ(S) holds if S ∈ Heltonn(R) .

So it is clear that σ(R1)∩σ(R3) = /0 by hypothesis. If you apply to Lemma 2.4 in the
assertion (iii) of Proposition 2.5, then we complete the proof. �

THEOREM 2.6. Let R = MR2 and let S = MS2 be above defined in Proposition
2.2. If R has Bishop’s property (β ) with R1R2 = R2R3 , then S has Bishop’s property
(β ).

Proof. Let f ( j)
n : D → H be analytic functions such that (R1 − λ ) f (1)

n (λ ) and

(R3−λ ) f (2)
n (λ ) converge uniformly to zero on compact subset Gj of D for each j =

1,2 where D is an open set in C . Assume that R has Bishop’s property (β ) with
R1R2 = R2R3 . Then it holds that

(R−λ )(R2 f (2)
n (λ )⊕0) = ((R1−λ )R2 f (2)

n (λ ))⊕0

= (R2(R3 −λ ) f (2)
n (λ ))⊕0

converges uniformly to zero on compact subset Gj of D . Since R has Bishop’s prop-

erty (β ), we get that R2 f (2)
n (λ ) converges uniformly to on compact subset Gj of D .

Hence
(R−λ )( f (1)

n (λ )⊕0) = ((R1−λ ) f (1)
n (λ ))⊕0 → 0,

and
(R−λ )(0⊕ f (2)

n (λ )) = (R2 f (2)
n (λ ))⊕ ((R3−λ ) f (2)

n (λ )) → 0
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uniformly on compact subset Gj of D . Since R has Bishop’s property (β ), we con-

clude that f (2)
n (λ ) → 0 uniformly on compact subset Gj of D . Hence both R1 and R3

have this property. By Theorem 3.7.1 in [18], both S1 and S3 has Bishop’s property
(β ). So we easily show that S has Bishop’s property (β ). �

By a similar method in [10] and Theorem 2.6, we obtain the following corollary.

COROLLARY 2.7. Let R = MR2 and let S = MS2 be above defined in Proposition
2.2. Then the following statements hold.
(i) If R has the single-valued extension property with R1R2 = R2R3 , then S has the
single-valued extension property.
(ii) Suppose that R has Bishop’s property (β ) where S1−λ is subjectivity or R1R2 =
R2R3 . If σ(S) has nonempty interior in C , then S has a nontrivial invariant subspace.

Recall that a closed linear subspace Y of H is called a spectral maximal space
of T if Y is invariant to T and if Z is another closed linear subspace of H , invari-
ant to T , such that σ(T |Z ) ⊂ σ(T |Y ) , then Z ⊂ Y . An operator T ∈ L (H ) is
called decomposable if for every finite open covering {Gi}m

i=1 of σ(T ) there exists a
system {Mi}m

i=1 of spectral maximal spaces of T such that σ(T |Mi) ⊂ Gi for every
i = 1,2, · · · ,m and H = ∑m

i=1 Mi , and an operator R ∈ L (H ) is said to be algebraic
if p(R) = 0 for some nonzero polynomial p .

PROPOSITION 2.8. Let R = MR2 and let S = MS2 be above defined in Proposition
2.2 where R3 ∈ L (H ) has Bishop’s property (β ) and S1 ∈ Heltonn(R1) . If S is an
algebraic operator, then R is decomposable.

Proof. If S is an algebraic operator, then p(S) = 0 for some nonzero polynomial
p . Since p(σ(S))= σ(p(S))= {0} by the spectral mapping theorem, it holds that σ(S)
is contained in the set of zeros of p . It follows from the assertion (ii) in Proposition 2.2
that

σ(R1)∪σ(R2) ⊂ σ(R) ⊂ σ(S)

imply σ(R) is contained in the set of zeros of p . Hence σ(R) is a finite set. Hence R
is decomposable by [17]. �

THEOREM 2.9. Let S1 , S2 , and S3 be in L (H ) . Let R1 (or R3)∈L (H ) have
the property (β )ε , S1 ∈ Heltonn(R1), and S3 ∈ Heltonn(R3) where R1R2 = R2R3 , and

R2 is a bounded below. Then S =
(

S1 S2

0 S3

)
has the property (β )ε .

Proof. Suppose that R1 has the property (β )ε . We will prove that S has the prop-
erty (β )ε . First, we claim that R3 has the property (β )ε . Let R1 ∈ L (H ) have the
property (β )ε where R1R2 = R2R3 , and R2 is a bounded below. If { fm} is a sequence
in E (U,H ) such that (R3−λ ) fm(λ )→ 0 in E (U,H ) , then (R1−λ )R2 fm(λ )→ 0 in
E (U,H ) . Since R1 has the property (βε ), it follows that R2 fm(λ ) → 0 in E (U,H ) .
Since R2 is a bounded below, it ensures that fm(λ ) → 0 in E (U,H ) . So we com-
plete the claim. Let f j = ⊕2

i=1 f j
i be an analytic ⊕2

i=1H -valued function defined
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on an open set U , where f i
j : U → H are analytic functions for i = 1,2. Now if

(λ −S) f j(λ ) → 0 in E (U ,H ) , then we get the following equations:{
lim j→∞[(λ −S1) f j

1(λ )−S2 f j
2(λ )] = 0

lim j→∞[(λ −S3) f j
2(λ )] = 0

in E (U ,H ) . Then we get that

lim
m→∞

‖
n

∑
j=0

(−1)n− j
(

n
j

)
Rj

3S
n− j
3 f 2

m(λ )− (R3−λ )n f 2
m(λ ) ‖

= lim
m→∞

‖
n

∑
j=0

(
n
j

)
(R3 −λ ) j(λ −S3)n− j f 2

m(λ )− (R3−λ )n f 2
m(λ ) ‖

= lim
m→∞

‖
n−1

∑
j=0

(
n
j

)
(R3 −λ ) j(λ −S3)n− j f 2

m(λ ) ‖

� lim
m→∞

‖
n−1

∑
j=0

(
n
j

)
(R3 −λ ) j(λ −S3)n− j−1 ‖‖ (λ −S3) f 2

m(λ ) ‖

= 0 in E (U ,H ).

Since ∑n
j=0(−1)n− j

(
n
j

)
Rj

3S
n− j
3 = 0, it follows that

lim
m→∞

‖ (R3 −λ )n f 2
m(λ ) ‖= 0 in E (U ,H ).

Since R3 has the property (β )ε , it ensures that f j
2(λ ) → 0 in E (U ,H ) . Thus

S2 f j
2(λ ) → 0 in E (U ,H ) . Hence (λ −S1) f j

1(λ ) → 0 in E (U ,H ) . Since R1 has
the property (β )ε and S1 ∈ Heltonn(R1) , it follows that S1 has the property (β )ε by a
similar method. Hence f j

1(λ ) → 0 in E (U ,H ) . Thus f j(λ ) = f j
1(λ )⊕ f j

2(λ ) → 0
in E (U ,H ) . Hence S has the property (β )ε . �

The next corollary follows from Theorem 2.9 and [10].

COROLLARY 2.10. Under the same hypothesis in Theorem 2.9. If σ(R3) has
interior in C , then S has a nontrivial invariant subspace.

3. Weyl type theorem

We say that Weyl’s theorem holds for T if

σ(T )\π00(T ) = σw(T ), or equivalently, σ(T )\σw(T ) = π00(T ),

where π00(T ) = {λ ∈ iso(σ(T )) : 0 < dim ker(T −λ ) < ∞} and iso(σ(T )) denotes
the set of all isolated points of σ(T ) . Recall from [4] that for each nonnegative integer
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k define Tk to the restriction of T to ran(Tk) viewed as a map from ran(Tk) into
ran(Tk) , in particular, T0 = T . If for some k the space ran(Tk) is closed and Tk is a
Fredholm operator, then T is called a B-Fredholm operator. In this case, by Proposition
in [4], Tm is a Fredholm operator and ind(Tm)=ind(Tk) for each m � k . Thus, the index
ind(T ) of T is defined as the index of the Fredholm operator Tk. Let BF(H ) be the
class of all B-Fredholm operators. In [4], Berkani has proved that if an operator T
is B-Fredholm if and only if T = T1 ⊕T2 where T1 is a Fredholm operator and T2 is
nilpotent. Let SBF−

+ (H ) be the class of all upper semi-B-Fredholm operators such
that ind(T ) � 0, and let

σSBF−
+

(T ) := {λ ∈ C | T −λ ∈ SBF−
+ (H )}.

An operator T is called a B-Weyl operator if it is a B-Fredholm operator of index
zero. The B-Weyl spectrum σBW (T ) of T is defined by

σBW (T ) := {λ ∈ C | T −λ is not a B-Weyl operator }.
Recall that p0(T ) denotes the set of all poles of T and π0(T ) is the set of all eigenval-
ues of T which is an isolated point in σ(T ) .

DEFINITION 3.1. Let T ∈ L (H ) . We call that
(i) T satisfies the generalized Browder’s theorem if σBW (T ) = σ(T )\ p0(T ).
(ii) T satisfies the generalized Weyl’s theorem if σBW (T ) = σ(T )\π0(T ).

THEOREM 3.2. Let R have the single-valued extension property and S∈Heltonn(R) .
If R satisfies Weyl’s theorem and π00(S) ⊂ π00(R) , then so does S .

Proof. Since S has the single-valued extension property by [18], it ensures that S
enjoys Browder’s theorem. We will establish Weyl’s theorem holds for S . It suffices
to prove π00(T ) = p00(T ) , or equivalently, H(S−λ ) is finite-dimensional for all λ ∈
π00(T ) by Theorem 3.84 in [1]. Let λ ∈ π00(S) . Then λ ∈ π00(R). Since R entails
Weyl’s theorem, it follows that π00(R) = p00(R) .

Let x∈H0(S−λ ) . Since S∈Heltonn(R) implies S−λ ∈Heltonn(R−λ ) , and so
from [18] that (S−λ )m ∈Heltonn((R−λ )m) for any positive integer n and any integer
m � 2. Hence

n

∑
j=0

(−1)n− j
(

n
j

)
((R−λ )m) j((S−λ )m)n− j = 0.

Therefore for any x ∈ H0(S−λ ) we have[
n−1

∑
j=0

(−1)n− j
(

n
j

)
((R−λ )m) j((S−λ )m)n− j−1

]
(S−λ )mx = −(R−λ )mnx.

Since limm→∞ ‖(S−λ )mx‖ 1
m = 0 for all x ∈ H0(S−λ ) , it follows that

lim
m→∞

‖(R−λ )mnx‖ 1
m = 0
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for all x ∈ H0(S−λ ) and any integer n � 2. Hence limm→∞ ‖(R−λ )mnx‖ 1
mn = 0 for

all x ∈ H0(S− λ ) and any integer n � 2. Thus limN→∞ ‖(R− λ )Nx‖ 1
N = 0 for all

x ∈ H0(S−λ ) . Therefore x ∈ H0(R−λ ) , and hence H0(S−λ ) ⊆ H0(R−λ ) . Since
Weyl’s theorem holds for R , it ensures that H0(R−λ ) is finite-dimensional. This forces
that H0(S−λ ) also is finite-dimensional. Hence S satisfies Weyl’s Theorem. �

Recall that an operator T is said to be isoloid if every isolated point of the spectrum
σ(T ) is an eigenvalue and an operator T is said to be polaroid if every isolated point
of σ(T ) is a pole of the resolvent operator (λ −T )−1 , or equivalently 0 < p(λ −T ) =
q(λ −T ) < ∞ for every λ ∈ isoσ(T ) (see [1] for more details).

THEOREM 3.3. Let R be a polaroid which has the single-valued extension prop-
erty and S ∈ Heltonn(R) . Suppose that R entails the generalized Weyl’s theorem, S∗
has the single-valued extension property, and π0(S) ⊂ π0(R) . Then the generalized
Weyl’s theorem holds for S .

Proof. Since R and S∗ have the single-valued extension property and S∈Heltonn(R) ,
we know that R and R∗ have the single-valued extention property. Moreover, we ob-
tain that σ(R) = σ(S) from [18]. Thus the generalized Browder’s theorem holds for
S . It is enough to prove π0(S) = p0(S) . Let λ ∈ π0(R) . Then λ is an isolated point in
σ(S) = σ(R) . Since R−λ is not injective, this implies that ker(R−λ )⊂ H0(R−λ ).
Hence, in this case, H0(R−λ ) = H0(S−λ ) for all λ ∈ C. It follows from Theorem 2.8
in [6] that λ ∈ σ(S). Since σ(S) ⊂ σ(R) , it gives that λ is an isolated point in σ(S).
Moreover, we know that λ is an eigenvalue of S and so λ ∈ π0(S). Since R is polaroid,
there exists a positive integer p := p(λ ) ∈ N such that H0(R−λ ) = ker((R−λ )p).
If (R− λ ) is injective, then (R− λ )p should be injective. Hence H0(R− λ ) = {0}
which is a contradiction. Therefore we have λ ∈ π0(R) . By symmetry we conclude
that π0(S) = π0(R) . Since R enjoys the generalized Weyl’s theorem, it follows that
π0(R) = p0(R) and so π0(S)⊂ p0(S) . This means that the generalized Weyl’s theorem
holds for S . �
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