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DIAGRAM VECTORS AND TIGHT FRAME

SCALING IN FINITE DIMENSIONS
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Abstract. We consider frames in a finite-dimensional Hilbert space Hn where frames are exactly
the spanning sets of the vector space. The diagram vector of a vector in R2 was previously
defined using polar coordinates and was used to characterize tight frames in R2 in a geometric
fashion. Reformulating the definition of a diagram vector in R2 we provide a natural extension
of this notion to R

n and C
n . Using the diagram vectors we give a characterization of tight frames

in Rn or Cn . Further we provide a characterization of when a unit-norm frame in Rn or Cn

can be scaled to a tight frame. This classification allows us to determine all scaling coefficients
that make a unit-norm frame into a tight frame.
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