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SPECTRAL ANALYSIS OF CERTAIN

SPHERICALLY HOMOGENEOUS GRAPHS

JONATHAN BREUER AND MATTHIAS KELLER

Abstract. We study operators on rooted graphs with a certain spherical homogeneity. These
graphs are called path commuting and allow for a decomposition of the adjacency matrix and
the Laplacian into a direct sum of Jacobi matrices which reflect the structure of the graph. Thus,
the spectral properties of the adjacency matrix and the Laplacian can be analyzed by means of
the elaborated theory of Jacobi matrices. For some examples which include antitrees, we derive
the decomposition explicitly and present a zoo of spectral behavior induced by the geometry of
the graph. In particular, these examples show that spectral types are not at all stable under rough
isometries.
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