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MATRICES WITH DEFECT INDEX ONE

CHENG-CHUN CHANG, HWA-LONG GAU, YA-SHU WANG,
SzU-CHIEH WU AND YA-TING YEH

(Communicated by C.-K. Li)

Abstract. In this paper, we give some characterizations of matrices which have defect index one.
Recall that an n-by-n matrix A is said to be of class .¥, (resp., (Vn’l) if its eigenvalues are
all in the open unit disc (resp., in the complement of closed unit disc) and rank (I, —A*A) = 1.
We show that an n-by-n matrix A is of defect index one if and only if A is unitarily equivalent
to U C, where U is a k-by-k unitary matrix, 0 < k < n, and C is either of class .7,
or of class X;lk. We also give a complete characterization of polar decompositions, norms

and defect indices of powers of 5’”’1 -matrices. Finally, we consider the numerical ranges of
! _matrices and .7} -matrices, and give a generalization of a result of Chien and Nakazato on
tridiagonal matrices (cf. [3, Theorem 7]).

1. Introduction

Let M, be the algebra of n-by-n complex matrices and A € M,,. The defect index
dy of A is, by definition, rank (1, — A*A), that is, the dimension of the range of [, —A*A.
It is a way to measure how far A is from the unitary matrices. In this paper, we give
some characterizations of matrices which have defect index one.

Recall that a matrix A € M,, is said to be of class ., if its eigenvalues are all in
the open unit disc D(={z € C: |z] < 1}) and dy = 1. The n-by-n Jordan block

01

1
0

is one example. Such operators and their infinite-dimensional analogues S(¢) (¢ an
inner function) were first studied by Sarason [16]. They play the role of the building
blocks of the Jordan model for Cy contractions [1, 15]. In particular, if an .¥}, -matrix
A is invertible, then

dy-1 =rank(l, — (A" (A™")) = rank(A")* (A" A~ L) (A1) = 1,
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and all eigenvalues of A~! are in C\ D, the complement of the closed unit disc. There-
fore, we recall that a matrix A € M,, is said to be of class yn_l if its eigenvalues are
allin C\ D and dy = 1. It is easily seen that if A isin .7, (resp., .#,), then A* and
¢%A are also in ., ! (resp., .#;). Moreover, if A isin ., !, then A has no unitary
part, A is invertible, and A~ isin .7,.

In Section 2, we first give a complete characterization of matrices which have
defect index one. We show that a matrix A € M,, is of defect index one if and only if A
is unitarily equivalent to U & C, where U € M, 0 < k < n, is unitary, and C is either
in ., orin yn_fk. In recent years, properties of .7, -matrices have been intensely
studied (cf. [5, 6, 8, 9, 13, 14, 17]). Therefore, we will restrict our attention to yn’l -
matrices in the rest of this section. We will give a complete characterization of polar
decompositions, norms and defect indices of powers of .7, ! -matrices.

In Section 3, we take up the numerical ranges of .%, ! -matrices and .#), -matrices.
From Proposition 2.4 (e), an ., ! -matrix A is unitarily equivalent to a polar decom-
position UD;, where U is unitary and D, = diag(s,1,---,1) for some ¢ > 1. We show
that if 0 € W(U), then W(UD;,) C W(UD,,) for 1 <1t < t,. Among other things,
recall that an operator A in .#, always has the matrix representation [fj - - f,] so that
Ifill=1A<j<n=1), ||fall <1 and filf; (1 <i# j<n). We show that if
B=fi--- fu—1], then the numerical range of the 2-by-2 block matrix

0 I,+B
—I*+B* 0

:| € M2n71

is the convex hull of two ellipses, where I/ is the n-by-(n— 1) submatrix of I, ob-
tained by deleting its last column. This generalizes a result of Chien and Nakazato on
tridiagonal matrices (cf. [3, Theorem 7]).

2. Defect indices of powers, polar decompositions and norms

We start by giving a complete characterization of matrices which have defect index
one. For abbreviation, the notation A = B means that A is unitarily equivalent to B for
any A,BeM,.

THEOREM 2.1. Let A be an n-by-n matrix. Then dy = 1 if and only if A is

unitarily equivalent to U ® C, where U € My, 0 < k < n, is unitary, and C is either in
S _k orin fn__lk.

The proof depends on the following lemma.

LEMMA 2.2. Let A be an n-by-n matrix with ds < 1.

Y
(a)If A= f(x) g],whereA’eMk, 1<k<n,thendy <1 and dc < 1.

a a
(b)Ifn="2 and A = [ 61 a;z] , then |apa]* = (1= |an*)(1 = |axn]?).

U B

(c)If A= 0 C} , where U € My, 1 <k <n, is unitary, then B= 0.
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(d)If A= [t;;]} ,_, is an upper triangular matrix with [t;| =1 forall i, 1 <i<n,
then t;; =0 forall i # j.

Proof. (a) It is easily seen that

Ik - A/*A/ *
* *

In—AA—[ ] and I,—AA —L In_k—CC*}
Hence dy =rank ([, —A”A") <rank (I, —A*A) =ds <1 and dc = de+ < dp =dy < 1
as asserted.

(b) A simple computation shows that

. 1—lay|? anap
L —A"A = .
: [ ana; 11— (lan]* + laxnl?)

Since dy < 1, I —A*A is not invertible. Thus
0=det(hh —A*A) = (1 — |ai[*)(1 - |axn|*) — |an|*.

Hence |aps|*> = (1 —|a11|*)(1 — |ax|?) as asserted.
(c) Note that

[ o _U'B

L—A'A= [—B*U Ly — (B*B—i—C*C)] :

Since rank (I, —A*A) = ds < 1, it implies that every column of [, — A*A is a scalar
multiple of the first column of 7, —A*A. Hence we conclude that U*B =0 or B=0,
since U is unitary.

(d)Let Ay = [t,-j}i-"j:l for k=1,---,n. From (a), we have ds, <1 forall k. Since
da, < 1, by (b), we obtain that 715 = 0. Thus A = [%1 to] is unitary. Since dy, < 1

22

and A is unitary, by (c), we deduce that A3 = diag (¢11,/22,#33) is unitary. Repeating
this argument gives us A = A, = diag (¢11, - - -,y ) . This completes the proof. [

Proof of Theorem 2.1. Assume that dy = 1. Let 6(A) = {4, ---, A, }. We want to
show that either |A;| < 1 forall j, or |A;] > 1 forall j. Indeed, if there exist |A;| > 1
and |4,| <1, then A is unitarily equivalent to an upper triangular matrix [a;;} ;_; such
a a

0 an be

that a;1 = A, axp = A, and q;; =0 forall 1 <j<i<n. Let Ay = [

the 2-by-2 principal submatrix of [a;;]} ;_;. Then A = [%2 :] . By Lemma 2.2 (b), we

have
0 < Janal” = (1= lan*)(1 —laxnl*) = (1= |, ) (1= |2, *) <0,
a contradiction, since |A;)| > 1 and |1, < 1. Hence we conclude that either o(A) C D
or 6(A) CC\D.
Now, if 6(A) C D (resp., 6(A) C C\ D), since dy = 1, then A € ., (resp.,
A € .77 1) as required. Therefore, we may assume that A is unitarily equivalent to an
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upper triangular matrix [t; j}:' i1 such that |r;| =1 forall 1 <i<k (1 <k<n)and

U B
|tjj| # 1 forall k+1< j<n. Write [t,,}lj 1= o C] , where U = [t,-j]ﬁjzl e M.
From Lemma 2.2 (a), we have dy < 1. Since |t;] =1 for all 1 <i < k, by Lemma

2.2 (d), we infer that U = diag (t11,- - -,f) and k < n, because dy = 1 # 0. Moreover,

by Lemma 2.2 (c), we obtain that B = 0. Therefore, A= U&C and dc =dy = 1. If

0(A) CD, then |tj;| <1 forall j, k+1< j<n,andit follows that C = (1]} g1 €

S5—k. On the other hand, 6(A) C C\ D implies that |¢;;| > 1 forall j, k+1< j<n.
Hence C is in Ynilk as asserted.
The converse is trivial. [

For an n-by-n matrix A with d4 = 1, if A has no unitary part, then A is either in
Sy orin .#, 1 from Theorem 2.1. In recent years, properties of .#;, -matrices have been
intensely studied (cf. [5, 6, 8, 9, 13, 14, 17]). Therefore, we will restrict our attention
to ., ! -matrices in the rest of this section. We generalize some known results about
S, -matrices to ., ! -matrices.

In [6], Gau and Wu gave an upper triangular matrix representation for .#;, -matrices.
In [4], the author gave an upper triangular matrix representation for ., -matrix with-
out proof, because the proof is the same as the one in [6, Corollary 1.3]. We present
it here for easy reference. For its detailed proof, the reader may consult [18, Theorem
3.8].

PROPOSITION 2.3. An operator is in ;' if and only if it has the upper tri-
angular matrix representation [t;;]} where |t;| > 1 for all i and t;; = s;;(|t;|* —

)1/2(|tjj|2— 1)1/2 for i < j with

i,j=1"

§i; = Hk L) if > i+l
! ifj=i+1.

Wu gave a complete characterization of the polar decomposition of an .¥, -matrix
[17]. Here, we prove an analogue of Wu’s result for ., -matrices.

PROPOSITION 2.4. The following are equivalent for an n-by-n matrix A:

(a) A is an ;7 -matrix;

(b) A=U(I,+ sxx*), where U is a unitary matrix with distinct eigenvalues, s >0
and x is a unit cyclic vector for U ;

(c) A is unitarily equivalent to U'(I, —|—sx’x’*), where U’ is a diagonal unitary
matrix with distinct eigenvalues, s > 0 and X' is a unit vector with all components
nonzero;

(d) A=U(I,+ sP), where U is a unitary matrix, s >0 and P is a rank-one
(orthogonal) projection whose kernel contains no eigenvector of U and whose range
contains a cyclic vector of U ;

(e) A is unitarily equivalent to VD, where V is a unitary matrix such that all its
eigenvectors have a nonzero first component and it has [1 0---0]7 as a cyclic vector,
and D is the diagonal matrix diag (¢,1,...,1) with t > 1.
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Proof. (a)=>(b): Notice that for any A € ., !, A is invertible and A~ € .7, Tt
follows that (A~!)* € .%,. By [17, Proposition 3.4], there exists a unitary matrix U
with distinct eigenvalues, 0 < » < 1 and a unit cyclic vector x for U such that

(AN =U(I, — rxx*).

Thus A = U (I, — rxx*) . Since I, — rxx* is invertible and x is a unit vector, we deduce
that 0 <r <1 and

\gk

(L =) =10,+ Y () =1, —|—2rfxx = Iyt ——xx".
r

1 j=1 -

J

Hence A = U(I,+ sxx*), where s =r/(1 —r) > 0.

(b)=(a): If A = U(I, +sxx*) as in (b), then A*A = I, + (25 + s>)xx*. Since
xx* is a rank one matrix, we have dy = rank ((2s +s?)xx*) = 1. We will check that
o(A) CC\D. On the contrary, suppose that there is a unit vector y € C" such that
Ay = Ay for some |A| < 1. Then

> | Ay]1% = [|Ay|1> = || (L + sxx*)y||*
= ((In+sxx*)2y,y) = [|[y||* + (s +25) [ (x, )2
=1+ (s +25)|(x, )P > 1

We thus get (x,y) =0, since s > 0. Moreover,
Ay=Ay=U (I, + sxx*)y = Uy.

Since y is an eigenvector of U, it follows that (x,y) # 0 because x is a cyclic vector
for U. This is a contradiction. Hence we conclude that A is an ., ! -matrix.

For the other equivalences, the proofs are essentially the same as in [17, Proposi-
tion 3.4]. Hence we omit the proofs. [J

The following proposition shows how the characteristic polynomial of an .&, ! -
matrix A can be expressed in terms of s and the entries of U’ and x’ in Proposition
2.4 (c). It is an analogue of [17, Proposition 3.5] for .#, ! -matrices, and its proof is
omitted because it is essentially the same as the one for [17, Proposition 3.5].

PROPOSITION 2.5. Let A be an ., ' -matrix with polar decomposition U' (I, +
sx'x'*) as in Proposition 2.4 (c). If U’ has eigenvalues uy,---,u, and x' = [x--x,]7,

then the characteristic polynomial of A is given by

3 (e ur) - (e (1)) - (2 — ).

j=1

An %, -matrix A may be not invertible, hence its polar decomposition is not
unique (cf. [17, Proposition 3.6]). But every 5”,,’1 -matrix is invertible, and thus its
polar decomposition is unique. The following proposition shows this simple fact.
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PROPOSITION 2.6. Let A be an ., ' -matrix with polar decomposition A =
Ui (I, +s1x1x7) = Ua (L, + s2x2x5 ) as in Proposition 2.4 (b). Then

(a) s1=s2,
(b) x| = Axy for some A, |A| =1, and
(C) U1 =U2.

Proof. Since I, +s1x1x] = (A*A)l/ 21, +52x2x5 , (a) and (b) follow easily. Note
that since I, 4 s1x1x] is positive definite, it is invertible. Hence

U, = Uz(ln +52)C2X§)(In +s1x1xf)_1 =U,
as asserted. [

Proposition 2.3 says that an .#, ! -matrix is completely determined by its eigen-
values. Therefore, we give the norm of an 5”,;1 -matrix in terms of its eigenvalues in
the next corollary. It is an easy consequence of Proposition 2.4 (e). Among other things,
it’s well-known that [|A|| =1 forall A € .7,.

COROLLARY 2.7. Let A be an ., ' -matrix with eigenvalues Ay, ---,A,. Then
Al = |21+ Al

Proof. From Proposition 2.4 (e), A can be written as a polar decomposition A =
UD, where U is unitary and D = diag(z,1,---,1) for some 7 > 1. Hence

Al = ||{UD|| = ||D|| =t = detD = |detUD| = |detA| = |A; - - - Ay
as asserted. [

For a matrix A € M,,, ReA = (A+A")/2 and ImA = (A — A*)/(2i) are the real
and imaginary parts of A, respectively.

In [5, Corollary 2.7], Gau and Wu show that if A is in .¥,, then all eigenvalues
of ReA and ImA are simple. Moreover, Gau [4, Theorem 2.5] shows that if A is in
1, then the maximal eigenvalue of ReA is simple. Here, we prove an analogue of
Gau and Wu’s result for ., -matrices.

THEOREM 2.8. If A is in ;7 !, then both ReA and TmA have simple eigenval-
ues.

Let A = [t;j]};_, be an ! -matrix represented as in Proposition 2.3, and let
Ay = [tij]f.‘_l.zl for k=1,---,n. Then A; is in Yk’l from Proposition 2.3. Moreover,
¢9A is also in ., ! forall @ € R. Since ImA = Re (—iA), we need only to prove the
result for ReA. Let r be an eigenvalue of ReA and K = ker(rl, —ReA). If dimK > 2,
then there exists a nonzero vector x € K such that the nth entry of x is zero. Therefore,
Theorem 2.8 can be proven by the following lemma.

LEMMA 2.9. Let A be an ., ' -matrix represented as in Proposition 2.3 and let
r be an eigenvalue of ReA. If x = [x;---x,|T € C" is an eigenvector of ReA corre-
sponding to the eigenvalue r, then x, # 0.
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Proof. The proof is by induction on n. For n =2, then r = maxc(ReA) or
r=mino(ReA) = —maxo(Re(—A)). Hence our assertion follows from [4, Lemma
2.6].

Assume the assertion holds for n — 1. We will prove it for n. Suppose that x =
[x1 - -xn]T is a unit eigenvector of ReA corresponding to r. From [4, Lemma 2.6], we
may assume that r is neither the maximal eigenvalue nor the minimal eigenvalue of
ReA. We now show that x,, # 0. On the contrary, suppose that x, = 0. It implies that
(ReA,_1)y=ry, where A, = [t; j}f'j_zl | is the (n—1)-by-(n— 1) principal submatrix
of A and y = [x; ---xn,l]T € C" 1. Thus y is an eigenvector of ReA,_| corresponding
to the eigenvalue r. On the other hand, let us compute the nth and (n — 1)th entries of
(rl, —ReA)x, we have

1"§ _ 1
-5 Xjljn— 5Xn—1ln—1n =0 (D
24 2
and
122
_EExjtj,nfl+xnfl(r_Retnfl,n71):0~ )
j=1

By Proposition 2.3, we have

Vltnnl>—1

Lin=1jn-1" W Tn—1n—1, 3)
for 1 < j < n—2. Substituting (3) into (1) yields
[tan]? —1 =z |
=ty 1 p—1 ), Xjlju—1 — S Xn—1lp—1, 4)
5 |tn_17n_1|2—1 n—1,n j:z,l JtIn 2 n n—1,n

Substituting (2) into (4) we obtain

_ Vtwn|* — 1 R
0= _ﬁtnfl,nflxnfl(r_ Re tnfl,nfl ) - Exnfltnfl,m
n—1n—1["—

By induction hypothesis, we have x,,_; # 0, which implies that

V> — 1 1.
_tnfl,nflL(r_Re tnfl,nfl) = zlp—1n-
\ ‘tn—17n—1|2 -1

2
Thus —t,—1 -1 (r—Re ty_1p—1) = \tn_17,,_1|2 —1), and hence #,_j ,—; is real and

5 (
2

In—ip—1=T7% Vr2—1. Since th—1,—1 18 real, it implies that P2 >1or |F| > 1. The
result [4, Lemma 2.9 (1)] says that if A; is the jth largest eigenvalue of ReA, then
A2 < 1. Note that —2,,_; is the second largest eigenvalue of Re(—A) and —A € .7, !,
so by [4, Lemma 2.9 (1)] again, we have —A, | <1 or A, > —1. Now, since r
is neither the maximal eigenvalue nor the minimal eigenvalue of ReA, by [4, Lemma
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2.9 (1)], we have —1 < A, < r< Ay < 1. Thus |r| = 1. Consequently, we obtain
|t,,,17n,1\ =1, a contradiction. Hence x, ## 0 as asserted. [

We now restrict our attention to the defect indices of powers of an ., ! -matrix. In
recent years, the defect indices of powers of a contraction have been intensely studied
(cf. [7, 9, 10, 13]). In particular, Gau and Wu [7, Theorem 3.1] have shown that for
an n-by-n contraction A (||A]| < 1), the following conditions are equivalent: (a) A is
in 7,5 (b) ||A]| = ||A""!| =1 and [|A"|| < 1; (c) dye =k for all k, 1 <k < n; (d)
dar = k for k =n and for k equal to some ko, 1 < ko < n. Notice that the norm of
an 5”,;1 -matrix is greater than one, that is, it is not a contraction. Here, we prove an
analogue of [7, Theorem 3.1] for 5””’1 -matrices.

THEOREM 2.10. Let A be an n-by-n matrix with ||A|| > 1. Then the following
conditions are equivalent:

(a) Ac Y

(b) dyx =k forall k, 1 <k<n;

(c) dan =n and dy = 1.

Proof. (a)=(b): Since A~! isin .7, by [7, theorem 3.1], we have dy-r =k for
all k, 1 <k <n. On the other hand, since A* is invertible and

I, _Ak*Ak :Ak* [A—k*A—k —In]Ak _ _Ak* [In —A_k*A_k}Ak,

we deduce that dyx =k forall k, 1 <k <n.

(b)=-(c): This is trivial.

(c)=-(a): Since ||A|| > 1 and d4s = 1, by Theorem 2.1, we may assume that A is
unitarily equivalent to U & C, where U € My is unitary, 0 <k <n,and C€ S f c We
obtain that

U o
n o~
v=[7 el
and hence
0 0
AN AN~
Lh—ATAT= [O Ink—C"*C"}

But d4» = n, which clearly forces A= C. U

For an n-by-n matrix A, d4» = n means that A has no unitary part. Moreover,
if A is a contraction with d4» = n, [7, Theorem 3.1] shows that d4 = 1 if and only if
dar =k for some k, 1 < k <n. The following examples show that it is not the case for
an n-by-n matrix A with ||A|| > 1.

EXAMPLE 2.11. Let

then ||A|| > 1. After a simple calculation, we have
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10 0 100
—A*A= 103 0 |, L—A>A’= {010
00-3 000

and I; — A**A3 = I;. Thus, we have dj» =2 and dj3 =3. But dy =3 # 1.

Next, we construct a 4-by-4 matrix A = B®C such that B> € ., ' and C? € %5.
Then dy2 =dp +dee =1+ 1=2 and dys = dps +ds =2 +2=4. But, it is easily
seen that dy # 1.

EXAMPLE 2.12. Let

3
ﬁmoo
0 vV2 0 0

AZQQLL
\/54\15
OOO%

2 1372
Then \/E% _|?3 e | V22| = %
0 V2 02 20 5 0
dy> =2 and dy4 =
Let A be an n by n contraction and H;(A) = ker(l, — A7*A7) for j=1,---,n.
Since ||A]| < 1, we have x € H;(A) if and only if ||A/x|| = ||x||. Moreover, [|A’y] <
|A7 =Lyl < -+ < ||Ay|| < |ly|| for all y € C". Therefore, H;(A) C H;_{(A) for all j.
On the other hand, let V; = H;(A) NH;(A"), it is clear that V; CVj_y forall j. Let
Voo =j=1Vj, then Aly., is the unitary part of A. Therefore, A has no unitary part if
and only if V;, = {0} for some k. Let k(A) = min{k : 0 < k < oo, V} = V.o }. It was
shown independently by Gau-Wu [9] and Li [13] that k(A) < [n/2]. Moreover, they
also showed that the equality k(A) = [n/2] holds if and only if one of the following
holds. (a) A € .7,,. (b) n is even and A is unitarily equivalent to [¢?] ®A; with € R
and A; €.7,_1. (c) niseven, ||[A"%|| = 1 > ||[A""!||. The following theorem provides
an analogue of the above result for .#, ! -matrices. Its proof is inspired by that of [13,
Theorem 2].

BII— W

}65’2 and dy =4 # 1. But

THEOREM 2.13. Let A be an n-by-n (n >2) matrix with ||A|| > 1 and Hj(A) =
ker(I, — A7*AY) for j=1,2,---,n. The following statements are equivalent:

(@) Ae St

(b) dim[H(A) NHi(A*)] = n—2k, for all 1 <k < |n/2], and dim[Hy,(A) N
Hy,(A*)] =0, where ko = [n/2];

(c) dim[H(A) N H(A*)] = n—2 and dim[Hy,(A) N H,(A*)] = 0, where ko =
[n/2].

For its proof, we need the following lemmas.

LEMMA 2.14. Let A be an n-by-n matrix with ker(I, — A*A) = ker(I, — AA*). If

_ AlAZ n__ A% A%
A_[AgAJ on C" =ker(I, —A*A) @ran(l, — A*A),
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then Ay =0 =As and A is unitary.

Proof. By polar decomposition, write A = UD where U is unitary and D =
(A*A)Y/2 . Write k = dim ker(I, — A*A),

UL Uy | Ix Dy
(3] - o-[33

on C" =ker(l, —A*A) @ran (I, —A*A). Note that ker(I, —A*A) = ker(I, —AA*). Thus
ran (I, — AA*) = ker(I, — AA*)* = ker(I, —A*A)L =ran (I, — A™A),

where S denotes the orthogonal complement of S C C”.
Since U(I, — A*A) = (I, — AA*)U, we have

U(ran(l, —A*A)) Cran(l, — AA*) =ran (I, — A*A)

and
U (ker(I, — A¥A)) C ker(I,, — AA™) = ker(I, — A™A).

Hence U, = 0= Us, and U] and U, are unitary. Moreover,

AU 01[k 2] _[ Ui UiDs
10 Uy| |D3 Dy| ~ |UsDs UsDy "

Since A(I, —A*A) = (I, — AA*)A, it follows that A(ran ([, —A*A)) Cran (I, —AA*) =
ran (I, — A*A). Therefore, UyD, =0 or D, =0, since U] is unitary. Hence

ArA  (Up O
A3 Al | 0 UsDyl”
Itis clear that A =0=A3 and A| = U is unitary. U

LEMMA 2.15. If A € .", then ker(I, — A*A) = ker(I, — AA*) if and only if
n=1.

Proof. If n=1, then ker(l, — A*A) = {0} ker(I, — AA™).

Conversely, if ker(I, —A*A) = ker(l —AA*), by Lemma 2.14, the restriction of A
on ker(1, —A*A) is unitary. Since A € .7, ! implies A has no unitary part, it follows
that ker(Z, —A*A) = {0}. Since rank (I, —A*A) = d4 = 1 implies

n = dim(ker(l, — A*A)) +rank (I, — A*A) = 1,
the proof is complete. [J

Notice that for any x € C" and A € ., !, we have ||Ax| > |x||. Indeed, by
Proposition 2.4 (e), we may assume that A = VD, where V € M, is unitary and D =
diag(z,1,...,1) € M, t > 1. Thus ||Ax|| = ||Dx|| > ||x||. Moreover, if x € H;(A) for
some k > 1, then

]l = [lA%]| > JA* el > - > [|Ax]| > 2]
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Thus x € Hj(A) forall 1 < j <k, and hence Hi(A) C Hy_(A) for all k. Among other
things, since A*A — I, = D?—1, is positive semi-definite, it follows that a vector x is in
Hi(A) if and only if ||A*x|| = ||x|| for k=1,...,n. We are now ready to prove Theorem
2.13.

Proof of Theorem 2.13. (a)=-(b): Let V}, = Hy(A)NH(A*) for k=1,...,n. Since
A€ .77 implies A* € .7,"!, by the above paragraph, we have V;,; C V; for all k.
Moreover, we also deduce that a vector x is in Vj if and only if ||A¥x|| = [|A**x| = ||x]|
fork=1,...,n.

We first show that AV, C Vi. Suppose {xi,...,x;} is an orthonormal basis for
Vig1. Since Vigy C Vi, we let {xi,...,x,} be an orthonormal basis for Vi, where
p>1. Let x be a unit vector in Vj, , then [|AK(Ax)|| = 1. Since V;,; CV, C--- CVy,
it implies A*Ax = x and

IA% (Ax) || = (A1) (A" A)x]| = [|(A 1) 'x = L.

Hence Ax € Vi and AV C V. Similarly, we have A*V;, | C V.

We claim that [ < max{0,p —2}.

If [ = p, then AV, = AV, | C Vi, If oqAxq+---+ 0pAx, = 0 for some scalars
o1,...,0p, then A*(ojAx; +--- 4+ apAx,) = 0. It follows that oyx; +--- 4 apx, =0
since A*Ax; =x; for j=1,---,p. But {xy,...,x,} is orthonormal, which implies that
oy =--- =0y =0. Hence {Ax,---,Ax,} is linearly independent and A(Vy) = Vj.
Interchanging A and A* in the preceding arguments yields A*(V}) = V). Therefore A
. . . A1 O
is unitarily equivalent to [ 0
contradicts the fact that A has no unitary part.

If l=p—1,let U€& M, be a unitary matrix such that xi,...,x, are the first p
columns of U. We have

on C"=V, @V}, and A; € M,, is unitary, which

Ay A
Az Ap

A=U*AU = [
C G
C3 Cy
A*Vk+l CVi,and Vg = \/{xl, e 7)617,1}, we obtain that

on C"=CPpC"P.Let Ay} = [ ] €M, on C’ = CP~1@C. Since AV, | C V4,

_[aco . a
A= |G Cyy"| and A*A:[

T1A11+J*}
0 x =*

* *
where x, y € C"7 are nonzero vectors and
X 0 .
J = A5y = H 0] = diag (0,....,0, x|,

Since Vi C ker(l, —A*A) and x; € Vi for j=1,---,p, it follows that A*A = » @B for
some B € M,,_p, and consequently

‘ e 0
A11A11_|: 0 1_||xH2 -
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Symmetrically, we have

1 0
ApAn = | ]
e [0 1—|ly|?

We now prove that C; and C3 are zero matrices. Note that

T CTC1+C§C3 CTC2+C§‘C4
N O30+ GG GG + oy

and

ApAT, = [CICi‘—i—CzCé‘ clcg+c2ﬂ

G3C +C4C5 G35 +CiCy |-
It follows that C;C1 —|—C_4C3 =0, and hence C;C1Cf +C_4C3CT =0. Combining Clcf +
CC; =1, with G3C + C4C;5 = 0, we obtain that

C5(Iy-1 — CC3) — |Ca*C5 =0

or (1—|G2||> —|C4]?)C; = 0. It implies that C, =0, since [|C||>+ |Ca> =1 — ||x[|> #
1. Similarly, since C3C;Cy +C4C5Cy = 0 and ||C3]|> + |C4|> = 1 —||y||> # 1, we have

_ ~ |10
C3; =0. Hence A = [0 .

summand of A, which is a contradiction.

By the above, we see that / < max{0,p —2}. By Lemma 2.15, we have ker(/, —
A*A) # ker(I, —AA*). Hence n — 1 < dim(ker(I, — A*A) + ker(I, — AA*)) and

] and CiCy = I,_;. It implies that C; is a unitary direct

dimV; = dim(ker(l,—A*A))+dim(ker(,—AA™))—dim[ker(l,—A*A)+ ker(I,—AA™)]
=n-1)+mn-1)—n=n-2.

Moreover,
n—2=dim(Vy) >dim(V»)+2>--- >dim(Vy) + (2k—2) > ---. 5)

Therefore, if ko = [n/2], then dimVj, =0 and dimV; = 0 for j > ko since V; C V.
On the other hand, dim(ker(Z, — (A"~ !)*A"~1)) = 1, so there is a unit vector x € C"
such that [|A"!x|| = 1. Since A is an .7, ! -matrix, we have

L= (A" x| > A" 2] = - > || Ax]| > [|x]| = L.

It follows that x,Ax,---, A" !x are unit vectors.

If n = 2ko— 1, then Ako—1(Ako—1x) = A%0=2x and (A*)ho~1Ako~lx = x are unit
vectors. So A~y eV | and Vi, _; # {0}. Similarly, if n =2k, then Ako~!(Ako~1y)
= A%0=2x and (A*)bo~1Ak~1x = x are unit vectors, and hence A% ~1x € V| # {0}.
This implies that ko is the smallest integer satisfying V. = {0} .

Now, we are going to show that [ = max{0,p —2}. If n = 2ky— 1, by (5),
dim(Vg,—1) < 1, and hence dim(Vy,—1) =1 since Vi, # {0}. If n = 2ko, by (5),
dim(Vy,—1) < 2. On the other hand,

dim(vko—l) = dimHko—l(A)+dimHko—l(A*)_dim[Hko—l (A)+Hko—l (A*))}
> (n—ko+1)+(n—ko+1)—n=2.
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Thus dim(Vy,—1) = 2 and in both cases
n—2=dim(Vy) >dim(Vp)+2>--- > dim(Vkofl) +2kog—4=n-2.

Therefore, dim(V;) =n—2j for 1 < j < |n/2], and dim(V;) =0 for j > k,.

(b)=>(c): This is trivial.

(c)=(a): We want to show that dim(ker(/, —A*A)) = n— 1. Indeed, since
dim[ker(f, — A*A) Nker(l, — AA*)] = dim[H|(A) N H,(A*)] = n—2, it follows that
n—2 < dimker(Z, — A*A) < n. If dim(ker(l, — A*A)) = n, then A is a unitary matrix,
but this contradicts the fact that dim[Hy,(A) N Hy,(A*)] =0, where ko = [n/2]. On
the other hand, if dim(ker(Z, —A*A)) = n—2 = dim[ker(l, — A*A) Nker(I, — AA*)],
then ker(Z, —A*A) C ker(I, — AA*). Note that for every finite matrix 7', the dimen-
sions of ker(I — T*T) and ker(I — TT*) are the same. Hence we deduce that ker(Z, —
A*A) = ker(I, — AA*). Lemma 2.14 now yields that A = [z)l 1;)4 on C" = ker(I, —
A*A)@ran (I, —A*A), where A; is unitary. This contradicts the fact that dim[Hy,(A) N
H;,(A*)] = 0, where ko = [n/2]. Therefore, we infer that dimker(/, —A*A) =n—1
or rank (I, —A*A) = 1. Moreover, dim[Hy,(A) N Hy,(A*)] =0 implies that A has no
unitary part. Hence, by Theorem 2.1 and ||A| > 1, we conclude that A € ., ! as
desired. [l

3. Numerical ranges
Recall that the numerical range W (A) of any n-by-n matrix A is the subset
W(A) = {{Ax,x) :x € C",||x|| = 1}

of the plane, where (-,-) denotes the usual inner product in C". Properties of the
numerical range can be found in [12, Chapter 1].

From Proposition 2.4 (e), an ., ! -matrix A can be written as a polar decompo-
sition A = UD,, where U is unitary and D, = diag(z,1,---,1) for some 7 > 1. The
following theorem shows that if 0 € W(U), then W(UD;,) CW(UD,,) for 1 <t; <.

THEOREM 3.1. Let A; be in Yn_l with A, = UD;, where U is a unitary matrix
and D; = diag(t,1,---,1), t > 1. If 0 is in W(U), then

(a) 0 e W(A,) forall t > 1,

(b) W(U) CW(A;), and

(c) W(A;) CW(A,) for 1 <11 < 1.

Proof. (a) Assume that 0 ¢ W(A,) for some 7 > 1. By convexity of W(A4,), there
exists a 0 < 6 < 27 such that Rew > 0 for all w € W (e "A,). Without loss of gen-
erality, we may assume 6 = 0. We will show that ReA > 0 for all A € 6(U). Then
W(U) C {z € C:Rez> 0} which contradicts the fact that 0 € W(U).

Let x be a unit eigenvector of U correspondingto A € o(U), then

(Ax,x) = (Ux,x) + (U(Dy — I)x,x) = A(1L + {(D; — I,)x,x)).
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Note that D, — I, is a positive semi-definite matrix. Thus 14 ((D; — I,,)x,x) > 0. Since
Re (A;x,x) > 0, it follows that ReA > 0 as required.

(b) As in the proof of (a), for any A € 6(U) and a unit eigenvector x of U corre-
sponding to A, we have

1 (D = Ln)x,x)
L+ ((Dy — Iy)x,x) 1+ (D — I)x,x)

A= {(Ax,x)- e W(A,),

since ((D; —I,)x,x) > 0 and 0 € W(A,).
Hence o(U) CW(A) and W(U) = convex hull(c(U)) C W(A) as required.
(c)Let A;y =UD;, and A,, =UDy,, t, >1; > 1. Let A be the maximal eigenvalue
of Re4;, . We want to show that A < max o (ReA4,,). Indeed, let x be a unit eigenvector
of ReA;, corresponding to A, then

1

E(UDII +D[1U*)x = A«x.
Therefore,

I .
A= §[<UDt1)C,x> + (D, U"x,x)]
i .

- E[(D,fl)c,U x) +(U"x, Dy, x)]
=Re(Dy,x,U"x).

Write U = [uy -+ u,], x= [x1 -+ -x,|7 and Dy, = I,+ Ty, where T} = diag (#; — 1,0,---,0).
Hence

A =Re((I,+Ti)x,U"x)
=Re (Ux,x)+ (11 — 1)Re (x1 (u1,x)).

Note that A = max 6 (ReA;,) > 0, because 0 € W(4;,). Since r; —1 >0 and W(U) C
W(A,,), it follows that Re (x; (u1,x)) > 0.
Similarly, we have

((ReAy, )x,x) =Re (Ux,x) + (12 — 1)Re (1 (uy,x)).
Therefore, ((ReA;,)x,x) —A = (f —11)Re (x; (u,x)) > 0. That is,
A < ((ReA;,)x,x) < maxo(ReA,).
Now, for each 0 € [0,27), let U’ = ¢/°U, then
¢®A, =U'D, and €94, =U'D,,.
From the above result that we have proven, we deduce that

max o (Re (¢4, )) < maxo(Re (eA,,))
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forall 6 € [0,27). Hence W(A;) CW(A,). O

The next example shows that the condition 0 € W(U) in Theorem 3.1 is essential.

EXAMPLE 3.2. Let

0.8986+0.1493i —0.09964-0.0911:i 0.2597+0.0792i 0.2680+0.0797i
—0.0996+4-0.0911; 0.8986+0.1493i 0.2680+0.0797i 0.2597+0.0792i
—0.2597 -0.0792i —0.2680 —0.0797 0.8986 +0.1493; —0.0996+0.0911i
—0.2680 — 0.0797 —0.2597 — 0.0792i —0.0996 +0.0911i 0.8986 + 0.1493i

U=

and By = UDy, for k = 1,2, where Dy =diag(l.1,1,1,1) and D, =diag(1.2,1,1,1).
By computing, we have o(U) C {z € C:Rez > 0}, thatis, 0 ¢ W(U), and

minc(ReB;) = 0.6522, mino(ReB,) ~ 0.6587,

and
maxo(ReB;) ~ 1.067, maxo(ReB;) ~ 1.149.

Hence W(B,) € W(B,) and W(B,) £ W(By).

We remark that Theorem 3.1 does not hold for .%, -matrices. In fact, [5, Lemma
4.2] says that if T} and T» are in ., then T} = T if and only if W(T}) C W(D>).
Hence W(A;,) € W(A,,) forany 0 <1 #1, < 1.

In the end of this paper, we give a generalization of Chien and Nakazato’s result
[3]. In [3], they study the numerical range of the tridiagonal matrix

01 00 0

r0o 10 --0

0201 ---0
A=An,r)=100 B0 --- 0l -
R |

(UREEEES 0,11710_

In particular, they examined more details on the numerical range of A(n,—1). For
n >4, they show that W(A(n,—1)) is contained in the square

Q={zeC:|Rez| < 1and|Imz| < 1}.

Moreover, if n is even, they show that the numerical range W (A(n,—1)) has 4 flat
portions on its boundary dW (A(n,—1)) (cf. [3, Theorem 8]). In fact, these 4 flat
portions lie on the boundary dQ of the square Q. Note that if {ey,..., ey} denotes the
standard basis for C* and P is the 2k-by-2k permutation matrix so that Pe, i1=ej
and Peyj = e j for 1 < j <k, then

_ 0 Ik—|-.]]:‘
PA(2k,—1)P* = |:_Ik+-]k 0 ,
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where Ji is the k-by-k Jordan block as the form

01
0"
"
0
The next theorem generalizes the Chien and Nakazato’s result about A(2k,—1) to the

. 0 L+B
2-by-2 block matrix {_ L+B 0

THEOREM 3.3. Forany B € My with ||B|| < 1 and k > 1, let

] € My, for general contraction B € M.

*
A:[ 0 I, +B

“L+B 0 }EMWC'

Then the numerical range of A is contained in the square
0={z€C:|Rez| < land|Imz| < 1}.
Moreover, the flat portions on dW (A) are
{£(t+i):teW(ImB)} and {+(1+it):t€W(ImBy)},

where M = ker(Iy — B*B) and By is the compression of B on M.
Proof. Note that

} and ImA= [0 _llk} .

ily, 0O
Since )
0B*||0B*| |B'B 0

B ~| o BB
and ||B*B|| = ||BB*|| = ||B||*> < 1, we have ||ReA|| < 1 and W(ReA) C [~1,1]. On the

other hand, since i
0 =i} | |0 —ily| |IkO
iy 0 il, 0 |0 I

it is obviously that ||[ImA|| =1 and W(ImA) C [—1,1]. Hence W(A) is contained in
the square Q.
For any x,y € C* with ||x[|>+ |ly|*> =1,

[ ] o ama ] ]

y y

GEI B B

= 2Re (Bx,y) +i2Im(y,x). (6)
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We first prove that 2Im (y,x) = 1 if and only if y = ix and ||x|| = ||y|| = 1/V2.
Assume 2Im (y,x) = 1, then

[l + Iy 112
2

1=2Im (y,x) < 2|(y,x)| <2[|y[lllx] < 2- =1

It follows that |(y,x)| = [|y||||x|| and y = €/®x. Therefore,
1 =2Im (¢"x,x) = 2Ime’®||x||> = Im (cos 6 + isin @) = sin 6.
This implies that y = ix. Moreover,

2Re (Bx,y) = 2Re (—)||x| (B, ) = Re (—i)(B

IIXH || |
and applying (6), we deduce that

W(A)N{zeC:Imz=1} C{r+i:t € W(ImB)}.
Conversely, for any € W(ImB), let t = {(ImB)x,x) for some unit vector x € C¥.

X 1 [x]|.
Replace by — |. | in (6), we obtain that
P M v [lx] ©

X

V2

X

V2

(A

v

and hence
WA)N{zeC:Imz=1}={t+i:t € W(ImB)}.

For any x,y € C* with ||x|>+||y||> = 1, we now check that 2Re (Bx,y) = 1 if and
only if y = Bx,x € M and ||x|| = [|y|| = 1/+/2. Suppose that 2Re (Bx,y) = 1, then

5 X2+ IvlP?

=1
2

1 =2Re(Bx,y) < 2[(Bx,y)| < 2[|Bx] [Iyll < 2[x[[ Iyl <
We obtain that ||x|| = ||y|| = 1/v/2, ||B|| = 1 and ||Bx|| = ||B||||x|| = ||x||. This implies
that
x€ker(I—B'B) =M.

On the other hand, since |(Bx,y)| = ||Bx]|| |||, it follows that y = ¢’® Bx. Hence
1 =2Re (Bx,y) = 2Re (¢ 9||Bx||*) = 2Re (¢ ||x||*) = Re (cos 6 — isin6) = cos 0.
We thus get y = Bx. Moreover,

2Im (y,x) = 2Im x| > (B

> Im (B >€W(Im(PMB|M))

and
W(A)N{zeC:Rez=1} C{l+it:t € W(ImBy)}.
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Conversely, for any unit vector x € M, then ||Bx|| = ||x|| = 1. A simple computation

shows that
X
“ [gz

o

, lg] ) = 1+ i((ImBy)x,x),
V2
and hence

W(A)N{zeC:Rez=1}={1+it:t e W(ImBy)}.

I, O L 0| _
|:O —Ik:|A [0 —Ik:| =4

Hence our assertion follows from the fact that W(A) = W(—A). O

Note that

We remark that if B =J;, then W(ImB) = [—cos(x/(k+1)),cos(m/(k+1))] and
W(ImBy) = [—cos(m/k),cos(m/k)]. Therefore, the numerical range W (A(2k,—1))
can be described clearly.

For odd n =2k — 1, k > 3, Chien and Nakazato show that W(A(2k—1,—1)) is
the convex hull of the two ellipses ¢™/*E and ¢**/*E , where E is the ellipse given by
the equation: x?/(1+ cos(/k)) +y*/(1 —cos(n/k)) = 1 (cf. [3, Theorem 7]). Now
we can see that

ind (1+i)y/cos(n/k) 21/1—cos(n/k)
‘ ME‘”([ 0 (—1-1) cos(n/k)])

and

in/dp (—1+1i)/cos(m/k) 2+/1—cos(r/k)
s (A SR =t )]

Moreover, these two ellipses ¢”*/*E and ¢>/*E are inscribed in the square Q. Notice

that if B is the k-by- (k — 1) submatrix of J; obtained by deleting its last column, then

B*B = I_; . On the other hand, if {ey,...,ex 1} denotes the standard basis for C*~!

and P is the (2k — 1)-by- (2k — 1) permutation matrix so that Pey;_| =e; for 1 < j<k
and Peyj = ey for 1 < j<k—1,then

. 0 I+B

PA(2k—1,~1)P* = [—I,’(—FB* “ ] :

where I is the k-by-(k— 1) submatrix of I; obtained by deleting its last column.
Therefore, we are interested in the numerical ranges of such a 2-by-2 block matrices
for any k-by-(k— 1) matrix B with B*B = I;_;. The next theorem shows that the
numerical range of such 2-by-2 block matrix is also the convex hull of two ellipses.
Among other things, the k-by-(k— 1) matrix B with B*B = I;_; is a submatrix
of an .7} -matrix obtained by deleting its last column. Indeed, let 7" be an operator
in ;. We will consider a special matrix representation for 7. Since K = ker(l; —
T*T) has codimension 1, there is an orthonormal basis {%p, ---,/} of CF such that
{hi, -+, hg—1} forms a basis for K. Let T have the matrix representation [fi--- f¢]
with respect to this basis, where each f; = T'h; represents a column vector. Since
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K consists of all vectors x in C* with the property ||Tx|| = ||x||, we have ||f;]| = 1
(1<j<k=1), |Ifill <1land filfj (1 <i# j<k).Let B=[fi--- fi_1]. Itis clear
that B*B = ;. We can see that J; € .%; and the standard basis {ej, ---,e;} for C*
satisfies V{ey, ---,ex_1 } = ker(Ilx — JiJ;) . Hence the result of Chien and Nakazato [3,
Theorem 7] is a special case of the following theorem.

THEOREM 3.4. Suppose that B is an k-by-(k—1) (k > 3) matrix with B'B =
L1 and I}, is the k-by-(k — 1) submatrix of I obtained by deleting its last column.
Let ,
0 I, +B
A: |:_I]/C*+B>k kO :| 6M2k71a

then the numerical range

o (P10 [0 2T )

where oo =min 6(ImB') <0, B =max 6(ImB’) > 0 and B' = [*B& [0].

Proof. Let A=A [0], that is,

~ 0 I'+B
A‘{—I,’{’JFBT o | &Mw

where I} = [I} 0] = I,_, & [0] € My and B; = [B 0] € M;. Notice that

~ |0 B [0 =i
ReA_[BT 0} and ImA_[l.Il,(, NE

Let f(0) = maxc(Re (e "A)) for 6 € [0,27). Observe that
Re (¢ ®A) = cosOReA +sin O ImA = [79* 759] ,
0

0 Tp]
Ty 0

where Ty =cos 6 -B| —isin6-I;. Note that [
This gives o(Re (e ®A)) = 6(—Re (e *®A)). Hence

S . 0 —Ty
is unitarily equivalent to ‘ .
~Ty 0

1/2 . 1/2

07 0 Tg| |0 Ty TeT, O

R 1 [
(0) = IRe(e ) = || 7. 0| |7 0 1,

Since T; Ty = I} —sin26 - ImB’ and || T, Ty | = || ToT, ||, we have
£(6) = ||I{ —sin26 -ImB'||'/?
— osin Ho<o<—- or 1< —;
VI=osin20, if0<0< 2 0 32”
= 3

«/1—ﬁsin267ifg<6<7r or ggegzn



884 C.-C. CHANG, H.-L. GAU, Y.-S. WANG, S.-C. WU AND Y.-T. YEH

Next, let
o [\/[_3(—1—1-1') 2 1—[3]
0 VB(1—i)

and g(0) = maxco(Re(e~9C)) for 6 € [0,27). An easy computation shows that

Re (e-10C _[ —+/B(cos@ —sinh) \/l—ﬁ(cose—isine)]
e(eC) = \/1—B(cos +isinB) /B(cosB —sinh)

and g(0) = /1 —Bsin26 for 6 € [n/2,n]U[37/2,2x]. Similarly, let

D {\/(—a)(l—i—i) 2V1+a ]
0 ) (—1— i)

and h(0) = maxo(Re (e~9D)) for all 6 € [0,27). Since

V—o(cosO +sinf) 1+ a(cos6 —isin6)
V14 o(cos0+isinf) —y/—a(cosO+sinf) |’

it is easy to check that 4(6) = v/1 — asin20 for 6 € [0,7/2]U[r,37/2]. Hence we
conclude that

Re (e D) = {

3
h(e),ifogegg or ngegg,

1(6)= T 3
g(6),if S <O<m or —<6<2m,

or, W(A) = W(A) = W(C & D), thus completing the proof. [J
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