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ESSENTIAL SPECTRA OF QUASI–PARABOLIC COMPOSITION

OPERATORS ON HARDY SPACES OF THE POLY–DISC

UĞUR GÜL

(Communicated by Raúl Curto)

Abstract. In this paper we study the essential spectra of a class of composition operators on the
Hilbert-Hardy space of the bi-disc which is called ”quasi-parabolic” and whose one variable ana-
logue was studied in [2]. As in [2], quasi-parabolic composition operators on the Hilbert-Hardy
space of the bi-disc are written as a linear combination of Toeplitz operators and Fourier multipli-
ers. The C*-algebra generated by Toeplitz operators and Fourier multipliers on the Hilbert-Hardy
space of the bi-disc is written as the tensor product of the similar C*-algebra in one variable with
itself. As a result we find a nontrivial set consisting of spiral curves lying inside the essential
spectra of quasi-parabolic composition operators.

Introduction

Quasi-parabolic composition operators is a generalization of the composition op-
erators induced by parabolic linear fractional non-automorphisms of the unit disc that
fix a point ξ on the boundary. These linear fractional transformations for ξ = 1 take
the form

ϕa(z) =
2iz+a(1− z)
2i+a(1− z)

with ℑ(a) > 0. Quasi-parabolic composition operators on H2(D) are composition
operators induced by the symbols where ‘a ’ is replaced by a bounded analytic function
‘ψ ’ for which ℑ(ψ(z)) > δ > 0 ∀z ∈ D . We recall that the set of cluster points
Cξ (ψ) of ψ ∈H∞(D) at ξ ∈ T is defined to be the set of points z ∈ C for which there
is a sequence {zn} ⊂ D so that zn → ξ and ψ(zn) → z . Similarly for the bi-disc,
C(ξ1,ξ2)(ψ) of ψ ∈ H∞(D2) at (ξ1,ξ2) ∈ T2 is defined to be the set of points z ∈ C

for which there is a sequence {zn} ⊂ D2 so that zn → (ξ1,ξ2) and ψ(zn) → z . In [2]
we showed that if ψ ∈ QC(T) then these composition operators are essentially normal
and their essential spectra are given as

σe(Cϕ) = {eizt : t ∈ [0,∞],z ∈ C1(ψ)}∪{0}

where C1(ψ) is the set of cluster points of ψ at 1 .
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In this work we investigate this phenomenon in the bi-disc setting. We look at
the composition operators on the Hardy space of the bi-disc induced by symbols of the
form

ϕ(z1,z2) =
(

2iz1 + ψ1(z1,z2)(1− z1)
2i+ ψ1(z1,z2)(1− z1)

,
2iz2 + ψ2(z1,z2)(1− z2)
2i+ ψ2(z1,z2)(1− z2)

)

where ψ1,ψ2 ∈ H∞(D2) such that ℑ(ψ j(z1,z2)) > δ > 0 ∀(z1,z2) ∈ D2 , j = 1,2.
These symbols are carried over via the Cayley transform to the symbols of the form

ϕ̃(w1,w2) = (w1 + ψ1 ◦C2(w1,w2),w2 + ψ2 ◦C2(w1,w2))

on the two dimensional upper half-plane H2 ,i.e.

C−1
2 ◦ϕ ◦C2 = ϕ̃

where

C2(z1,z2) =
(

z1 − i
z1 + i

,
z2 − i
z2 + i

)

is the Cayley transform. In particular we prove the following result:

MAIN THEOREM 2. Let ϕ : D2 → D2 be an analytic self-map of D2 such that

ϕ(z1,z2) =
(

2iz1 + ψ1(z1,z2)(1− z1)
2i+ ψ1(z1,z2)(1− z1)

,
2iz2 + ψ2(z1,z2)(1− z2)
2i+ ψ2(z1,z2)(1− z2)

)

where ψ j ∈ H∞(D2) with ℑ(ψ j(z1,z2)) > ε > 0 for all (z1,z2) ∈ D2 , j = 1,2 . Then
Cϕ : H2(D2)→ H2(D2) is bounded. Moreover if ψ j ∈ (QC⊗QC)∩H∞(D2) then we
have

σe(Cϕ) ⊇ {ei(z1t1+z2t2) : t1,t2 ∈ [0,∞],z1 ∈ C(1,1)(ψ1)and z2 ∈ C(1,1)(ψ2)}∪{0},

where C(1,1)(ψ) is the set of cluster points of ψ at (1,1) ∈ T2 .

We work on the two dimensional upper half-plane H2 and use Banach algebra
techniques to compute the essential spectra of operators that correspond to “quasi-
parabolic” operators. As in [2] translation operators on H2(H2) can be considered
as Fourier multipliers on H2(H2) where H2 is considered as a tubular domain (we
refer the reader to [8] for the definition and properties of Fourier multipliers on Hardy
and Bergman spaces of tubular domains in several complex variables). Throughout
the present work, H2(H2) will be considered as a closed subspace of L2(R2) via the
boundary values. With the help of Cauchy integral formula we prove an integral for-
mula that gives composition operators as integral operators. Using this integral for-
mula we show that operators that correspond to“quasi-parabolic” operators fall in a
C*-algebra generated by Toeplitz operators and Fourier multipliers.

The remainder of this paper is organized as follows: In section 1 we give the basic
definitions and preliminary material that we will use throughout. For the benefit of the
reader we explicitly recall some facts about C*-algebras, tensor products of C*-algebras
and nuclear C*-algebras. Using a version of Paley-Wiener theorem due to Bochner we
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also introduce the C*-algebra of Fourier multipliers acting on H2(H2) . In Section 2 we
first show that “quasi-parabolic” composition operators are bounded on H2(H2) and
prove an integral representation formula for composition operators on H2(H2) . Then
we use this integral formula together with the boundedness result to prove that a “quasi-
parabolic” composition operator is written as a series of Toeplitz operators and Fourier
multipliers which converges in operator norm. In section 3 we analyze the C*-algebra
generated by Toeplitz operators with QC(R)⊗QC(R) symbols and Fourier multipliers
modulo compact operators. We write this C*-algebra as the tensor product of the C*-
algebra Ψ in [2] with itself. In doing this we follow the approach taken by [1] for
analyzing the Toeplitz C*-algebra of the bi-disc. We use this tensor product to identify
the character space of the C*-algebra generated by Toeplitz operators with QC(R)⊗
QC(R) symbols and Fourier multipliers modulo compact operators. In section 4, using
the machinery developed in sections 2 and 3, we obtain some results about the essential
spectra of “quasi-parabolic” composition operators.

1. Preliminaries

In this section we fix the notation that we will use throughout and recall some
preliminary facts that will be used in the sequel.

Let S be a compact Hausdorff topological space. The space of all complex valued
continuous functions on S will be denoted by C(S) . For any f ∈ C(S) , ‖ f ‖∞ will
denote the sup-norm of f , i.e.

‖ f ‖∞= sup{| f (s) |: s ∈ S}.
For a Banach space X , K(X) will denote the space of all compact operators on X and
B(X) will denote the space of all bounded linear operators on X . The open unit disc
will be denoted by D , the open upper half-plane will be denoted by H , the real line
will be denoted by R and the complex plane will be denoted by C . The one point
compactification of R will be denoted by Ṙ which is homeomorphic to T . For any
z ∈ C , ℜ(z) will denote the real part, and ℑ(z) will denote the imaginary part of z ,
respectively. For any subset S ⊂ B(H) , where H is a Hilbert space, the C*-algebra
generated by S will be denoted by C∗(S) and for any subset S ⊂ A where A is a C*-
algebra, the closed two-sided ideal generated by S will be denoted by I∗(S) .

The Hardy space of the bi-disc H2(D2) is identified as the tensor product of the
two copies of the classical Hardy space of the unit disc H2(D) , i.e. the closure of the
linear span of the set of functions

{h(z,w) = f (z)g(w) : f ,g ∈ H2(D)}
with respect to the inner product

〈h1,h2〉 =
∫ 2π

0

∫ 2π

0
h1(eiθ1 ,eiθ2)h2(eiθ1 ,eiθ2)dθ1dθ2.

In the same way the Hardy space of the two dimensional half-plane H2(H2) is identi-
fied as the tensor product of the two copies of the Hardy space of the upper half-plane
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H2(H) . Note that H2(D2) and H2(H2) are isometrically isomorphic. An isometric
isomorphism Φ : H2(D2) → H2(H2) is given by

(Φ f )(z1,z2) =
(

1
z1 + i

)(
1

z2 + i

)
f

(
z1− i
z1 + i

,
z2− i
z2 + i

)

Under this isometric isomorphism Cϕ for an analytic self-map ϕ : D2 → D2 is carried

over to ( (ϕ̃1(z1,z2)+i)(ϕ̃2(z1,z2)+i)
(z1+i)(z2+i) )Cϕ̃ on H2(H2) through Φ , where ϕ̃ = C−1

2 ◦ϕ ◦C2 ,
i.e.we have

ΦCϕΦ−1 = T
( (ϕ̃1(z1 ,z2)+i)(ϕ̃2(z1,z2)+i)

(z1+i)(z2+i) )
Cϕ̃ (1)

A tubular domain Π = X ⊕ iΛ is a domain in Cn where Λ ⊆ Rn is a cone i.e. x ,y ∈ Λ
⇒ x+y∈Λ and ∀t > 0, x∈Λ , tx∈Λ . We observe that H2 = R2⊕ i(R+)2 is a tubular
domain. We have the following Paley-Wiener type theorem due to Bochner (see [8], p.
93):

THEOREM 1. Let Π = X ⊕ iΛ be a tubular domain where Λ ⊆ Rn is a cone and
X ∼= Rn then the Fourier transform

F ( f )(x) =
1

(2π)
n
2

∫
Rn

f (t)e−ix.t dt (2)

maps H2(Π) isometrically onto L2(Λ∗) where Λ∗ = {y∈ Rn : x.y > 0 ∀x ∈ Λ} is the
dual cone of Λ .

Since H2 = R2⊕ i(R+)2 and ((R+)2)∗ = (R+)2 , Bochner’s theorem gives us that

F : H2(H2) → L2((R+)2)

is an isometric isomorphism.
Using Bochner’s theorem we define the following class of operators on H2(H2)

which we call “Fourier Multipliers”: let ϑ ∈ C0((R+)2) then Dϑ defined in the fol-
lowing way

Dϑ = F−1Mϑ F

maps H2(H2) into itself. Let

FC0((R+)2) = {Dϑ : ϑ ∈C0((R+)2)}

then FC0((R+)2) is a commutative C*-algebra of operators on H2(H2) and

FC0((R+)2)
∼= C0((R+)2).

For any Banach algebra A let M(A) denote the space of characters of A i.e.

M(A) = {x ∈ A∗ : x(ab) = x(a)x(b)}.
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where A∗ is the dual space of A . If A has identity then M(A) is a compact Hausdorff
topological space with the weak* topology. If A is commutative then M(A) coincides
with the maximal ideal space of A . If A is a C*-algebra and I is a two-sided closed
ideal of A , then the quotient algebra A/I is also a C*-algebra. For a Banach algebra A ,
we denote by com(A) the two-sided closed ideal in A generated by the commutators
{a1a2−a2a1 : a1,a2 ∈ A} . It is not difficult to see that

M(A/I) = M(A) (3)

for any closed two-sided ideal I ⊆ com(A) since any character φ is zero on com(A) .For
a ∈ A the spectrum σA(a) of a on A is defined as

σA(a) = {λ ∈ C : λe−a is not invertible in A},
where e is the identity of A . We will use the spectral permanency property of C*-
algebras (see [6], pp. 283); i.e. if A is a C*-algebra with identity and B is a closed
*-subalgebra of A , then for any b ∈ B we have

σB(b) = σA(b). (4)

To compute essential spectra we employ the following important fact (see [6], pp. 268):
If A is a commutative Banach algebra with identity then for any a ∈ A we have

σA(a) = {x(a) : x ∈ M(A)}.
In general (for A not necessarily commutative), we have

σA(a) ⊇ {x(a) : x ∈ M(A)}. (5)

Let H and K be two given Hilbert spaces. On the algebraic tensor product H ⊗K of
H and K , there is a unique inner product 〈., .〉 satisfying the following equation

〈x1 ⊗ y1,x2 ⊗ y2〉 = 〈x1,x2〉H〈y1,y2〉K
∀x1,x2 ∈ H y1,y2 ∈ K (See [5] pp. 185). For any T ∈ B(H) and S ∈ B(K) there is a
unique operator T ⊗̂S ∈ B(H⊗K) satisfying the following equation:

(T ⊗̂S)(x⊗ y) = Tx⊗Sy

Moreover ‖ T ⊗̂S ‖= ‖ T ‖‖ S ‖ (See [5] pp. 187). For any two C*-algebras A ⊂ B(H)
and B ⊂ B(K) the algebraic tensor product A�B is defined to be the linear span of
operators of the form T ⊗̂S i.e.

A�B = {
n

∑
j=1

Tj⊗̂S j : Tj ∈ A, S j ∈ B}

The algebraic tensor product A�B becomes a *-algebra with multiplication

(x1 ⊗ y1)(x2⊗ y2) = x1x2⊗ y1y2
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and involution
(x⊗ y)∗ = x∗ ⊗ y∗

However there might be more than one norm making the closure of A�B into a C*-
algebra. If γ is a pre C*-algebra norm on A�B we denote by A⊗γ B the closure of A�
B with respect to this pre C*-algebra norm γ . A C*-algebra A is called “nuclear” if for
any C*-algebra B there is a unique pre C*-algebra norm on the algebraic tensor product
A�B of A and B . A well-known theorem of Takesaki asserts that any commutative
C*-algebra is nuclear (see [5] p. 205). An extension of a C*-algebra by nuclear C*-
algebras is nuclear, i.e. if A , B and C are C*-algebras s.t. the following sequence

0 −→ A
j−→ B

π−→C −→ 0

is short exact and A and C are nuclear then B is also nuclear (see [5] p. 212). For
any separable Hilbert space H the C*-algebra of all compact operators K(H) on H is
nuclear (see [5] pp. 183 and 196). For any separable Hilbert spaces H1 and H2 we have

K(H1⊗H2) = K(H1)⊗K(H2) (6)

(See [1] pp. 207). We recall the following fact about tensor products of C*-algebras: If
A and B are C*-algebras then we have

M(A⊗B)∼= M(A)×M(B) (7)

that is the map (φ1,φ2) → φ1⊗̂φ2 where

(φ1⊗̂φ2)(a⊗b) = φ1(a)φ2(b) (8)

is a homeomorphism of M(A)×M(B) onto M(A⊗B) . See [5] pp. 189. The essential
spectrum σe(T ) of an operator T acting on a Banach space X is the spectrum of the
coset of T in the Calkin algebra B(X)/K(X) , the algebra of bounded linear operators
modulo compact operators. The well known Atkinson’s theorem identifies the essential
spectrum of T as the set of all λ ∈ C for which λ I −T is not a Fredholm operator.
The essential norm of T will be denoted by ‖ T ‖e which is defined as

‖ T ‖e= inf{‖ T +K ‖: K ∈ K(X)}
The bracket [·] will denote the equivalence class modulo K(X) . Using the isomet-
ric isomorphism Φ , one may transfer Fatou’s theorem in the bi-disc case to two di-
mensional upper half-plane and may embed H2(H2) in L2(R2) via f −→ f ∗ where
f ∗(x1,x2) = limy→0 f (x1 + iy,x2 + iy) . This embedding is an isometry.

Throughout the paper, using Φ , we will go back and forth between H2(D2) and
H2(H2) . We use the property that Φ preserves spectra, compactness and essential
spectra i.e. if T ∈ B(H2(D2)) then

σB(H2(D2))(T ) = σB(H2(H2))(Φ◦T ◦Φ−1),

K ∈ K(H2(D2)) if and only if Φ◦K ◦Φ−1 ∈ K(H2(H2)) and hence we have

σe(T ) = σe(Φ◦T ◦Φ−1). (9)
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The local essential range R∞(ψ) of ψ ∈ L∞(R) at ∞ is defined as the set of points z ∈
C so that, for all ε > 0 and n > 0, we have

λ (ψ−1(B(z,ε))∩ (R− [−n,n])) > 0,

where λ is the Lebesgue measure on R . The following proposition from Hoffman’s
book (see [3] pp. 171) relates the local essential range to the values of a function f ∈ A
in a function algebra A on the fiber Mα(A) of the maximal ideal space of the function
algebra:

PROPOSITION 2. Let f be a function in A ⊆ L∞(T) where A is a closed *-
subalgebra of L∞(T) which contains C(T) . The range of f̂ on the fiber Mα(A) consists
of all complex numbers ζ with this property: for each neighborhood N of α and each
ε > 0 , the set

{| f − ζ |< ε}∩N

has positive Lebesgue measure.

Hoffman states and proves Proposition 2 for A = L∞(T) but in fact his proof works
for a general C*-subalgebra of L∞(T) that contains C(T) . By Cayley transform Hoff-
man’s proposition holds for L∞(R) as well. Let us also recall the following fact from
[2] and [7] that we will use in the last section:

LEMMA 3. If ψ ∈ QC(R)∩H∞(H) we have

R∞(ψ) = C∞(ψ)

where C∞(ψ) is the cluster set of ψ at infinity which is defined as the set of points z ∈
C for which there is a sequence {zn} ⊂ H so that zn → ∞ and ψ(zn) → z.

See [2] and [7] for a proof of this lemma.
We finish this section by recalling an elementary geometric lemma from [2] which

we will use in the next section:

LEMMA 4. Let K ⊂ H be a compact subset of H . Then there is an α ∈ R+ such
that sup{| α i−z

α |: z ∈ K} < δ < 1 for some δ ∈ (0,1) .

See [2] for a proof of this lemma.

2. An approximation scheme for quasi-parabolic composition operators on
Hardy spaces of the bi-disc

This section is a generalization of sec. 3 of [2] to bi-disc. As in [2] we devise an
integral representation formula for composition operators and we develop an approxi-
mation scheme using this integral formula for composition operators induced by maps
of the form ϕ : H

2 → H
2

ϕ(z1,z2) = (p1z1 + ψ1(z1,z2), p2z2 + ψ(z1,z2))
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where pi > 0, i = 1,2 and ψi ∈ H∞(H2) such that ℑ(ψi(z1,z2)) > ε > 0, ∀(z1,z2) ∈
H2 . Boundedness of composition operators induced by such kind of mappings above
is not trivial. In order to show that quasi-parabolic composition operators on H2(H2)
are bounded we will use the following lemma due to Jafari (see [4] pp. 872):

LEMMA 5. Suppose ϕ : Hn → Hn is holomorphic and Cϕ is bounded(compact)
on a dense subset of Hp(Hn) for 1 < p < ∞ . Then Cϕ is bounded(compact)

Although Jafari states and proves this lemma for the poly-disc Dn , his proof carries
over to our case in exactly the same manner as he does it for the poly-disc. Using lemma
5 we prove the following result:

PROPOSITION 6. Let ϕ(z1,z2) = (p1z1 + ψ1(z1,z2), p2z2 + ψ2(z1,z2)) be an an-
alytic self-map of H2 into itself such that ψ j ∈ H∞(H2) , p j > 0 , and ℑ(ψ j(z1,z2)) >
δ > 0 for all (z1,z2) ∈ H2 where j = 1,2 . Then Cϕ is bounded on H2(H2) .

Proof. Without loss of generality we may take p1 = p2 = 1, for otherwise we
consider the operator Cϕ̃ instead of Cϕ where

ϕ̃(z1,z2) = (z1 + ψ1(
z1

p1
,
z2

p2
),z2 + ψ2(

z1

p1
,
z2

p2
)).

We observe that Vp1,p2Cϕ̃ = Cϕ where Vp1,p2( f )(z1,z2) = f (p1z1, p2z2) . Since Vp1,p2

is invertible Cϕ is bounded if and only if Cϕ̃ is bounded.
The Hilbert space H2(H2) is a reproducing kernel Hilbert space with reproducing

kernel functions

kw1,w2(z1,z2) =
1

(2i)2(w1 − z1)(w2 − z2)

we observe that
C∗

ϕ (kw1,w2) = kϕ(w1,w2)

and that

‖ kw1,w2 ‖=
1

ℑ(w1)ℑ(w2)
(10)

where C∗
ϕ is the Hilbert space adjoint of Cϕ . Let E = {∑n

j=1 c jkw1 j ,w2 j : c j ∈ C} then
it is clear that E is dense in H2(H2) . Observe that by equation (10) we have

‖C∗
ϕkw1,w2 ‖ =

1
ℑ(ϕ1(w1,w2))ℑ(ϕ2(w1,w2))

�
(

ℑ(w1)
ℑ(w1)+ δ

)(
ℑ(w2)

ℑ(w2)+ δ

)(
1

ℑ(w1)ℑ(w2)

)
�‖ kw1,w2 ‖

for all (w1,w2) ∈ H2 , since ℑ(ψ1(w1,w2)) > δ > 0 where

ϕ(w1,w2) = (ϕ1(w1,w2),ϕ2(w1,w2).
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Hence C∗
ϕ is bounded on E and since

| 〈Cϕu,v〉 |=| 〈u,C∗
ϕv〉 |=| 〈C∗

ϕv,u〉 |=| 〈C∗
ϕv,u〉 |� C ‖ u ‖‖ v ‖

for some C > 0 and for all u,v ∈ E , Cϕ is also bounded on E . Since E is dense in
H2(H2) , by lemma 5 Cϕ is bounded on H2(H2) . �

Like in one variable case, for any f ∈ H2(H2) we have the following Cauchy
Integral formula

f (z1,z2) =
1

(2π i)2

∫ ∞

−∞

∫ ∞

−∞

f ∗(x1,x2)dx1dx2

(x1 − z1)(x2− z2)
(11)

Using this integral formula we prove the following proposition

PROPOSITION 7. Let ϕ : H2 → H2 be an analytic function such that for

ϕ∗(x) = lim
y→0

ϕ(x+ iy)

where y = (y,y)∈R
2 and ϕ∗(x1,x2)= (ϕ1(x1,x2),ϕ2(x1,x2)) we have ℑ(ϕ∗

i (x1,x2))>
0 for almost every x = (x1,x2) ∈ R2 . Then the composition operator Cϕ on H2(H2)
is given by

(Cϕ f )∗(x1,x2) = lim
y→0

(Cϕ f )(x+ iy)

=
1

(2π i)2

∫ ∞

−∞

∫ ∞

−∞

f ∗(t1, t2)dt1dt2
(t1 −ϕ∗

1 (x))(t2−ϕ∗
2 (x))

.

Proof. By the equation (11) above one has

(Cϕ f )(x+ iy) =
1

(2π i)2

∫ ∞

−∞

∫ ∞

−∞

f ∗(t1, t2)dt1dt2
(t1−ϕ1(x+ iy))(t2−ϕ2(x+ iy))

where x = (x1,x2) ∈ R2 and y = (y,y) ∈ R2 . Let x = (x1,x2) ∈ R2 be such that
limy→0 ϕ(x+ iy) = ϕ∗(x) = (ϕ∗

1 (x),ϕ∗
2 (x)) exists and ℑ(ϕ∗

j (x)) > 0, j = 1,2. We
have

∣∣∣∣Cϕ( f )(x+ iy)− 1
(2π i)2

∫ ∞

−∞

∫ ∞

−∞

f ∗(t1,t2)dt1dt2
(t1 −ϕ∗

1(x))(t2 −ϕ∗
2 (x))

∣∣∣∣ (12)

=

∣∣∣∣∣
1

(2π i)2

(∫
R2

f ∗(t1,t2)dt1dt2
∏2

j=1(t j −ϕ j(x+ iy))
−

∫
R2

f ∗(t1,t2)dt1dt2
∏2

j=1(t j −ϕ∗
j (x))

)∣∣∣∣∣
=

∣∣∣∣∣
1

(2π i)2

∫
R2

(
1

∏2
j=1(t j −ϕ j(x+ iy))

− 1

∏2
j=1(t j −ϕ∗

j (x))

)
f ∗(t)dt

∣∣∣∣∣
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Consider

1
(t1−ϕ1(x+ iy))(t2−ϕ2(x+ iy))

− 1
(t1 −ϕ∗

1(x))(t2 −ϕ∗
2 (x))

=
1

(t1−ϕ1(x+ iy))(t2−ϕ2(x+ iy))
− 1

(t1 −ϕ∗
1(x+ iy))(t2−ϕ∗

2 (x))

+
1

(t1−ϕ1(x+ iy))(t2−ϕ2(x))
− 1

(t1 −ϕ∗
1 (x))(t2 −ϕ∗

2(x))

=
ϕ2(x1 + iy,x2 + iy)−ϕ∗

2(x1,x2)
(t1−ϕ1(x+ iy))(t2−ϕ2(x))(t2 −ϕ2(x+ iy))

+
ϕ1(x1 + iy,x2 + iy)−ϕ∗

1(x1,x2)
(t1−ϕ1(x+ iy))(t2−ϕ2(x))(t2−ϕ2(x+ iy))

Inserting this into equation (12) above we obtain∣∣∣∣Cϕ ( f )(x+ iy)− 1
(2π i)2

∫ ∞

−∞

∫ ∞

−∞

f ∗(t1,t2)dt1dt2
(t1 −ϕ∗

1 (x))(t2 −ϕ∗
2(x))

∣∣∣∣
� | ϕ2(x+ iy)−ϕ∗

2(x) |
4π2

∣∣∣∣
∫

R2

f ∗(t1,t2)dt1dt2
(t1−ϕ1(x+ iy))(t2−ϕ2(x))(t2 −ϕ2(x+ iy))

∣∣∣∣
+
| ϕ1(x+ iy)−ϕ∗

1(x) |
4π2

∣∣∣∣
∫

R2

f ∗(t1, t2)dt1dt2
(t1 −ϕ1(x+ iy))(t2−ϕ2(x))(t2−ϕ2(x+ iy))

∣∣∣∣
� ‖ f ‖2

| ϕ2(x+ iy)−ϕ∗
2(x) |

4π2

(∫
R2

dt1dt2
| (t2−ϕ2(x))∏2

j=1(t j −ϕ j(x+ iy)) |2
) 1

2

+ ‖ f ‖2
| ϕ1(x+ iy)−ϕ∗

1(x) |
4π2

(∫
R2

dt1dt2
| (t2 −ϕ2(x))∏2

j=1(t j −ϕ j(x+ iy)) |2
) 1

2

by Cauchy-Schwarz inequality. Now consider
∫

R2

dt1dt2
| (t1 −ϕ1(x+ iy))(t2−ϕ2(x))(t2−ϕ2(x+ iy)) |2

=
(∫ ∞

−∞

dt1
| t1−ϕ1(x+ iy) |2

)(∫ ∞

−∞

dt1
| (t2−ϕ2(x))(t2 −ϕ2(x+ iy)) |2

)

We have limy→0 ϕ j(x+ iy) = ϕ∗
j (x) , j = 1,2. Let

ε0 =
inf{| t−ϕ∗

1 (x) : t ∈ R}∪{| t−ϕ∗
2 (x) : t ∈ R}

2

Choose ε0 > ε > 0 such that ∀ 0 < y < δ we have

| ϕ j(x+ iy)−ϕ j(x) |< ε
2

Then one has by triangle inequality

| t1−ϕ1(x+ iy) |�| t1−ϕ∗
1 (x) | −ε0 > ε0
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and this implies that

1
| t1−ϕ1(x+ iy) | � 1

| t1−ϕ∗
1 (x) | −ε0

hence we have
∫ ∞

−∞

dt1
| t1−ϕ1(x+ iy) |2 �

∫ ∞

−∞

dt1
(| t1−ϕ∗

1 (x) | −ε0)2 = Mε0,x

since the integral on the right hand side converges and its value only depends on ε0 and
x = (x1,x2) ∈ R2 . Similarly by the same arguments as in [2] we have

∫ ∞

−∞

dt2
| (t2−ϕ∗

2 (x))(t2 −ϕ2(x+ iy)) |2

�
∫ ∞

−∞

dt2
(| t2−ϕ∗

2 (x) | −ε0)2 | t2−ϕ∗
2 (x) |2 = Kε0,x

As a result we have
∣∣∣∣Cϕ( f )(x+ iy)− 1

(2π i)2

∫ ∞

−∞

∫ ∞

−∞

f ∗(t1,t2)dt1dt2
(t1 −ϕ∗

1(x))(t2 −ϕ∗
2 (x))

∣∣∣∣
� (Mε0,xKε0,x)

1
2

4π2 (| ϕ1(x+ iy)−ϕ∗
1(x) | + | ϕ2(x+ iy)−ϕ∗

2(x) |)

� (Mε0,xKε0,x)
1
2

4π2 ε

Therefore

lim
y→0

(Cϕ f )(x1 + iy,x2 + iy) =
1

(2π i)2

∫ ∞

−∞

∫ ∞

−∞

f ∗(t1,t2)dt1dt2
(t1 −ϕ∗

1 (x1,x2))(t2 −ϕ∗
2 (x1,x2))

�

Throughout the rest of the paper we will identify a function f in H2(H2) or
H∞(H2) with its boundary function f ∗ . We formulate and prove our approximation
scheme as the following proposition.

PROPOSITION 8. Let ϕ : H2 → H2 be an analytic self-map of H2 such that

ϕ(z1,z2) = (p1z1 + ψ1(z1,z2), p2z2 + ψ2(z1,z2))

p1, p2 > 0 and ψ j ∈ H∞ is such that ℑ(ψ j(z)) > ε > 0 , j = 1,2 for all (z1,z2) ∈ H2 .
Then there is an α ∈ R

+ such that for Cϕ : H2(H2) → H2(H2) we have

Cϕ = Vp1,p2

∞

∑
n,m=0

Tτn
1
Tτm

2
Dϑ1,nDϑ2,m ,
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where the convergence of the series is in operator norm, Tτn
1

and Tτm
2

are the Toeplitz
operators with symbols τn

1 and τm
2 respectively,

τ j(x1,x2) = iα − ψ̃ j(x1,x2), ψ̃(x1,x2) = ψ
(

x1

p1
,
x2

p2

)
,

Vp1,p2 is the dilation operator defined as

(Vp1,p2 f )(z1,z2) = f (p1z1, p2z2)

and Dϑ1,n and Dϑ2,m are the Fourier multipliers with ϑ1,n(t1,t2) = (−it1)ne−αt1

n! and

ϑ2,m(t1, t2) = (−it2)me−αt2

m! respectively.

Proof. Since for ϕ(z1,z2) = (p1z1 + ψ1(z1,z2), p2z2 + ψ2(z1,z2)) where ψ j ∈
H∞ with ℑ(ψ j(z1,z2)) > ε > 0 for all z ∈ H and p1, p2 > 0, we have

ℑ(ϕ∗
j (x1,x2)) � ε > 0 for almost every (x1,x2) ∈ R

2.

We can use Proposition 7 for Cϕ : H2 → H2 to have

(Cϕ f )(x1,x2) =
1

(2π i)2

∫
R2

f (w1,w2)dw1dw2

(w1 −ϕ1(x))(w2 −ϕ2(x))

=
1

(2π i)2

∫
R2

f (w1,w2)dw1dw2

(w1 − px1−ψ1(x))(w2 − px2−ψ2(x))
.

where x = (x1,x2) ∈ R2 . Without loss of generality, we take p1 = p2 = 1, since if
p1 �= 1 or p2 �= 1 then we have

(V 1
p1

, 1
p2

Cϕ)( f )(x1,x2) =
1

(2π i)2

∫
R2

f (w1,w2)dw1dw2

∏2
j=1(wj − x j − ψ̃ j(x1,x2))

, (13)

where ψ̃ j(x1,x2) = ψ j( x1
p1

, x2
p2

) . We observe that

1
(w1 − x1−ψ1(x))(w2 − x2−ψ2(x))

(14)

=
1

(x1−w1 + iα − (iα −ψ1(x)))(x2 −w2 + iα − (iα −ψ2(x)))

=
1

(x1−w1 + iα)(x2−w2 + iα)
(

1−
(

iα −ψ1(x)
x1−w1 + iα

))(
1−

(
iα −ψ2(x)
x2−w2 + iα

)) .

Since ℑ(ψ j(z1,z2)) > ε > 0 for all (z1,z2) ∈ H2 and ψ j ∈ H∞ , we have ψ j(H2) is
compact in H , and then by Lemma 4 there is an α > 0 such that

∣∣∣∣ iα −ψ j(x)
x j −wj + iα

∣∣∣∣ < δ < 1
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for all (x1,x2),(w1,w2) ∈ R2 . So we have

1

1−
(

iα −ψ j(x)
x j −wj + iα

) =
∞

∑
n=0

(
iα −ψ j(x)
x j −wj + iα

)n

.

Inserting this into equation (14) and then into equation (13), we have

(Cϕ f )(x1,x2) =
(N1−1),(N2−1)

∑
n,m=0

Tτn
1
Tτm

2
Kn,m f (x)+R1,N1 f (x)+R2,N2 f (x)+RN1,N2 f (x),

where Tτn
j
f (x1,x2) = τn

j (x1,x2) f (x1,x2) , τ j(x1,x2) = iα −ψ j(x1,x2) , Kn,m is defined
as

Kn,m f (x1,x2) =
1

(2π i)2

∫
R2

f (w1,w2)dw1dw2

(x1−w1 + iα)n+1(x2 −w2 + iα)m+1

and

R1,N1 f (x1,x2) =
N2

∑
m=0

T
τN1+1
1

Tτm
2
KN1+1,m f (x),

R2,N2 f (x1,x2) =
N1

∑
n=0

Tτn
1
T

τN2+1
2

Kn,N2+1 f (x),

RN1,N2 f (x) =
1

(2π i)2 T
τN1+1
1

T
τN2+1
2

∫
R2

f (w1,w2)dw1dw2

∏2
j=1(x j −wj + iα)Nj+1(wj − x j −ψ j(x))

.

Let ϕ1(z1,z2)= (z1 +ψ1(z1,z2),z2 + iα) and ϕ2(z1,z2)= (z1 + iα,z2 +ψ2(z1,z2)) then
we have the following estimates for R1,N1 and R2,N2 :

‖ R1,N1 ‖�‖Cϕ1 ‖ δN1+1(1− δ )−1,

‖ R2,N2 ‖�‖Cϕ2 ‖ δN2+1(1− δ )−1.

By proposition 6, Cϕ1 and Cϕ2 are bounded so we have ‖ R1,N1 ‖→ 0 and ‖ R2,N2 ‖→ 0
as N1,N2 → ∞ . We have the following estimate for RN1,N2 :

‖ RN1,N2 ‖�‖ Tτ1 ‖‖ Tτ2 ‖‖Cϕ ‖ δN1+N2

Hence ‖ RN1,N2 ‖→ 0 as N1,N2 → ∞ . We observe that

Kn,m = Dϑn,m

where ϑn,m(t1, t2) = (−it1)ne−αt1

n!
(−it2)me−αt2

m! . Hence we have

Cϕ =
∞

∑
n,m=0

Tτn
1
Tτm

2
Dϑ1,nDϑ2,m ,

where the convergence is in operator norm. �



940 U. GÜL

3. A Ψ-c*-algebra of operators on Hardy spaces of H2

In the preceding section we have shown that “quasi-parabolic” composition opera-
tors on the H

2 lie in the C*-algebra generated by certain Toeplitz operators and Fourier
multipliers. In this section we will identify the character space of the C*-algebra gener-
ated by Toeplitz operators with a class of symbols and Fourier multipliers. We identify
this C*-algebra with the tensor product of its one variable version which is treated in
[2] with itself. We will consider the C*-algebra of operators acting on H2(H2)

Ψ(QC(R2),C0((R+)2)) = C∗(T (QC(R2))∪FC0((R+)2))

where

QC(R2) = QC(R)⊗QC(R) = {
n

∑
j=1

f j(x).g j(y) : f j,g j ∈ QC(R)}

and
T (QC(R2)) = C∗({Tφ : φ ∈ QC(R2)}

is the Toeplitz C*-algebra with QC(R2) symbols. Recall that

QC(R) = { f ∈ L∞(R) : f ◦C−1 ∈ QC(T)}
where

C(z) =
z− i
z+ i

is the Cayley transform and

QC(T) = (H∞(D)+C(T))∩H∞(D)+C(T)

is the class of quasi-continuous functions.
In ([2]) we showed that the following sequence

0 −→ K(H2(H))
j−→ Ψ(QC(R),C0(R+)) π−→C(M) −→ 0 (15)

is short exact where

Ψ(QC(R),C0(R+)) = C∗(T (QC(R))∪FC0(R+))

is the C*-algebra generated by Toeplitz operators with QC symbols and continuous
Fourier multipliers and

M ∼= (M∞(QC(R))× [0,∞])∪ (M(QC(R))×{∞}) (16)

is the maximal ideal space of Ψ(QC(R),C0(R+))/K(H2(H)) . Here M(QC(R)) is the
maximal ideal space of QC(R) and

M∞(QC(R)) = {x ∈ M(QC(R)) : x|C(Ṙ) = δ∞, δ∞( f ) = lim
t→∞

f (t)}
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is the fiber of M(QC(R) at ∞ . Throughout the C*-algebra Ψ(QC(R),C0(R+)) will
be denoted by Ψ and Ψ(QC(R2),C0((R+)2)) will be denoted by Ψ2 . Since K(H2)
is nuclear and C(M) is commutative and hence nuclear, by eqn. (15) Ψ is nuclear.
Therefore all the C*-algebras that we will deal with in this paper will be nuclear and
A⊗B will denote the closure of the algebraic tensor product of A and B with respect
to this unique C* norm. Following the approach in [1] we identify Ψ2 with Ψ ⊗
Ψ corresponding to the identification of H2(H2) with H2(H)⊗H2(H) . Define the
operators Wf = Tf ⊗̂I for any f ∈ QC(R) as

(Wf a)(z1,z2) = P( f (z1)a(z1,z2))

for a ∈ H2(H2) and Wg = I⊗̂Tg as

(Wga)(z1,z2) = P(g(z2)a(z1,z2))

where P is the orthogonal projection of L2(R2) onto H2(H2) . In the same way for the
Fourier multipliers define Eϑ = Dϑ ⊗̂I as

(Eϑ a)(z1,z2) = (F−1Mϑ F )(a)(z1,z2)

where ϑ ∈ C0(R+) and Eτ = I⊗̂Dτ for τ ∈ C0(R+) as

(Eτa)(z1,z2) = (F−1MτF )(a)(z1,z2)

where Mϑ is defined as

(Mϑ a)(t1,t2) = ϑ(t1)a(t1, t2)

Mτ is defined as

(Mτa)(t1,t2) = τ(t2)a(t1, t2)

and F is the Fourier transform defined as in equation (2). Since Ψ2 is generated by
{Wf ,Wg,Eϑ ,Eτ : f ,g ∈ QC(R) ϑ ,τ ∈C0(R+)} and Ψ is nuclear, Ψ2 = Ψ⊗Ψ . By
equation (6) we have K(H2(H2)) = K(H2(H))⊗K(H2(H)) . Since Ψ2 = Ψ⊗Ψ we
have

com(Ψ2) = com(Ψ⊗Ψ) = I∗(com(Ψ)⊗Ψ∪Ψ⊗ com(Ψ))

By equation (15) we have com(Ψ) = K(H2(H)) hence we have

K(H2(H2)) = K(H2(H))⊗K(H2(H)) ⊂ com(Ψ⊗Ψ) = com(Ψ2)

Hence by equations (3) and (7) we have

M(Ψ2/K(H2(H2))) = M(Ψ2) = M(Ψ⊗Ψ) ∼= M×M

where M is as in equation (16). We summarize the result of this section as the following
proposition:
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PROPOSITION 9. Let Ψ2 =C∗(T (QC(R2))∪FC0((R+)2)) be the C*-algebra gen-
erated by Toeplitz operators with QC(R)⊗QC(R) symbols and continuous Fourier
multipliers acting on H2(H2) . Then for the character space M(Ψ2/K(H2(H2))) of
Ψ2/K(H2(H2)) we have

M(Ψ2/K(H2(H2))) ∼= M×M

where M is the maximal ideal space of the C*-algebra Ψ(QC(R),C0(R+))/K(H2(H))
generated by Toeplitz operators with QC(R) symbols and continuous Fourier multipli-
ers modulo compact operators acting on H2(H) .

4. Main results

In this section we prove the main results of this paper which asserts that the essen-
tial spectra of quasi-parabolic composition operators on the Hardy space of the poly-
disc contain a non-trivial set which consists of spiral curves as in one variable case. In
doing this we use multi-dimensional generalizations of the methods employed in [2].
We prove the following proposition which might be regarded as a weaker version of a
multi-dimensional generalization of lemma 3:

PROPOSITION 10. Let ψ ∈ QC(R)⊗QC(R)∩H∞(H2) then we have

{(φ1⊗̂φ2)(ψ) : φ1,φ2 ∈ M∞(QC(R))} ⊇ C(∞,∞)(ψ)

where φ1⊗̂φ2 is as defined by equation (8) and C(∞,∞)(ψ) is defined to be the set of
points w ∈ C for which there is a sequence {zn} ⊂ H2 so that zn → (∞,∞) and
ψ(zn) → w.

Proof. Let us first show the above inclusion for functions of the form

ψ(z1,z2) =
m

∑
j=1

ϕ j(z1)η j(z2)

where ϕ j,η j ∈ QC(R) ∩H∞(H) . Let w ∈ C(∞,∞)(ψ) then there exists a sequence
{zn} ∈ H2 , zn = (z1,n,z2,n) such that zn = (z1,n,z2,n) → (∞,∞) and ψ(z1,n,z2,n) → w .
Since ϕ j,η j ∈ QC(R)∩H∞(H) ⊂ H∞(H) , the sequences {ϕ j(z1,n)} and {η j(z2,n)}
have convergent subsequences, hence without loss of generality (by passing to a subse-
quence if needed) there are w1, j,w2, j ∈ H such that

ϕ j(z1,n) → w1, j and η j(z2,n) → w2, j (17)

as n → ∞ , where j ∈ {1,2, ...,m} . Since the index j takes finite number of values we
observe that one may find a single sequence zn = (z1,n,z2,n) ∈ H

2 such that equation
(17) holds for all j ∈ {1,2, ...,m} . By proposition 2 and lemma 3 there are φ1,φ2 ∈
M∞(QC(R)) such that φ1(ϕ j) = w1, j and φ2(η j) = w2, j for all j ∈ {1,2, ...,m} . Since
∑m

j=1 w1, jw2, j = w we have
(φ1⊗̂φ2)(ψ) = w



QUASI-PARABOLIC COMPOSITION OPERATORS ON HARDY SPACES OF THE POLY-DISC 943

Therefore we have

C(∞,∞)(ψ) ⊆ {(φ1⊗̂φ2)(ψ) : φ1,φ2 ∈ M∞(QC(R))}
For ψ having an infinite sum of the following form

ψ(z1,z2) =
∞

∑
j=1

ϕ j(z1)η j(z2)

one may choose subsequences of {z1,n} and {z2,n} through a Cantor diagonalization
argument so that equation (17) holds for all j ∈ N . The rest follows in the same way as
above. �

We are now ready to state and prove our first main result for quasi-parabolic com-
position operators acting on H2(H2) :

MAIN THEOREM 1. Let ϕ : H2 → H2 be an analytic self-map of H2 such that

ϕ(z1,z2) = (z1 + ψ1(z1,z2),z2 + ψ2(z1,z2))

where ψ j ∈ H∞(H2) with ℑ(ψ j(z1,z2)) > ε > 0 for all (z1,z2) ∈ H
2 , j = 1,2 . Then

Cϕ : H2(H2) → H2(H2) is bounded. Moreover if ψ j ∈ (QC(R)⊗QC(R))∩H∞(H2)
then we have

σe(Cϕ ) ⊇ {ei(z1t1+z2t2) : t1,t2 ∈ [0,∞],z1 ∈ C(∞,∞)(ψ1)and z2 ∈ C(∞,∞)(ψ2)}∪{0},
where C(∞,∞)(ψ) is the set of cluster points of ψ at (∞,∞) .

Proof. The boundedness of Cϕ is a consequence of proposition 6. By Proposition
8 we have the following series expansion for Cϕ :

Cϕ =
∞

∑
n,m=0

Tτn
1
Tτm

2
D (−it1)ne−αt1

n!

D (−it2)me−αt2
m!

,

where τ1(z1,z2) = iα −ψ1(z1,z2) and τ2(z1,z2) = iα −ψ2(z1,z2) . So we conclude
that if ψ1,ψ2 ∈ QC(R)⊗QC(R)∩H∞(H2) with ℑ(ψ j(z1,z2)) > ε > 0, j = 1,2, then

Cϕ ∈ Ψ(QC(R2),C0((R+)2)) = Ψ2

where ϕ(z1,z2) = (z1 + ψ1(z1,z2),z2 + ψ2(z1,z2)) . We look at the values φ(Cϕ ) of φ
where φ ∈ M(Ψ2/K(H2(H2))) . By Proposition 9 we have

M(Ψ2/K(H2(H2))) = M×M

where M is the maximal ideal space of the C*-algebra Ψ(QC(R),C0(R+))/K(H2(H))
generated by Toeplitz operators with QC(R) symbols and continuous Fourier multipli-
ers modulo compact operators acting on H2(H) . Let

φ = φ1⊗̂φ2 ∈ M(Ψ2/K(H2(H)))
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where φ1,φ2 ∈ M as in the identification done in equation (8). If φ1 = (x1,∞) or
φ2 = (x2,∞) where x1,x2 ∈ M(QC(R)) then we have

φ(Cϕ ) =
∞

∑
n,m=0

1
n!m!

τ̂1(x1,x2)nτ̂2(x1,x2)mϑ1,n(∞,t2)ϑ2,m(∞,t2) = 0

∀x1,x2 ∈M(QC(R)) and t2 ∈ [0,∞) since ϑ1,n(∞,t2)= 0 for all n∈N where ϑ1,n(t1,t2)
= (−it1)ne−αt1 and ϑ2,m(t1,t2) = (−it2)me−αt2 . If φ1 = (x1, t1) and φ2 = (x2,t2) where
x1,x2 ∈ M∞(QC(R)) and t1 �= ∞ , t2 �= ∞ , then we have

(φ1⊗̂φ2)(Cϕ ) =
∞

∑
n,m=0

1
n!m!

τ̂1(x1,x2)nτ̂2(x1,x2)mϑ1,n(t1,t2)ϑ2,m(t1,t2)

= (e−αt1
∞

∑
n=0

1
n!

τ̂1(x1,x2)n(−it1)n)(e−αt2
∞

∑
m=0

1
m!

τ̂2(x1,x2)m(−it2)m)

= ei(ψ̂1(x1,x2)t1+ψ̂2(x1,x2)t2) (18)

Since Ψ2/K(H2(H2)) is a closed *-subalgebra of B(H2(H2))/K(H2(H2)) we have,
by equation (4),

σΨ2/K(H2(H2))(Cϕ ) = σB(H2(H2))/K(H2(H2))(Cϕ ) = σe(Cϕ)

and by equation (5) we have

σΨ2/K(H2(H2))(Cϕ ) = σe(Cϕ) ⊇ {(φ1⊗̂φ2)(Cϕ ) : φ1,φ2 ∈ M} (19)

By proposition 10 we have

{ψ̂1(x1,x2) : x1,x2 ∈ M∞(QC(R))} ⊇ C(∞,∞)(ψ1),
{ψ̂2(x1,x2) : x1,x2 ∈ M∞(QC(R))} ⊇ C(∞,∞)(ψ2) (20)

Therefore by equations (18), (19) and (20) we have

σe(Cϕ ) ⊇ {(φ1⊗̂φ2)(Cϕ ) : φ1,φ2 ∈ M} ⊇
{ei(z1t1+z2t2) : t1, t2 ∈ [0,∞],z1 ∈ C(∞,∞)(ψ1) and z2 ∈ C(∞,∞)(ψ2)}∪{0} �

MAIN THEOREM 2. Let ϕ : D2 → D2 be an analytic self-map of D2 such that

ϕ(z1,z2) =
(

2iz1 + ψ1(z1,z2)(1− z1)
2i+ ψ1(z1,z2)(1− z1)

,
2iz2 + ψ2(z1,z2)(1− z2)
2i+ ψ2(z1,z2)(1− z2)

)

where ψ j ∈ H∞(D2) with ℑ(ψ j(z1,z2)) > ε > 0 for all (z1,z2) ∈ D2 , j = 1,2 . Then
Cϕ : H2(D2)→ H2(D2) is bounded. Moreover if ψ j ∈ (QC⊗QC)∩H∞(D2) then we
have

σe(Cϕ) ⊇ {ei(z1t1+z2t2) : t1,t2 ∈ [0,∞],z1 ∈ C(1,1)(ψ1)and z2 ∈ C(1,1)(ψ2)}∪{0},
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where C(1,1)(ψ) is the set of cluster points of ψ at (1,1) ∈ T2 .

Proof. Using the isometric isomorphism Φ : H2(D2) −→ H2(H2) introduced in
section 2, if ϕ : D2 → D2 is of the form

ϕ(z1,z2) =
(

2iz1 + ψ1(z1,z2)(1− z1)
2i+ ψ1(z1,z2)(1− z1)

,
2iz2 + ψ2(z1,z2)(1− z2)
2i+ ψ2(z1,z2)(1− z2)

)

where ψ j ∈ H∞(D)2 satisfies ℑ(ψ j(z1,z2)) > δ > 0 then, by equation (1), for ϕ̃ =
C−1

2 ◦ϕ ◦C2 we have ϕ̃(z1,z2) = (z1 + ψ1 ◦C2(z1,z2),z2 + ψ2 ◦C2(z1,z2)) and

ΦCϕΦ−1 = T
(1+ ψ1◦C2(z1 ,z2)

z1+i )(1+ ψ2◦C2(z1 ,z2)
z2+i )

Cϕ̃ (21)

Since both T
(1+ ψ1◦C2(z1 ,z2)

z1+i )(1+ ψ2◦C2(z1 ,z2)
z2+i )

and Cϕ̃ are bounded and Φ is an isometric

isomorphism, it follows that Cϕ is also bounded. For ψ j ∈ QC⊗QC , j = 1,2 we
have both

Cϕ̃ ∈ Ψ2 and T
(1+ ψ1◦C2(z1 ,z2)

z1+i )(1+ ψ2◦C2(z1 ,z2)
z2+i )

∈ Ψ2

and hence
Φ◦Cϕ ◦Φ−1 ∈ Ψ2.

For any φ1⊗̂φ2 ∈ M(Ψ2/K(H2(H))) = M×M we observe that

(φ1⊗̂φ2)(Tψ1◦C2(z1 ,z2)
z1+i

) = (φ1⊗̂φ2)(Tψ2◦C2(z1,z2)
z2+i

) = 0

Hence we have
(φ1⊗̂φ2)(Φ◦Cϕ ◦Φ−1) = (φ1⊗̂φ2)(Cϕ̃ ) (22)

By equation (9) we have

σe(Cϕ ) = σe(Φ◦Cϕ ◦Φ−1)

By equations (19) and (22), we have thus

σe(Cϕ ) ⊇ {(φ1⊗̂φ2)(Cϕ̃ ) : φ1,φ2 ∈ M} (23)

By equations (20) and (23) we have

σe(Cϕ ) ⊇ {ei(z1t1+z2t2) : t1,t2 ∈ [0,∞],z1 ∈ C(∞,∞)(ψ1 ◦C2),z2 ∈ C(∞,∞)(ψ2 ◦C2)}∪{0}

Since for any ψ ∈ H∞(D2) ,

C(∞,∞)(ψ ◦C2) = C(1,1)(ψ)

we conclude that

σe(Cϕ ) ⊇ {ei(z1t1+z2t2) : t1,t2 ∈ [0,∞],z1 ∈ C(1,1)(ψ1)and z2 ∈ C(1,1)(ψ2)}∪{0} �
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