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NORMAL MATRIX COMPRESSIONS

JOHN HOLBROOK, NISHAN MUDALIGE AND RAJESH PEREIRA

Abstract. There has been longstanding interest in the problem of characterizing normal compres-
sions of normal matrices. Indeed, the solution to the Hermitian case goes back to the Cauchy
interlacing theorem, and its converse (due to Fan and Pall). More recently, the theory of higher–
rank numerical ranges has included the solution in the case of scalar compressions. Here we take
steps towards a similar treatment of the general case. We develop some natural necessary con-
ditions on the eigenvalues as well as some convenient sufficient conditions, showing by a study
of the 2x2 compressions of 4x4 normals that the necessary conditions are not sufficient. We also
give a new proof of the Choi–Kribs–Życzkowski conjecture for 2x2 compressions by means of a
powerful extension of that result. The CKŻ conjecture (more recently a theorem) may be stated
as follows: given an N×N normal matrix M with eigenvalues λ1, . . . ,λN , the set of a ∈ C for
which the scalar matrix aIk is a compression of M is precisely

Ωk(M) =
⋂

#(J)=N−k+1

conv{λ j : j ∈ J}.

Thus, for k = 2 we see that a ∈ Ω2(M) implies that diag(a,a) is a compression of M (the
reverse implication is relatively straightforward). We show that, in fact, for any pair a,b ∈
Ω2(M) , diag(a,b) is a compression of M . Our proof is independent of the earlier results and
depends on a novel approach. We also study the continuity of the map a → B(a) , where B(a)
denotes the set of all b ∈ C such that diag(a,b) is a compression of M .
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