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MATRICES WITH DEFECT INDEX ONE
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Abstract. In this paper, we give some characterizations of matrices which have defect index one.
Recall that an n -by-n matrix A is said to be of class Sn (resp., S −1

n ) if its eigenvalues are
all in the open unit disc (resp., in the complement of closed unit disc) and rank (In −A∗A) = 1 .
We show that an n -by-n matrix A is of defect index one if and only if A is unitarily equivalent
to U ⊕C , where U is a k -by-k unitary matrix, 0 � k < n , and C is either of class Sn−k
or of class S −1

n−k . We also give a complete characterization of polar decompositions, norms
and defect indices of powers of S −1

n -matrices. Finally, we consider the numerical ranges of
S −1

n -matrices and Sn -matrices, and give a generalization of a result of Chien and Nakazato on
tridiagonal matrices (cf. [3, Theorem 7]).
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