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ONE–DIMENSIONAL SCHRÖDINGER OPERATORS WITH

δ ′–INTERACTIONS ON A SET OF LEBESGUE MEASURE ZERO

JOHANNES F. BRASCHE AND LEONID NIZHNIK

Abstract. Let Γ be a compact subset of R of Lebesgue measure zero. The notion ’Schrödinger
operator defining a δ ′ -interaction on Γ ’ is introduced. The dimension of the range of the spectral
projection χ(−∞,0)(A) of a Schrödinger operator A defining a δ ′ -interaction on Γ is not less
than the number of isolated points of Γ where the intensity of the δ ′ -interaction is negative.
In the case that the set Γ is endowed with a Radon measure a method how to construct a large
class of such operators is presented and for the operators from this class it is shown that their
absolutely continuous spectra and their essential spectra are equal to the nonnegative real half-
axis. Constructive examples of such operators with infinitely many negative eigenvalues are
given.
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