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BOUNDARY DATA MAPS AND KREIN’S RESOLVENT FORMULA

FOR STURM––LIOUVILLE OPERATORS ON A FINITE INTERVAL

STEPHEN CLARK, FRITZ GESZTESY, ROGER NICHOLS AND MAXIM ZINCHENKO

Abstract. We continue the study of boundary data maps, that is, generalizations of spectral pa-
rameter dependent Dirichlet-to-Neumann maps for (three-coefficient) Sturm–Liouville operators
on the finite interval (a,b) , to more general boundary conditions, began in [8] and [17]. While
these earlier studies of boundary data maps focused on the case of general separated boundary
conditions at a and b , the present work develops a unified treatment for all possible self-adjoint
boundary conditions (i.e., separated as well as non-separated ones).

In the course of this paper we describe the connections with Krein’s resolvent formula
for self-adjoint extensions of the underlying minimal Sturm–Liouville operator (parametrized in
terms of boundary conditions), with some emphasis on the Krein extension, develop the basic
trace formulas for resolvent differences of self-adjoint extensions, especially, in terms of the as-
sociated spectral shift functions, and describe the connections between various parametrizations
of all self-adjoint extensions, including the precise relation to von Neumann’s basic parametriza-
tion in terms of unitary maps between deficiency subspaces.
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