
Operators
and

Matrices

Volume 7, Number 4 (2013), 865–885 doi:10.7153/oam-07-48

MATRICES WITH DEFECT INDEX ONE
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Abstract. In this paper, we give some characterizations of matrices which have defect index one.
Recall that an n -by-n matrix A is said to be of class Sn (resp., S −1

n ) if its eigenvalues are
all in the open unit disc (resp., in the complement of closed unit disc) and rank (In −A∗A) = 1 .
We show that an n -by-n matrix A is of defect index one if and only if A is unitarily equivalent
to U ⊕C , where U is a k -by-k unitary matrix, 0 � k < n , and C is either of class Sn−k
or of class S −1

n−k . We also give a complete characterization of polar decompositions, norms
and defect indices of powers of S −1

n -matrices. Finally, we consider the numerical ranges of
S −1

n -matrices and Sn -matrices, and give a generalization of a result of Chien and Nakazato on
tridiagonal matrices (cf. [3, Theorem 7]).

1. Introduction

Let Mn be the algebra of n -by-n complex matrices and A ∈Mn . The defect index
dA of A is, by definition, rank(In−A∗A) , that is, the dimension of the range of In−A∗A .
It is a way to measure how far A is from the unitary matrices. In this paper, we give
some characterizations of matrices which have defect index one.

Recall that a matrix A ∈ Mn is said to be of class Sn if its eigenvalues are all in
the open unit disc D(≡ {z ∈ C : |z| < 1}) and dA = 1. The n -by-n Jordan block

Jn =

⎡⎢⎢⎢⎢⎣
0 1

0
. . .
. . . 1

0

⎤⎥⎥⎥⎥⎦
is one example. Such operators and their infinite-dimensional analogues S(φ) (φ an
inner function) were first studied by Sarason [16]. They play the role of the building
blocks of the Jordan model for C0 contractions [1, 15]. In particular, if an Sn -matrix
A is invertible, then

dA−1 = rank(In− (A−1)∗(A−1)) = rank((A−1)∗(A∗A− In)(A−1)) = 1,
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and all eigenvalues of A−1 are in C\D , the complement of the closed unit disc. There-
fore, we recall that a matrix A ∈ Mn is said to be of class S −1

n if its eigenvalues are
all in C\D and dA = 1. It is easily seen that if A is in S −1

n (resp., Sn ), then A∗ and
eiθ A are also in S −1

n (resp., Sn ). Moreover, if A is in S −1
n , then A has no unitary

part, A is invertible, and A−1 is in Sn .
In Section 2, we first give a complete characterization of matrices which have

defect index one. We show that a matrix A ∈ Mn is of defect index one if and only if A
is unitarily equivalent to U ⊕C , where U ∈ Mk , 0 � k < n , is unitary, and C is either
in Sn−k or in S −1

n−k . In recent years, properties of Sn -matrices have been intensely
studied (cf. [5, 6, 8, 9, 13, 14, 17]). Therefore, we will restrict our attention to S −1

n -
matrices in the rest of this section. We will give a complete characterization of polar
decompositions, norms and defect indices of powers of S −1

n -matrices.
In Section 3, we take up the numerical ranges of S −1

n -matrices and Sn -matrices.
From Proposition 2.4 (e), an S −1

n -matrix A is unitarily equivalent to a polar decom-
position UDt , where U is unitary and Dt = diag(t,1, · · · ,1) for some t > 1. We show
that if 0 ∈ W (U) , then W (UDt1) ⊆ W (UDt2) for 1 � t1 � t2 . Among other things,
recall that an operator A in Sn always has the matrix representation [ f1 · · · fn] so that
‖ f j‖ = 1 (1 � j � n− 1), ‖ fn‖ < 1 and fi⊥ f j (1 � i 	= j � n ). We show that if
B = [ f1 · · · fn−1] , then the numerical range of the 2-by-2 block matrix[

0 I′n +B
−I′∗n +B∗ 0

]
∈ M2n−1

is the convex hull of two ellipses, where I′n is the n -by-(n− 1) submatrix of In ob-
tained by deleting its last column. This generalizes a result of Chien and Nakazato on
tridiagonal matrices (cf. [3, Theorem 7]).

2. Defect indices of powers, polar decompositions and norms

We start by giving a complete characterization of matrices which have defect index
one. For abbreviation, the notation A ∼= B means that A is unitarily equivalent to B for
any A,B ∈ Mn .

THEOREM 2.1. Let A be an n-by-n matrix. Then dA = 1 if and only if A is
unitarily equivalent to U ⊕C, where U ∈ Mk , 0 � k < n, is unitary, and C is either in
Sn−k or in S −1

n−k .

The proof depends on the following lemma.

LEMMA 2.2. Let A be an n-by-n matrix with dA � 1 .

(a) If A =
[
A′ B
0 C

]
, where A′ ∈ Mk , 1 � k � n, then dA′ � 1 and dC � 1 .

(b) If n = 2 and A =
[
a11 a12

0 a22

]
, then |a12|2 = (1−|a11|2)(1−|a22|2) .

(c) If A =
[
U B
0 C

]
, where U ∈ Mk , 1 � k < n, is unitary, then B = 0 .
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(d) If A = [ti j]ni, j=1 is an upper triangular matrix with |tii| = 1 for all i , 1 � i � n,
then ti j = 0 for all i 	= j .

Proof. (a) It is easily seen that

In−A∗A =
[
Ik −A′∗A′ ∗

∗ ∗
]

and In−AA∗ =
[∗ ∗
∗ In−k −CC∗

]
.

Hence dA′ = rank(Ik−A′∗A′) � rank(In−A∗A) = dA � 1 and dC = dC∗ � dA∗ = dA � 1
as asserted.

(b) A simple computation shows that

I2−A∗A =
[
1−|a11|2 a11a12

a11a12 1− (|a12|2 + |a22|2)
]
.

Since dA � 1, I2−A∗A is not invertible. Thus

0 = det(I2−A∗A) = (1−|a11|2)(1−|a22|2)−|a12|2.
Hence |a12|2 = (1−|a11|2)(1−|a22|2) as asserted.

(c) Note that

In−A∗A =
[

0 −U∗B
−B∗U In−k − (B∗B+C∗C)

]
.

Since rank(In −A∗A) = dA � 1, it implies that every column of In −A∗A is a scalar
multiple of the first column of In −A∗A . Hence we conclude that U∗B = 0 or B = 0,
since U is unitary.

(d) Let Ak = [ti j]ki, j=1 for k = 1, · · · ,n . From (a), we have dAk � 1 for all k . Since

dA2 � 1, by (b), we obtain that t12 = 0. Thus A2 =
[
t11 0
0 t22

]
is unitary. Since dA3 � 1

and A2 is unitary, by (c), we deduce that A3 = diag(t11,t22,t33) is unitary. Repeating
this argument gives us A = An = diag(t11, · · · ,tnn) . This completes the proof. �

Proof of Theorem 2.1. Assume that dA = 1. Let σ(A) = {λ1, · · · , λn} . We want to
show that either |λ j| � 1 for all j , or |λ j| � 1 for all j . Indeed, if there exist |λi0 | > 1
and |λ j0 |< 1, then A is unitarily equivalent to an upper triangular matrix [ai j]ni, j=1 such

that a11 = λi0 , a22 = λ j0 and ai j = 0 for all 1 � j < i � n . Let A2 =
[
a11 a12

0 a22

]
be

the 2-by-2 principal submatrix of [ai j]ni, j=1 . Then A ∼=
[
A2 ∗
0 ∗

]
. By Lemma 2.2 (b), we

have
0 � |a12|2 = (1−|a11|2)(1−|a22|2) = (1−|λi0 |2)(1−|λ j0 |2) < 0,

a contradiction, since |λi0 |> 1 and |λ j0 |< 1. Hence we conclude that either σ(A)⊆D
or σ(A) ⊆ C\D .

Now, if σ(A) ⊆ D (resp., σ(A) ⊆ C \D), since dA = 1, then A ∈ Sn (resp.,
A ∈ S −1

n ) as required. Therefore, we may assume that A is unitarily equivalent to an
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upper triangular matrix [ti j]ni, j=1 such that |tii| = 1 for all 1 � i � k (1 � k � n ) and

|t j j| 	= 1 for all k + 1 � j � n . Write [ti j]ni, j=1 =
[
U B
0 C

]
, where U = [ti j]ki, j=1 ∈ Mk .

From Lemma 2.2 (a), we have dU � 1. Since |tii| = 1 for all 1 � i � k , by Lemma
2.2 (d), we infer that U = diag(t11, · · · ,tkk) and k < n , because dA = 1 	= 0. Moreover,
by Lemma 2.2 (c), we obtain that B = 0. Therefore, A ∼= U ⊕C and dC = dA = 1. If
σ(A) ⊆ D , then |t j j| < 1 for all j , k+1 � j � n , and it follows that C = [ti j]ni, j=k+1 ∈
Sn−k . On the other hand, σ(A) ⊆ C\D implies that |t j j| > 1 for all j , k+1 � j � n .
Hence C is in S −1

n−k as asserted.
The converse is trivial. �

For an n -by-n matrix A with dA = 1, if A has no unitary part, then A is either in
Sn or in S −1

n from Theorem 2.1. In recent years, properties of Sn -matrices have been
intensely studied (cf. [5, 6, 8, 9, 13, 14, 17]). Therefore, we will restrict our attention
to S −1

n -matrices in the rest of this section. We generalize some known results about
Sn -matrices to S −1

n -matrices.
In [6], Gau and Wu gave an upper triangular matrix representation for Sn -matrices.

In [4], the author gave an upper triangular matrix representation for S −1
n -matrix with-

out proof, because the proof is the same as the one in [6, Corollary 1.3]. We present
it here for easy reference. For its detailed proof, the reader may consult [18, Theorem
3.8].

PROPOSITION 2.3. An operator is in S −1
n if and only if it has the upper tri-

angular matrix representation [ti j]ni, j=1 , where |tii| > 1 for all i and ti j = si j(|tii|2 −
1)1/2(|t j j|2−1)1/2 for i < j with

si j =
{

∏ j−1
k=i+1(tkk) if j > i+1

1 if j = i+1.

Wu gave a complete characterization of the polar decomposition of an Sn -matrix
[17]. Here, we prove an analogue of Wu’s result for S −1

n -matrices.

PROPOSITION 2.4. The following are equivalent for an n-by-n matrix A:
(a) A is an S −1

n -matrix;
(b) A =U(In + sxx∗) , where U is a unitary matrix with distinct eigenvalues, s > 0

and x is a unit cyclic vector for U ;
(c) A is unitarily equivalent to U ′(In + sx′x′∗) , where U ′ is a diagonal unitary

matrix with distinct eigenvalues, s > 0 and x′ is a unit vector with all components
nonzero;

(d) A = U(In + sP) , where U is a unitary matrix, s > 0 and P is a rank-one
(orthogonal) projection whose kernel contains no eigenvector of U and whose range
contains a cyclic vector of U ;

(e) A is unitarily equivalent to VD, where V is a unitary matrix such that all its
eigenvectors have a nonzero first component and it has [1 0 · · ·0]T as a cyclic vector,
and D is the diagonal matrix diag(t,1, . . . ,1) with t > 1 .
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Proof. (a)⇒(b): Notice that for any A ∈ S −1
n , A is invertible and A−1 ∈ Sn . It

follows that (A−1)∗ ∈ Sn . By [17, Proposition 3.4], there exists a unitary matrix U
with distinct eigenvalues, 0 < r � 1 and a unit cyclic vector x for U such that

(A−1)∗ = U(In− rxx∗).

Thus A =U(In−rxx∗)−1 . Since In−rxx∗ is invertible and x is a unit vector, we deduce
that 0 < r < 1 and

(In− rxx∗)−1 = In +
∞

∑
j=1

(rxx∗) j = In +
∞

∑
j=1

r jxx∗ = In +
r

1− r
xx∗.

Hence A = U(In + sxx∗) , where s = r/(1− r) > 0.
(b)⇒(a): If A = U(In + sxx∗) as in (b), then A∗A = In + (2s + s2)xx∗ . Since

xx∗ is a rank one matrix, we have dA = rank((2s + s2)xx∗) = 1. We will check that
σ(A) ⊆ C \D . On the contrary, suppose that there is a unit vector y ∈ Cn such that
Ay = λy for some |λ | � 1. Then

1 � ‖λy‖2 = ‖Ay‖2 = ‖(In + sxx∗)y‖2

= 〈(In + sxx∗)2y,y〉 = ‖y‖2 +(s2 +2s)|〈x,y〉|2
= 1+(s2 +2s)|〈x,y〉|2 � 1.

We thus get 〈x,y〉 = 0, since s > 0. Moreover,

λy = Ay = U(In + sxx∗)y = Uy.

Since y is an eigenvector of U , it follows that 〈x,y〉 	= 0 because x is a cyclic vector
for U . This is a contradiction. Hence we conclude that A is an S −1

n -matrix.
For the other equivalences, the proofs are essentially the same as in [17, Proposi-

tion 3.4]. Hence we omit the proofs. �

The following proposition shows how the characteristic polynomial of an S −1
n -

matrix A can be expressed in terms of s and the entries of U ′ and x′ in Proposition
2.4 (c). It is an analogue of [17, Proposition 3.5] for S −1

n -matrices, and its proof is
omitted because it is essentially the same as the one for [17, Proposition 3.5].

PROPOSITION 2.5. Let A be an S −1
n -matrix with polar decomposition U ′(In +

sx′x′∗) as in Proposition 2.4 (c). If U ′ has eigenvalues u1, · · · ,un and x′ = [x1 · · ·xn]T ,
then the characteristic polynomial of A is given by

n

∑
j=1

|x j|2(z−u1) · · · (z− (1+ s)u j) · · · (z−un).

An Sn -matrix A may be not invertible, hence its polar decomposition is not
unique (cf. [17, Proposition 3.6]). But every S −1

n -matrix is invertible, and thus its
polar decomposition is unique. The following proposition shows this simple fact.
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PROPOSITION 2.6. Let A be an S −1
n -matrix with polar decomposition A =

U1(In + s1x1x∗1) = U2(In + s2x2x∗2) as in Proposition 2.4 (b). Then
(a) s1 = s2 ,
(b) x1 = λx2 for some λ , |λ | = 1 , and
(c) U1 = U2 .

Proof. Since In + s1x1x∗1 = (A∗A)1/2 = In + s2x2x∗2 , (a) and (b) follow easily. Note
that since In + s1x1x∗1 is positive definite, it is invertible. Hence

U1 = U2(In + s2x2x
∗
2)(In + s1x1x

∗
1)

−1 = U2

as asserted. �

Proposition 2.3 says that an S −1
n -matrix is completely determined by its eigen-

values. Therefore, we give the norm of an S −1
n -matrix in terms of its eigenvalues in

the next corollary. It is an easy consequence of Proposition 2.4 (e). Among other things,
it’s well-known that ‖A‖ = 1 for all A ∈ Sn .

COROLLARY 2.7. Let A be an S −1
n -matrix with eigenvalues λ1, · · · ,λn . Then

‖A‖ = |λ1 · · ·λn| .
Proof. From Proposition 2.4 (e), A can be written as a polar decomposition A =

UD , where U is unitary and D = diag(t,1, · · · ,1) for some t > 1. Hence

‖A‖ = ‖UD‖= ‖D‖ = t = detD = |detUD| = |detA| = |λ1 · · ·λn|

as asserted. �

For a matrix A ∈ Mn , ReA = (A+A∗)/2 and ImA = (A−A∗)/(2i) are the real
and imaginary parts of A , respectively.

In [5, Corollary 2.7], Gau and Wu show that if A is in Sn , then all eigenvalues
of ReA and ImA are simple. Moreover, Gau [4, Theorem 2.5] shows that if A is in
S −1

n , then the maximal eigenvalue of ReA is simple. Here, we prove an analogue of
Gau and Wu’s result for S −1

n -matrices.

THEOREM 2.8. If A is in S −1
n , then both ReA and ImA have simple eigenval-

ues.

Let A = [ti j]ni, j=1 be an S −1
n -matrix represented as in Proposition 2.3, and let

Ak = [ti j]ki, j=1 for k = 1, · · · ,n . Then Ak is in S −1
k from Proposition 2.3. Moreover,

eiθ A is also in S −1
n for all θ ∈ R . Since ImA = Re (−iA) , we need only to prove the

result for ReA . Let r be an eigenvalue of ReA and K = ker(rIn−ReA) . If dimK � 2,
then there exists a nonzero vector x ∈ K such that the n th entry of x is zero. Therefore,
Theorem 2.8 can be proven by the following lemma.

LEMMA 2.9. Let A be an S −1
n -matrix represented as in Proposition 2.3 and let

r be an eigenvalue of ReA. If x = [x1 · · ·xn]T ∈ Cn is an eigenvector of ReA corre-
sponding to the eigenvalue r , then xn 	= 0 .
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Proof. The proof is by induction on n . For n = 2, then r = maxσ(ReA) or
r = minσ(ReA) = −maxσ(Re (−A)) . Hence our assertion follows from [4, Lemma
2.6].

Assume the assertion holds for n− 1. We will prove it for n . Suppose that x =
[x1 · · ·xn]T is a unit eigenvector of ReA corresponding to r . From [4, Lemma 2.6], we
may assume that r is neither the maximal eigenvalue nor the minimal eigenvalue of
ReA . We now show that xn 	= 0. On the contrary, suppose that xn = 0. It implies that
(ReAn−1)y = ry , where An−1 = [ti j]n−1

i, j=1 is the (n−1)-by-(n−1) principal submatrix

of A and y = [x1 · · ·xn−1]T ∈ Cn−1 . Thus y is an eigenvector of ReAn−1 corresponding
to the eigenvalue r . On the other hand, let us compute the n th and (n−1) th entries of
(rIn−ReA)x , we have

− 1
2

n−2

∑
j=1

x jt j,n− 1
2
xn−1tn−1,n = 0 (1)

and

− 1
2

n−2

∑
j=1

x jt j,n−1 + xn−1(r−Re tn−1,n−1) = 0. (2)

By Proposition 2.3, we have

t j,n = t j,n−1 ·
√|tn,n|2 −1√|tn−1,n−1|2−1

· tn−1,n−1, (3)

for 1 � j � n−2. Substituting (3) into (1) yields

0 = −
√|tn,n|2−1

2
√|tn−1,n−1|2−1

· tn−1,n−1

n−2

∑
j=1

x jt j,n−1− 1
2
xn−1tn−1,n (4)

Substituting (2) into (4) we obtain

0 = −
√
|tnn|2−1√|tn−1,n−1|2−1

tn−1,n−1xn−1(r−Re tn−1,n−1 )− 1
2
xn−1tn−1,n.

By induction hypothesis, we have xn−1 	= 0, which implies that

−tn−1,n−1

√|tnn|2 −1√|tn−1,n−1|2 −1
(r−Re tn−1,n−1 ) =

1
2
tn−1,n.

Thus −tn−1,n−1(r−Re tn−1,n−1 ) =
1
2
(|tn−1,n−1|2 − 1) , and hence tn−1,n−1 is real and

tn−1,n−1 = r±√
r2−1. Since tn−1,n−1 is real, it implies that r2 � 1 or |r| � 1. The

result [4, Lemma 2.9 (1)] says that if λ j is the j th largest eigenvalue of ReA , then
λ2 � 1. Note that −λn−1 is the second largest eigenvalue of Re(−A) and −A ∈ S −1

n ,
so by [4, Lemma 2.9 (1)] again, we have −λn−1 � 1 or λn−1 � −1. Now, since r
is neither the maximal eigenvalue nor the minimal eigenvalue of ReA , by [4, Lemma
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2.9 (1)], we have −1 � λn−1 � r � λ2 � 1. Thus |r| = 1. Consequently, we obtain
|tn−1,n−1| = 1, a contradiction. Hence xn 	= 0 as asserted. �

We now restrict our attention to the defect indices of powers of an S −1
n -matrix. In

recent years, the defect indices of powers of a contraction have been intensely studied
(cf. [7, 9, 10, 13]). In particular, Gau and Wu [7, Theorem 3.1] have shown that for
an n -by-n contraction A (‖A‖ � 1), the following conditions are equivalent: (a) A is
in Sn ; (b) ‖A‖ = ‖An−1‖ = 1 and ‖An‖ < 1; (c) dAk = k for all k , 1 � k � n ; (d)
dAk = k for k = n and for k equal to some k0 , 1 � k0 < n . Notice that the norm of
an S −1

n -matrix is greater than one, that is, it is not a contraction. Here, we prove an
analogue of [7, Theorem 3.1] for S −1

n -matrices.

THEOREM 2.10. Let A be an n-by-n matrix with ‖A‖ > 1 . Then the following
conditions are equivalent:

(a) A ∈ S −1
n ;

(b) dAk = k for all k , 1 � k � n;
(c) dAn = n and dA = 1 .

Proof. (a)⇒(b): Since A−1 is in Sn , by [7, theorem 3.1], we have dA−k = k for
all k , 1 � k � n . On the other hand, since Ak is invertible and

In−Ak∗Ak = Ak∗[A−k∗A−k − In]Ak = −Ak∗[In−A−k∗A−k]Ak,

we deduce that dAk = k for all k , 1 � k � n .
(b)⇒(c): This is trivial.
(c)⇒(a): Since ‖A‖ > 1 and dA = 1, by Theorem 2.1, we may assume that A is

unitarily equivalent to U ⊕C , where U ∈ Mk is unitary, 0 � k < n , and C ∈ S−1
n−k . We

obtain that

An ∼=
[
Un 0
0 Cn

]
,

and hence

In−An∗An ∼=
[
0 0
0 In−k −Cn∗Cn

]
.

But dAn = n , which clearly forces A ∼= C . �

For an n -by-n matrix A , dAn = n means that A has no unitary part. Moreover,
if A is a contraction with dAn = n , [7, Theorem 3.1] shows that dA = 1 if and only if
dAk = k for some k , 1 � k < n . The following examples show that it is not the case for
an n -by-n matrix A with ‖A‖ > 1.

EXAMPLE 2.11. Let

A =

⎡⎣0 1
2 0

0 0 2
0 0 0

⎤⎦ ,

then ‖A‖ > 1. After a simple calculation, we have
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I3−A∗A =

⎡⎣1 0 0
0 3

4 0
0 0 −3

⎤⎦ , I3−A2∗A2 =

⎡⎣1 0 0
0 1 0
0 0 0

⎤⎦
and I3−A3∗A3 = I3 . Thus, we have dA2 = 2 and dA3 = 3. But dA = 3 	= 1.

Next, we construct a 4-by-4 matrix A = B⊕C such that B2 ∈ S −1
2 and C2 ∈ S2 .

Then dA2 = dB2 + dC2 = 1+ 1 = 2 and dA4 = dB4 + dC4 = 2+ 2 = 4. But, it is easily
seen that dA 	= 1.

EXAMPLE 2.12. Let

A =

⎡⎢⎢⎢⎣
√

2 3
2
√

2
0 0

0
√

2 0 0
0 0 1√

2
3

4
√

2
0 0 0 1√

2

⎤⎥⎥⎥⎦ .

Then

[√
2 3

2
√

2
0

√
2

]2

=
[
2 3
0 2

]
∈ S −1

2 ,

[
1√
2

3
4
√

2
0 1√

2

]2

=
[ 1

2
3
4

0 1
2

]
∈ S2 and dA = 4 	= 1. But

dA2 = 2 and dA4 = 4.
Let A be an n -by-n contraction and Hj(A) = ker(In −Aj∗Aj) for j = 1, · · · ,n .

Since ‖A‖ � 1, we have x ∈ Hj(A) if and only if ‖Ajx‖ = ‖x‖ . Moreover, ‖Ajy‖ �
‖Aj−1y‖ � · · · � ‖Ay‖ � ‖y‖ for all y ∈ Cn . Therefore, Hj(A) ⊆ Hj−1(A) for all j .
On the other hand, let Vj = Hj(A)∩Hj(A∗) , it is clear that Vj ⊆ Vj−1 for all j . Let
V∞ =

⋂∞
j=1Vj , then A|V∞ is the unitary part of A . Therefore, A has no unitary part if

and only if Vk = {0} for some k . Let k(A) = min{k : 0 � k � ∞,Vk = V∞} . It was
shown independently by Gau-Wu [9] and Li [13] that k(A) � �n/2� . Moreover, they
also showed that the equality k(A) = �n/2� holds if and only if one of the following
holds. (a) A ∈ Sn . (b) n is even and A is unitarily equivalent to [eit ]⊕A1 with t ∈ R
and A1 ∈Sn−1 . (c) n is even, ‖An−2‖ = 1 > ‖An−1‖ . The following theorem provides
an analogue of the above result for S −1

n -matrices. Its proof is inspired by that of [13,
Theorem 2].

THEOREM 2.13. Let A be an n-by-n (n � 2 ) matrix with ‖A‖> 1 and Hj(A) =
ker(In−Aj∗Aj) for j = 1, 2, · · · ,n. The following statements are equivalent:

(a) A ∈ S −1
n ;

(b) dim[Hk(A)∩Hk(A∗)] = n− 2k , for all 1 � k � �n/2� , and dim[Hk0(A) ∩
Hk0(A

∗)] = 0 , where k0 = �n/2�;
(c) dim[H1(A)∩H1(A∗)] = n− 2 and dim[Hk0(A)∩Hk0(A

∗)] = 0 , where k0 =
�n/2�.

For its proof, we need the following lemmas.

LEMMA 2.14. Let A be an n-by-n matrix with ker(In−A∗A) = ker(In−AA∗) . If

A =
[
A1 A2

A3 A4

]
on Cn = ker(In−A∗A)⊕ ran(In−A∗A),
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then A2 = 0 = A3 and A1 is unitary.

Proof. By polar decomposition, write A = UD where U is unitary and D =
(A∗A)1/2 . Write k = dim ker(In−A∗A) ,

U =
[
U1 U2

U3 U4

]
and D =

[
Ik D2

D∗
2 D4

]
on Cn = ker(In−A∗A)⊕ ran(In−A∗A) . Note that ker(In−A∗A) = ker(In−AA∗) . Thus

ran(In−AA∗) = ker(In−AA∗)⊥ = ker(In−A∗A)⊥ = ran(In−A∗A),

where S⊥ denotes the orthogonal complement of S ⊆ Cn .
Since U(In−A∗A) = (In−AA∗)U , we have

U(ran(In −A∗A)) ⊆ ran(In−AA∗) = ran(In−A∗A)

and
U(ker(In−A∗A)) ⊆ ker(In−AA∗) = ker(In−A∗A).

Hence U2 = 0 = U3 , and U1 and U4 are unitary. Moreover,

A =
[
U1 0
0 U4

][
Ik D2

D∗
2 D4

]
=

[
U1 U1D2

U4D∗
2 U4D4

]
.

Since A(In−A∗A) = (In−AA∗)A , it follows that A(ran(In−A∗A)) ⊆ ran(In−AA∗) =
ran(In−A∗A) . Therefore, U1D2 = 0 or D2 = 0, since U1 is unitary. Hence[

A1 A2

A3 A4

]
=

[
U1 0
0 U4D4

]
.

It is clear that A2 = 0 = A3 and A1 = U1 is unitary. �

LEMMA 2.15. If A ∈ S −1
n , then ker(In −A∗A) = ker(In − AA∗) if and only if

n = 1 .

Proof. If n = 1, then ker(In−A∗A) = {0} = ker(In−AA∗) .
Conversely, if ker(In−A∗A) = ker(In−AA∗) , by Lemma 2.14, the restriction of A

on ker(In −A∗A) is unitary. Since A ∈ S −1
n implies A has no unitary part, it follows

that ker(In−A∗A) = {0} . Since rank(In −A∗A) = dA = 1 implies

n = dim(ker(In−A∗A))+ rank(In−A∗A) = 1,

the proof is complete. �

Notice that for any x ∈ Cn and A ∈ S −1
n , we have ‖Ax‖ � ‖x‖ . Indeed, by

Proposition 2.4 (e), we may assume that A = VD , where V ∈ Mn is unitary and D =
diag(t,1, . . . ,1) ∈ Mn , t > 1. Thus ‖Ax‖ = ‖Dx‖ � ‖x‖ . Moreover, if x ∈ Hk(A) for
some k � 1, then

‖x‖ = ‖Akx‖ � ‖Ak−1x‖ � · · · � ‖Ax‖ � ‖x‖.
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Thus x ∈Hj(A) for all 1 � j � k , and hence Hk(A)⊆ Hk−1(A) for all k . Among other
things, since A∗A− In = D2− In is positive semi-definite, it follows that a vector x is in
Hk(A) if and only if ‖Akx‖= ‖x‖ for k = 1, . . . ,n . We are now ready to prove Theorem
2.13.

Proof of Theorem 2.13. (a)⇒(b): Let Vk = Hk(A)∩Hk(A∗) for k = 1, . . . ,n . Since
A ∈ S −1

n implies A∗ ∈ S −1
n , by the above paragraph, we have Vk+1 ⊆ Vk for all k .

Moreover, we also deduce that a vector x is in Vk if and only if ‖Akx‖ = ‖A∗kx‖ = ‖x‖
for k = 1, . . . ,n .

We first show that AVk+1 ⊆ Vk . Suppose {x1, . . . ,xl} is an orthonormal basis for
Vk+1 . Since Vk+1 ⊆ Vk , we let {x1, . . . ,xp} be an orthonormal basis for Vk , where
p � l . Let x be a unit vector in Vk+1 , then ‖Ak(Ax)‖ = 1. Since Vk+1 ⊆Vk ⊆ ·· · ⊆V1 ,
it implies A∗Ax = x and

‖Ak∗(Ax)‖ = ‖(Ak−1)∗(A∗A)x‖ = ‖(Ak−1)∗x‖ = 1.

Hence Ax ∈Vk and AVk+1 ⊆Vk . Similarly, we have A∗Vk+1 ⊆Vk .
We claim that l � max{0, p−2} .
If l = p , then AVk = AVk+1 ⊆ Vk . If α1Ax1 + · · ·+ αpAxp = 0 for some scalars

α1, . . . ,αp , then A∗(α1Ax1 + · · ·+ αpAxp) = 0. It follows that α1x1 + · · ·+ αpxp = 0
since A∗Axj = x j for j = 1, · · · , p . But {x1, . . . ,xp} is orthonormal, which implies that
α1 = · · · = αp = 0. Hence {Ax1, · · · ,Axp} is linearly independent and A(Vk) = Vk .
Interchanging A and A∗ in the preceding arguments yields A∗(Vk) = Vk . Therefore A

is unitarily equivalent to

[
A11 0
0 ∗

]
on Cn = Vk ⊕V⊥

k , and A11 ∈ Mp is unitary, which

contradicts the fact that A has no unitary part.
If l = p− 1, let U ∈ Mn be a unitary matrix such that x1, . . . ,xp are the first p

columns of U . We have

Ã ≡U∗AU =
[
A11 A12

A21 A22

]
on Cn = Cp⊕Cn−p . Let A11 =

[
C1 C2

C3 C4

]
∈ Mp on Cp = Cp−1⊕C . Since AVk+1 ⊆Vk ,

A∗Vk+1 ⊆Vk , and Vk+1 =
∨{x1, · · · ,xp−1} , we obtain that

Ã =

⎡⎣C1 C2 0
C3 C4 yT

0 x ∗

⎤⎦ and Ã∗Ã =
[
A∗

11A11 + J ∗
∗ ∗

]
,

where x, y ∈ Cn−p are nonzero vectors and

J = A∗
21A21 =

[
0
x∗

][
0 x

]
= diag(0, . . . ,0,‖x‖2).

Since Vk ⊆ ker(In−A∗A) and x j ∈Vk for j = 1, · · · , p , it follows that Ã∗Ã = Ip⊕B for
some B ∈ Mn−p , and consequently

A∗
11A11 =

[
Ip−1 0
0 1−‖x‖2

]
.
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Symmetrically, we have

A11A
∗
11 =

[
Ip−1 0
0 1−‖y‖2

]
.

We now prove that C2 and C3 are zero matrices. Note that

A∗
11A11 =

[
C∗

1C1 +C∗
3C3 C∗

1C2 +C∗
3C4

C∗
2C1 +C4C3 C∗

2C2 +C4C4

]
and

A11A
∗
11 =

[
C1C∗

1 +C2C∗
2 C1C∗

3 +C2C4

C3C∗
1 +C4C∗

2 C3C∗
3 +C4C4

]
.

It follows that C∗
2C1 +C4C3 = 0, and hence C∗

2C1C∗
1 +C4C3C∗

1 = 0. Combining C1C∗
1 +

C2C∗
2 = Ip−1 with C3C∗

1 +C4C∗
2 = 0, we obtain that

C∗
2(Ip−1−C2C

∗
2)−|C4|2C∗

2 = 0

or (1−‖C2‖2−|C4|2)C∗
2 = 0. It implies that C2 = 0, since ‖C2‖2 + |C4|2 = 1−‖x‖2 	=

1. Similarly, since C3C∗
1C1 +C4C∗

2C1 = 0 and ‖C3‖2 + |C4|2 = 1−‖y‖2 	= 1, we have

C3 = 0. Hence Ã =
[
C1 0
0 ∗

]
and C1C∗

1 = Ip−1 . It implies that C1 is a unitary direct

summand of Ã , which is a contradiction.
By the above, we see that l � max{0, p−2} . By Lemma 2.15, we have ker(In −

A∗A) 	= ker(In−AA∗) . Hence n−1 < dim(ker(In−A∗A)+ker(In−AA∗)) and

dimV1 = dim(ker(In−A∗A))+dim(ker(In−AA∗))−dim[ker(In−A∗A)+ker(In−AA∗)]
= (n−1)+ (n−1)−n= n−2.

Moreover,

n−2 = dim(V1) � dim(V2)+2 � · · · � dim(Vk)+ (2k−2) � · · · . (5)

Therefore, if k0 = �n/2� , then dimVk0 = 0 and dimVj = 0 for j � k0 since Vj ⊆Vk0 .
On the other hand, dim(ker(In−(An−1)∗An−1)) = 1, so there is a unit vector x∈Cn

such that ‖An−1x‖ = 1. Since A is an S −1
n -matrix, we have

1 = ‖An−1x‖ � ‖An−2x‖ � · · · � ‖Ax‖ � ‖x‖ = 1.

It follows that x,Ax, · · · ,An−1x are unit vectors.
If n = 2k0 − 1, then Ak0−1(Ak0−1x) = A2k0−2x and (A∗)k0−1Ak0−1x = x are unit

vectors. So Ak0−1x∈Vk0−1 and Vk0−1 	= {0} . Similarly, if n = 2k0 , then Ak0−1(Ak0−1x)
= A2k0−2x and (A∗)k0−1Ak0−1x = x are unit vectors, and hence Ak0−1x ∈Vk0−1 	= {0} .
This implies that k0 is the smallest integer satisfying Vk = {0} .

Now, we are going to show that l = max{0, p− 2} . If n = 2k0 − 1, by (5),
dim(Vk0−1) � 1, and hence dim(Vk0−1) = 1 since Vk0−1 	= {0} . If n = 2k0 , by (5),
dim(Vk0−1) � 2. On the other hand,

dim(Vk0−1) = dimHk0−1(A)+dimHk0−1(A∗)−dim[Hk0−1(A)+Hk0−1(A∗))]
� (n− k0 +1)+ (n− k0+1)−n = 2.
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Thus dim(Vk0−1) = 2 and in both cases

n−2 = dim(V1) � dim(V2)+2 � · · · � dim(Vk0−1)+2k0−4 = n−2.

Therefore, dim(Vj) = n−2 j for 1 � j � �n/2� , and dim(Vj) = 0 for j � ko .
(b)⇒(c): This is trivial.
(c)⇒(a): We want to show that dim(ker(In − A∗A)) = n− 1. Indeed, since

dim[ker(In − A∗A) ∩ ker(In − AA∗)] = dim[H1(A) ∩H1(A∗)] = n− 2, it follows that
n−2 � dimker(In−A∗A) � n . If dim(ker(In−A∗A)) = n , then A is a unitary matrix,
but this contradicts the fact that dim[Hk0(A)∩Hk0(A

∗)] = 0, where k0 = �n/2� . On
the other hand, if dim(ker(In −A∗A)) = n− 2 = dim[ker(In −A∗A)∩ ker(In −AA∗)] ,
then ker(In −A∗A) ⊆ ker(In −AA∗) . Note that for every finite matrix T , the dimen-
sions of ker(I−T ∗T ) and ker(I−TT ∗) are the same. Hence we deduce that ker(In −
A∗A) = ker(In −AA∗) . Lemma 2.14 now yields that A ∼=

[
A1 0
0 A4

]
on Cn = ker(In −

A∗A)⊕ ran(In−A∗A) , where A1 is unitary. This contradicts the fact that dim[Hk0(A)∩
Hk0(A

∗)] = 0, where k0 = �n/2�. Therefore, we infer that dimker(In −A∗A) = n− 1
or rank(In −A∗A) = 1. Moreover, dim[Hk0(A)∩Hk0(A

∗)] = 0 implies that A has no
unitary part. Hence, by Theorem 2.1 and ‖A‖ > 1, we conclude that A ∈ S −1

n as
desired. �

3. Numerical ranges

Recall that the numerical range W (A) of any n -by-n matrix A is the subset

W (A) = {〈Ax,x〉 : x ∈ Cn,‖x‖ = 1}

of the plane, where 〈·, ·〉 denotes the usual inner product in Cn . Properties of the
numerical range can be found in [12, Chapter 1].

From Proposition 2.4 (e), an S −1
n -matrix A can be written as a polar decompo-

sition A = UDt , where U is unitary and Dt = diag(t,1, · · · ,1) for some t > 1. The
following theorem shows that if 0∈W (U) , then W (UDt1)⊆W (UDt2) for 1 � t1 � t2 .

THEOREM 3.1. Let At be in S −1
n with At = UDt , where U is a unitary matrix

and Dt = diag(t,1, · · · ,1) , t > 1 . If 0 is in W (U) , then
(a) 0 ∈W (At) for all t > 1 ,
(b) W (U) ⊆W (At) , and
(c) W (At1) ⊆W (At2) for 1 � t1 � t2 .

Proof. (a) Assume that 0 /∈W (At) for some t > 1. By convexity of W (At) , there
exists a 0 � θ � 2π such that Rew > 0 for all w ∈W (e−iθ At) . Without loss of gen-
erality, we may assume θ = 0. We will show that Reλ > 0 for all λ ∈ σ(U) . Then
W (U) ⊆ {z ∈ C : Re z > 0} which contradicts the fact that 0 ∈W (U) .

Let x be a unit eigenvector of U corresponding to λ ∈ σ(U) , then

〈Atx,x〉 = 〈Ux,x〉+ 〈U(Dt − In)x,x〉 = λ (1+ 〈(Dt − In)x,x〉).
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Note that Dt − In is a positive semi-definite matrix. Thus 1+ 〈(Dt − In)x,x〉 > 0. Since
Re〈Atx,x〉 > 0, it follows that Reλ > 0 as required.

(b) As in the proof of (a), for any λ ∈ σ(U) and a unit eigenvector x of U corre-
sponding to λ , we have

λ = 〈Atx,x〉 · 1
1+ 〈(Dt − In)x,x〉 +0 · 〈(Dt − In)x,x〉

1+ 〈(Dt − In)x,x〉 ∈W (At),

since 〈(Dt − In)x,x〉 � 0 and 0 ∈W (At) .
Hence σ(U) ⊆W (A) and W (U) = convex hull(σ(U)) ⊆W (A) as required.
(c) Let At1 =UDt1 and At2 =UDt2 , t2 > t1 > 1. Let λ be the maximal eigenvalue

of ReAt1 . We want to show that λ � maxσ(ReAt2) . Indeed, let x be a unit eigenvector
of ReAt1 corresponding to λ , then

1
2
(UDt1 +Dt1U

∗)x = λx.

Therefore,

λ =
1
2
[〈UDt1x,x〉+ 〈Dt1U

∗x,x〉]

=
1
2
[〈Dt1x,U

∗x〉+ 〈U∗x,Dt1x〉]
= Re〈Dt1x,U

∗x〉.

Write U = [u1 · · ·un] , x = [x1 · · ·xn]T and Dt1 = In+T1 , where T1 = diag(t1−1,0, · · · ,0) .
Hence

λ = Re〈(In +T1)x,U∗x〉
= Re〈Ux,x〉+(t1−1)Re(x1〈u1,x〉).

Note that λ = maxσ(ReAt1) > 0, because 0 ∈W (At1) . Since t1−1 > 0 and W (U) ⊆
W (At1) , it follows that Re(x1〈u1,x〉) > 0.

Similarly, we have

〈(ReAt2)x,x〉 = Re〈Ux,x〉+(t2−1)Re(x1〈u1,x〉).
Therefore, 〈(ReAt2)x,x〉−λ = (t2− t1)Re (x1〈u1,x〉) > 0. That is,

λ < 〈(ReAt2)x,x〉 � maxσ(ReAt2).

Now, for each θ ∈ [0,2π) , let U ′ = eiθU , then

eiθ At1 = U ′Dt1 and eiθ At2 =U ′Dt2 .

From the above result that we have proven, we deduce that

maxσ(Re (eiθ At1)) � maxσ(Re (eiθ At2))
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for all θ ∈ [0,2π) . Hence W (At1) ⊆W (At2) . �

The next example shows that the condition 0 ∈W (U) in Theorem 3.1 is essential.

EXAMPLE 3.2. Let

U =

⎡⎢⎢⎣
0.8986+0.1493i −0.0996+0.0911i 0.2597+0.0792i 0.2680+0.0797i
−0.0996+0.0911i 0.8986+0.1493i 0.2680+0.0797i 0.2597+0.0792i
−0.2597−0.0792i −0.2680−0.0797 0.8986+0.1493i −0.0996+0.0911i
−0.2680−0.0797 −0.2597−0.0792i −0.0996+0.0911i 0.8986+0.1493i

⎤⎥⎥⎦
and Bk = UDk for k = 1,2, where D1 = diag(1.1,1,1,1) and D2 = diag(1.2,1,1,1) .
By computing, we have σ(U) ⊆ {z ∈ C : Rez > 0} , that is, 0 /∈W (U) , and

minσ(ReB1) ≈ 0.6522, minσ(ReB2) ≈ 0.6587,

and
maxσ(ReB1) ≈ 1.067, maxσ(ReB2) ≈ 1.149.

Hence W (B1) � W (B2) and W (B2) � W (B1) .
We remark that Theorem 3.1 does not hold for Sn -matrices. In fact, [5, Lemma

4.2] says that if T1 and T2 are in Sn , then T1
∼= T2 if and only if W (T1) ⊆ W (T2) .

Hence W (At1) � W (At2) for any 0 � t1 	= t2 < 1.
In the end of this paper, we give a generalization of Chien and Nakazato’s result

[3]. In [3], they study the numerical range of the tridiagonal matrix

A = A(n,r) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 · · · 0
r 0 1 0 · · · 0
0 r2 0 1 · · · 0
0 0 r3 0 · · · 0
...

...
...

...
. . . 1

0 · · · · · · 0 rn−1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

In particular, they examined more details on the numerical range of A(n,−1) . For
n � 4, they show that W (A(n,−1)) is contained in the square

Q = {z ∈ C : |Rez| � 1 and |Imz| � 1}.

Moreover, if n is even, they show that the numerical range W (A(n,−1)) has 4 flat
portions on its boundary ∂W (A(n,−1)) (cf. [3, Theorem 8]). In fact, these 4 flat
portions lie on the boundary ∂Q of the square Q . Note that if {e1, . . . ,e2k} denotes the
standard basis for C2k and P is the 2k -by-2k permutation matrix so that Pe2 j−1 = e j

and Pe2 j = ek+ j for 1 � j � k , then

PA(2k,−1)P∗ =
[

0 Ik + J∗k
−Ik + Jk 0

]
,
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where Jk is the k -by-k Jordan block as the form⎡⎢⎢⎢⎢⎣
0 1

0
. . .
. . . 1

0

⎤⎥⎥⎥⎥⎦ .

The next theorem generalizes the Chien and Nakazato’s result about A(2k,−1) to the

2-by-2 block matrix

[
0 Ik +B∗

−Ik +B 0

]
∈ M2k for general contraction B ∈ Mk .

THEOREM 3.3. For any B ∈ Mk with ‖B‖ � 1 and k � 1 , let

A =
[

0 Ik +B∗
−Ik +B 0

]
∈ M2k.

Then the numerical range of A is contained in the square

Q = {z ∈ C : |Rez| � 1 and |Imz| � 1}.
Moreover, the flat portions on ∂W (A) are

{±(t + i) : t ∈W (ImB)} and {±(1+ it) : t ∈W (ImBM)},
where M = ker(Ik −B∗B) and BM is the compression of B on M .

Proof. Note that

ReA =
[
0 B∗
B 0

]
and ImA =

[
0 −iIk
iIk 0

]
.

Since [
0 B∗
B 0

][
0 B∗
B 0

]
=

[
B∗B 0
0 BB∗

]
and ‖B∗B‖= ‖BB∗‖ = ‖B‖2 � 1, we have ‖ReA‖� 1 and W (ReA)⊆ [−1,1] . On the
other hand, since [

0 −iI∗k
iI∗k 0

][
0 −iIk
iIk 0

]
=

[
Ik 0
0 Ik

]
,

it is obviously that ‖ImA‖ = 1 and W (ImA) ⊆ [−1,1] . Hence W (A) is contained in
the square Q .

For any x,y ∈ Ck with ‖x‖2 +‖y‖2 = 1,

〈A
[
x
y

]
,

[
x
y

]
〉 = 〈(ReA+ i ImA)

[
x
y

]
,

[
x
y

]
〉

= 〈
[
0 B∗
B 0

][
x
y

]
,

[
x
y

]
〉+ i〈

[
0 −iIk
iIk 0

][
x
y

]
,

[
x
y

]
〉

= 2Re 〈Bx,y〉+ i2Im〈y,x〉. (6)
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We first prove that 2Im〈y,x〉 = 1 if and only if y = ix and ‖x‖ = ‖y‖ = 1/
√

2.
Assume 2Im〈y,x〉 = 1, then

1 = 2Im〈y,x〉 � 2|〈y,x〉| � 2‖y‖‖x‖� 2 · ‖x‖
2 +‖y‖2

2
= 1.

It follows that |〈y,x〉| = ‖y‖‖x‖ and y = eiθ x . Therefore,

1 = 2Im〈eiθ x,x〉 = 2Imeiθ‖x‖2 = Im(cosθ + isinθ ) = sinθ .

This implies that y = ix . Moreover,

2Re 〈Bx,y〉 = 2Re (−i)‖x‖2〈B x
‖x‖ ,

x
‖x‖〉 = Re (−i)〈B x

‖x‖ ,
x

‖x‖〉 ∈W (ImB),

and applying (6), we deduce that

W (A)∩{z ∈ C : Imz = 1} ⊆ {t + i : t ∈W ( ImB)}.
Conversely, for any t ∈ W (ImB) , let t = 〈(ImB)x,x〉 for some unit vector x ∈ Ck .

Replace

[
x
y

]
by

1√
2

[
x
ix

]
in (6), we obtain that

〈A
[

x√
2

ix√
2

]
,

[
x√
2

ix√
2

]
〉 = t + i,

and hence
W (A)∩{z ∈ C : Imz = 1} = {t + i : t ∈W (ImB)}.

For any x,y∈ Ck with ‖x‖2 +‖y‖2 = 1, we now check that 2Re〈Bx,y〉= 1 if and
only if y = Bx,x ∈ M and ‖x‖ = ‖y‖ = 1/

√
2. Suppose that 2Re〈Bx,y〉 = 1, then

1 = 2Re〈Bx,y〉 � 2|〈Bx,y〉| � 2‖Bx‖‖y‖� 2‖x‖‖y‖� 2 · ‖x‖
2 +‖y‖2

2
= 1.

We obtain that ‖x‖ = ‖y‖ = 1/
√

2, ‖B‖ = 1 and ‖Bx‖ = ‖B‖‖x‖ = ‖x‖ . This implies
that

x ∈ ker(I−B∗B) = M.

On the other hand, since |〈Bx,y〉| = ‖Bx‖‖y‖ , it follows that y = eiθ Bx . Hence

1 = 2Re 〈Bx,y〉 = 2Re (e−iθ‖Bx‖2) = 2Re(e−iθ‖x‖2) = Re(cosθ − isinθ ) = cosθ .

We thus get y = Bx . Moreover,

2 Im〈y,x〉 = 2Im‖x‖2〈B x
‖x‖ ,

x
‖x‖〉 = Im〈B x

‖x‖ ,
x
‖x‖〉 ∈W (Im(PMB|M)),

and
W (A)∩{z ∈ C : Rez = 1} ⊆ {1+ it : t ∈W (ImBM)}.
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Conversely, for any unit vector x ∈ M , then ‖Bx‖ = ‖x‖ = 1. A simple computation
shows that

〈A
[

x√
2

Bx√
2

]
,

[
x√
2

Bx√
2

]
〉 = 1+ i〈(ImBM)x,x〉,

and hence
W (A)∩{z ∈ C : Rez = 1} = {1+ it : t ∈W (ImBM)}.

Note that [
Ik 0
0 −Ik

]
A

[
Ik 0
0 −Ik

]
= −A.

Hence our assertion follows from the fact that W (A) = W (−A) . �

We remark that if B = Jk , then W (ImB) = [−cos(π/(k+1)),cos(π/(k+1))] and
W (ImBM) = [−cos(π/k),cos(π/k)] . Therefore, the numerical range W (A(2k,−1))
can be described clearly.

For odd n = 2k− 1, k � 3, Chien and Nakazato show that W (A(2k− 1,−1)) is
the convex hull of the two ellipses eiπ/4E and e3iπ/4E , where E is the ellipse given by
the equation: x2/(1+ cos(π/k))+ y2/(1− cos(π/k)) = 1 (cf. [3, Theorem 7]). Now
we can see that

eiπ/4E = ∂W

([
(1+ i)

√
cos(π/k) 2

√
1− cos(π/k)

0 (−1− i)
√

cos(π/k)

])
and

e3iπ/4E = ∂W

([
(−1+ i)

√
cos(π/k) 2

√
1− cos(π/k)

0 (1− i)
√

cos(π/k)

])
.

Moreover, these two ellipses eiπ/4E and e3iπ/4E are inscribed in the square Q . Notice
that if B is the k -by-(k−1) submatrix of J∗k obtained by deleting its last column, then
B∗B = Ik−1 . On the other hand, if {e1, . . . ,e2k−1} denotes the standard basis for C2k−1

and P is the (2k−1)-by-(2k−1) permutation matrix so that Pe2 j−1 = e j for 1 � j � k
and Pe2 j = ek+ j for 1 � j � k−1, then

PA(2k−1,−1)P∗ =
[

0 I′k +B
−I′k +B∗ 0

]
,

where I′k is the k -by-(k− 1) submatrix of Ik obtained by deleting its last column.
Therefore, we are interested in the numerical ranges of such a 2-by-2 block matrices
for any k -by-(k− 1) matrix B with B∗B = Ik−1 . The next theorem shows that the
numerical range of such 2-by-2 block matrix is also the convex hull of two ellipses.

Among other things, the k -by-(k− 1) matrix B with B∗B = Ik−1 is a submatrix
of an Sk -matrix obtained by deleting its last column. Indeed, let T be an operator
in Sk . We will consider a special matrix representation for T . Since K = ker(Ik −
T ∗T ) has codimension 1, there is an orthonormal basis {h1, · · · ,hk} of Ck such that
{h1, · · · ,hk−1} forms a basis for K . Let T have the matrix representation [ f1 · · · fk]
with respect to this basis, where each f j = Th j represents a column vector. Since
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K consists of all vectors x in Ck with the property ‖Tx‖ = ‖x‖ , we have ‖ f j‖ = 1
(1 � j � k−1), ‖ fk‖ < 1 and fi⊥ f j (1 � i 	= j � k ). Let B = [ f1 · · · fk−1] . It is clear
that B∗B = Ik−1 . We can see that J∗k ∈ Sk and the standard basis {e1, · · · ,ek} for Ck

satisfies ∨{e1, · · · ,ek−1} = ker(Ik − JkJ∗k ) . Hence the result of Chien and Nakazato [3,
Theorem 7] is a special case of the following theorem.

THEOREM 3.4. Suppose that B is an k -by-(k− 1) (k � 3) matrix with B∗B =
Ik−1 and I′k is the k -by-(k− 1) submatrix of Ik obtained by deleting its last column.
Let

A =
[

0 I′k +B
−I′∗k +B∗ 0

]
∈ M2k−1,

then the numerical range

W (A) = W

([√
β (−1+ i) 2

√
1−β

0
√

β(1− i)

]
⊕

[√
(−α)(1+ i) 2

√
1+ α

0
√

(−α)(−1− i)

])
,

where α = min σ(ImB′) � 0 , β = max σ(ImB′) � 0 and B′ = I′∗k B⊕ [0] .

Proof. Let Ã = A⊕ [0] , that is,

Ã =
[

0 I′′k +B1

−I′′k +B∗
1 0

]
∈ M2k,

where I′′k =
[
I′k 0

]
= Ik−1⊕ [0] ∈ Mk and B1 =

[
B 0

] ∈ Mk . Notice that

Re Ã =
[

0 B1

B∗
1 0

]
and Im Ã =

[
0 −iI′′k
iI′′k 0

]
.

Let f (θ ) = maxσ(Re (e−iθ Ã)) for θ ∈ [0,2π) . Observe that

Re (e−iθ Ã) = cosθ Re Ã+ sinθ Im Ã =
[

0 Tθ
T ∗

θ 0

]
,

where Tθ = cosθ ·B1− isinθ ·I′′k . Note that

[
0 Tθ
T ∗

θ 0

]
is unitarily equivalent to

[
0 −Tθ

−T ∗
θ 0

]
.

This gives σ(Re (e−iθ Ã)) = σ(−Re(e−iθ Ã)) . Hence

f (θ ) = ‖Re(e−iθ Ã)‖ =
∥∥∥∥[

0 Tθ
T ∗

θ 0

][
0 Tθ
T ∗

θ 0

]∥∥∥∥1/2

=
∥∥∥∥[

Tθ T ∗
θ 0

0 T ∗
θ Tθ

]∥∥∥∥1/2

.

Since T ∗
θ Tθ = I′′k − sin2θ · ImB′ and ‖T ∗

θ Tθ‖ = ‖TθT ∗
θ ‖ , we have

f (θ ) = ‖I′′k − sin2θ · ImB′‖1/2

=

⎧⎪⎨⎪⎩
√

1−α sin2θ , if 0 � θ � π
2

or π � θ � 3π
2

;√
1−β sin2θ , if

π
2

� θ � π or
3π
2

� θ � 2π .
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Next, let

C =
[√

β (−1+ i) 2
√

1−β
0

√
β (1− i)

]
and g(θ ) = maxσ(Re (e−iθC)) for θ ∈ [0,2π) . An easy computation shows that

Re (e−iθC) =
[ −√

β (cosθ − sinθ )
√

1−β(cosθ − isinθ )√
1−β(cosθ + isinθ )

√
β(cosθ − sinθ )

]
and g(θ ) =

√
1−β sin2θ for θ ∈ [π/2,π ]∪ [3π/2,2π ] . Similarly, let

D =
[√

(−α)(1+ i) 2
√

1+ α
0

√
(−α)(−1− i)

]
and h(θ ) = maxσ(Re (e−iθ D)) for all θ ∈ [0,2π) . Since

Re (e−iθ D) =
[ √−α(cosθ + sinθ )

√
1+ α(cosθ − isinθ )√

1+ α(cosθ + isinθ ) −√−α(cosθ + sinθ )

]
,

it is easy to check that h(θ ) =
√

1−α sin2θ for θ ∈ [0,π/2]∪ [π ,3π/2] . Hence we
conclude that

f (θ ) =

⎧⎪⎨⎪⎩
h(θ ), if 0 � θ � π

2
or π � θ � 3π

2
;

g(θ ), if
π
2

� θ � π or
3π
2

� θ � 2π ,

or, W (Ã) = W (A) = W (C⊕D) , thus completing the proof. �
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