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RELATIVE OSCILLATION THEORY

FOR JACOBI MATRICES EXTENDED

KERSTIN AMMANN

(Communicated by B. Jacob)

Abstract. We present a comprehensive treatment of relative oscillation theory for finite Jacobi
matrices. We show that the difference of the number of eigenvalues of two Jacobi matrices in
an interval equals the number of weighted sign-changes of the Wronskian of suitable solutions
of the two underlying difference equations. Until now only the case of perturbations of the main
diagonal was known. We extend the known results to arbitrary perturbations, allow any (half-)
open and closed spectral intervals, simplify the proof, and establish the comparison theorem.

1. Introduction

Jacobi operators appear at numerous occasions in mathematics as well as in phys-
ical models. For example, they are intimately related to the theory of orthogonal poly-
nomials or constitute a simple one-band tight binding model in quantum mechanics.
They can be viewed as the discrete counterpart of Sturm–Liouville operators and their
investigation has many similarities with Sturm–Liouville theory. Moreover, spectral
and inverse spectral theory for Jacobi operators plays a fundamental role in the investi-
gation of the Toda lattice and its modified counterpart, the Kac–van Moerbeke lattice.
For a comprehensive introduction we refer to [18].

Let a,b∈ �(Z) = {ϕ | ϕ : Z → R} , where a(n) < 0 holds for all n∈ Z . Then, the
Jacobi matrix

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

b(1) a(1) 0 0 0

a(1) b(2)
. . . 0 0

0
. . . 0

0 0
. . . b(N−2) a(N−2)

0 0 0 a(N−2) b(N−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(1.1)

is self-adjoint and σ(J) is real and simple. The corresponding Jacobi difference equa-
tion is given by

τu = zu, (1.2)
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where

τ : �(Z) → �(Z)
u(n) �→ (τu)(n) = a(n)u(n+1)+a(n−1)u(n−1)+b(n)u(n) (1.3)

= ∂ (a(n−1)∂u(n−1))+ (b(n)+a(n)+a(n−1))u(n),

z ∈ R , and ∂u(n) = u(n+1)−u(n) is the usual forward difference operator.
We call u(z) a solution of (1.2) if (τ − z)u(z) = 0 and u(z) �≡ 0. Whenever the

spectral parameter is evident from the context we abbreviate u = u(z) . For any two
initial values u(n0),u(n0 +1),n0 ∈ Z , there exists a unique ’solution’ u of (1.2) which
vanishes if and only if (u(n0),u(n0 + 1)) = (0,0) . We exclude this case and thus, a
solution of (1.2) cannot have two consecutive zeros. We call n a node (sign-change) of
u if

u(n) = 0 or a(n)u(n)u(n+1)> 0 (1.4)

and say that a node n of u lies between m and l if either m < n < l or if n = m and
u(m) �= 0. The number of nodes of u between m and l is denoted as #(m,l)(u) .

From classical oscillation theory originating in the seminal work of Sturm from
1836 [17] we know that the n -th eigenfunction of a Sturm–Liouville operator has n−1
nodes. This also holds for eigensequences of Jacobi operators, see [7, 8, 20] and also
[14]. Our aim now is to show that the number of nodes of the Wronskian determinant
of two (suitable) solutions u j(z j) of (τ j − z j)u j = 0, j = 0,1, equals the difference of
the number of eigenvalues of J0 and J1 in (z0,z1) .

In [3] (confer also [2]) Teschl and myself considered the special case a0 = a1

which is now generalized to arbitrary perturbations (see also [1]). We still assume
a0,a1 < 0. This is no restriction since altering the sign of one or more elements of a
does not affect the spectrum of the correspondingmatrices, their similarity can easily be
shown. Nevertheless, the signs of the solutions of the underlying difference equations
depend on the signs of a and therefore we assume a < 0 to simplify (1.6), confer also
[1].

The Wronskian is given by W (u0,u1) ∈ �(Z) , where

Wn(u0,u1) = u0(n)a1(n)u1(n+1)−u1(n)a0(n)u0(n+1). (1.5)

We set

#n(u0,u1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if Wn+1(u0,u1)u0(n+1)u1(n+1) > 0 and

either Wn(u0,u1)Wn+1(u0,u1) < 0

or Wn(u0,u1) = 0 and Wn+1(u0,u1) �= 0

−1 if Wn(u0,u1)u0(n+1)u1(n+1) > 0 and

either Wn(u0,u1)Wn+1(u0,u1) < 0

or Wn(u0,u1) �= 0 and Wn+1(u0,u1) = 0

0 otherwise

(1.6)
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and say the Wronskian has a (weighted) node at n if #n(u0,u1) �= 0. We denote the
number of weighted nodes of the Wronskian between m and n , m < n , by

#[m,n](u0,u1) =
n−1

∑
j=m

# j(u0,u1) (1.7)

and set

#(m,n](u0,u1) = #[m,n](u0,u1)−
{

1 if Wm(u0,u1) = 0

0 otherwise,
(1.8)

#[m,n)(u0,u1) = #[m,n](u0,u1)+

{
1 if Wn(u0,u1) = 0

0 otherwise,
(1.9)

and

#(m,n)(u0,u1) (1.10)

= #[m,n](u0,u1)−
{

1 if Wm(u0,u1) = 0

0 otherwise
+

{
1 if Wn(u0,u1) = 0

0 otherwise.

Here we slightly changed the notation compared to [3]: #(m,n) from [3] is now denoted
as #(m,n] . That (1.6) is a generalization of the counting method established in [3, (1.8)],
where a0 = a1 holds, follows from (2.6), see also [1, Lemma 3.21].

In the Sections 2–4 we prove our main theorem:

THEOREM 1.1. (Relative Oscillation Theorem) Let EΩ(Jj) , j = 0,1 , be the num-
ber of eigenvalues of Jj in Ω ⊆R and let u j,±(z j) be solutions of (τ j −z j)u = 0 fulfill-
ing the right/left Dirichlet boundary condition of Jj , i.e. u j,+(z j,N) = u j,−(z j,0) = 0 .

If a0,a1 < 0 , then,

E(−∞,z1)(J1)−E(−∞,z0](J0)

= #(0,N−1](u0,+(z0),u1,−(z1)) = #(0,N−1](u0,−(z0),u1,+(z1)) (1.11)

and

E(−∞,z1)(J1)−E(−∞,z0)(J0)

= #[0,N−1](u0,+(z0),u1,−(z1)) = #(0,N−1)(u0,−(z0),u1,+(z1)),

E(−∞,z1](J1)−E(−∞,z0](J0)

= #(0,N−1)(u0,+(z0),u1,−(z1)) = #[0,N−1](u0,−(z0),u1,+(z1)), (1.12)

E(−∞,z1](J1)−E(−∞,z0)(J0)

= #[0,N−1)(u0,+(z0),u1,−(z1)) = #[0,N−1)(u0,−(z0),u1,+(z1))

if we set a0(N−1) = a1(N−1) to compute u j,−(N) .
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To simplify the previous theorem we’ve set a0(N −1) = a1(N−1) . This doesn’t
influence J and σ(J) , but the value u−(N) depends on it. However, if we drop this
assumption, then we have to take the weight at N−1 into account. We state that case in
Theorem 4.10. For a computation of u+(0) any negative values a0(0) and a1(0) will
do the job.

Equation (1.11) generalizes Theorem 1.2 from [3] to different a ’s. In the contin-
uous case it has been established by Krüger and Teschl in [11]. For the case of Dirac
operators see Stadler and Teschl in [16] and for extensions to symplectic eigenvalue
problems see Elyseeva [4–6].

In the sequel (Sections 2–4) we prove Theorem 1.1 using the discrete Prüfer trans-
formation. Compared to [2, 3, 11, 12, 16] we also present a simplified proof which
eliminates the need to interpolate between operators. This is of particular importance
in the present case, since a0 < a1 does not imply the corresponding relation for the
operators, which would make the interpolation step more difficult. In addition, (1.12)
is new. The proofs for regular Sturm–Liouville operators [11, Theorem 2.3] (confer
also [12]) and regular Dirac operators [16, Theorem 3.3] can be shortened in the same
manner and both theorems can be extended to (half-)open and closed spectral intervals
analogously to (1.12) (for the first case cf. also [19]).

An extension of Sturm’s classical comparison theorem for nodes of solutions to
nodes of Wronskians is established in Section 5. We show that it holds analogously
to the continuous case [12] if a0 = a1 , therefore confer also [2]. Moreover, we give
Sturm-type comparison theorems for arbitrary perturbations of Jacobi matrices, where,
unlike the case of Sturm–Liouville operators [11], we do not obtain a direct dependence
on the coefficients of the operators because a0 � a1 doesn’t imply J0 � J1 .

An extension of Theorem 1.1 to Jacobi operators on the half-line and on the line is
in preparation, see [1]. This will fill the gap that classical oscillation theory is only ap-
plicable below the essential spectrum, while relative oscillation theory works perfectly
inside gaps of the essential spectrum. We hope that this will stimulate further research,
e.g. to find new relative oscillation criteria as in the continuous case, see [10, 9].

We’d be remiss not to mention that several other extensions of relative oscillation
theory are thinkable, e.g. to CMV matrices. Only recently, Šimon Hilscher pointed out
in [15] that an extension to the case of Jacobi difference equations with a nonlinear
dependence on the spectral parameter would be of particular interest.

2. The Wronskian

At first we look at the Wronskian and its ’derivative’ (2.6) along the Z-axis.

DEFINITION 2.1. We define the (modified) Wronskian (also referred to as Wron-
ski determinant or Casorati determinant) by

W : D
2 × �(Z)2 → �(Z) (2.1)

(τ0,τ1,ϕ ,ψ) �→W τ0,τ1(ϕ ,ψ),
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where D denotes the space of difference equations, such that

W τ0,τ1
n (ϕ ,ψ) = ϕ(n)a1(n)ψ(n+1)−ψ(n)a0(n)ϕ(n+1) (2.2)

=
∣∣∣∣ ϕ(n) ψ(n)
a0(n)ϕ(n+1) a1(n)ψ(n+1)

∣∣∣∣ .
We abbreviate Δb = b0−b1 , Δa = a0−a1 , and Wn(ϕ ,ψ) = W τ0,τ1

n (ϕ ,ψ) when-
ever the corresponding difference equations are evident from the context. Clearly, if
a0 = a1 holds, then W equals the Wronskian from [3]. We have

W τ0,τ0(ϕ ,ϕ) ≡ 0,

W τ0,τ1(ϕ ,ψ) = −W τ1,τ0(ψ ,ϕ),
W τ0,τ1(c ϕ ,ψ) = W τ0,τ1(ϕ ,c ψ) = c W τ0,τ1(ϕ ,ψ), (2.3)

W τ0,τ1(ϕ + ϕ̃,ψ) = W τ0,τ1(ϕ ,ψ)+W τ0,τ1(ϕ̃ ,ψ),
W τ0,τ1(ϕ ,ψ + ψ̃) = W τ0,τ1(ϕ ,ψ)+W τ0,τ1(ϕ , ψ̃)

for all c ∈ R and ϕ , ϕ̃ ,ψ , ψ̃ ∈ �(Z) .

LEMMA 2.2. Green’s Formula. We find

m

∑
j=n

(ϕ(τ1ψ)−ψ(τ0ϕ))( j) = Wm(ϕ ,ψ)−Wn−1(ϕ ,ψ) (2.4)

−
m−1

∑
j=n−1

Δa( j)(ϕ( j +1)ψ( j)+ ϕ( j)ψ( j +1))−
m

∑
j=n

Δb( j)ϕ( j)ψ( j).

Proof. Just a short calculation. �

COROLLARY 2.3. Let (τ j − z)u j = 0 , then

Wm(u0,u1)−Wn−1(u0,u1) (2.5)

=
m−1

∑
j=n−1

Δa( j)(u0( j +1)u1( j)+u0( j)u1( j +1))+
m

∑
j=n

Δb( j)u0( j)u1( j)

and

Wn(u0,u1)−Wn−1(u0,u1) (2.6)

= Δa(n−1)(u0(n)u1(n−1)+u0(n−1)u1(n))+ Δb(n)u0(n)u1(n).

If u and ũ solve τu = zu , then W (u, ũ) is constant (and vanishes if and only if u
and ũ are linearly dependent).
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3. Prüfer transformation

In Lemma 3.8 we’ll establish the connection between the spectra of two different
Jacobi matrices and the difference of the Prüfer angles of suitable solutions of the cor-
responding Jacobi difference equations. Therefore, from now on let u be a solution
of τu = zu and let u−/+ moreover fulfill the left/right Dirichlet boundary condition of
J . In order to keep this presentation self-contained at first we recall a few well-known
findings which can e.g. be found in [18]:

LEMMA 3.1. Confer [18]. The Jacobi matrix J has N−1 real and simple eigen-
values. Moreover,

z ∈ σ(J) ⇐⇒ u−(z,N) = 0 ⇐⇒ u+(z,0) = 0. (3.1)

Proof. Since J is Hermitian all eigenvalues are real: let z ∈ σ(J) , Jv = zv ,
and ‖v‖ = 1. Then z = 〈v,zv〉 = 〈v,Jv〉 = 〈Jv,v〉 = z . It can easily be seen that
every eigenvector u corresponding to z fullfills τu = zu and u(0) = 0. Hence, by
W0(u−(z),u) = 0, u−(z) and u are linearly dependent. �

THEOREM 3.2. Confer [8], [18, Theorem 4.7]. For all z ∈ R

E(−∞,z)(J) = #(0,N)(u−(z)) = #(0,N)(u+(z)) (3.2)

holds.

LEMMA 3.3. If u(n) = 0 , then u(n−1)u(n+1)< 0 .

Proof. Since (1.2) is a three-term-recursion and u �≡ 0, all zeros of u are simple
and

u(n+1) = −a(n)−1︸ ︷︷ ︸
>0

(a(n−1)︸ ︷︷ ︸
<0

u(n−1)+ (b(n)− z)u(n)︸ ︷︷ ︸
=0

) �= 0 (3.3)

holds. �
By (u(n),u(n+ 1)) �= (0,0) for all n ∈ Z we can introduce Prüfer variables: let

ρu,θu ∈ �(Z) denote sequences so that

u(n) = ρu(n)sinθu(n), (3.4)

−a(n)u(n+1) = ρu(n)cosθu(n),

and ρu(n) > 0 holds for all n ∈ Z . Choose θu(n0) ∈ (−π ,π ] at the initial position n0

and assume

θu(n)/π�� 
θu(n+1)/π�� 
θu(n)/π�+1 (3.5)

for all n ∈ Z , then both sequences are well-defined and unique. Here, x �→ 
x� =
min{n ∈ Z |n � x} denotes the ceiling function, a left-continuous analog to the well-
known floor function x �→ �x� = max{n ∈ Z |n � x} which itself is a right-continuous
step function.
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We follow [11] and use the slightly refined (compared to [3, 18, 20]) definition of
Prüfer variables by taking the secondary diagonals a into account. By −a > 0 this will
not influence the herein recalled claims on the nodes of solutions, but it will simplify
our calculations as soon as we look at the nodes of the Wronskian.

LEMMA 3.4. Fix some n∈ Z , then ∃ k ∈ Z such that θu(n) = kπ + γ and θu(n+
1) = kπ + Γ , where

γ ∈
(
0,

π
2

]
, Γ ∈ (0,π ] ⇐⇒ n is not a node of u, (3.6)

γ ∈
(π

2
,π

]
, Γ ∈ (π ,2π) ⇐⇒ n is a node of u (3.7)

holds. Moreover,

θu(n) = kπ +
π
2

⇐⇒ θu(n+1) = (k+1)π . (3.8)

Proof. Abbreviate θ = θu . Choose k ∈ Z such that θ (n) = kπ + γ , γ ∈ (0,π ]
holds. By (3.5) we have Γ ∈ (0,2π ] . If u(n)u(n+1) �= 0, then sinγ cosγ > 0 iff n is
not a node of u and sinγ cosγ < 0 iff n is a node of u , hence (3.6) clearly holds for γ .
By sinΓcosγ > 0 we have sinΓ > 0 iff n is not a node of u and sinΓ < 0 iff n is a
node of u , thus, (3.6) also holds for Γ .

Now, suppose we have u(n+1) = 0, then n is not a node of u and either Γ = π or
Γ = 2π holds. By Lemma 3.3 we have u(n)u(n+2)< 0, hence sinθ (n)cosθ (n+1) =
(−1)k sinγ(−1)k cosΓ < 0. Thus, by cosΓ < 0, we have Γ = π . From −a(n)u(n+
1) = ρ(n)cosθ (n) = 0 we conclude that (−1)k cosγ = 0, thus γ = π

2 and hence (3.6)
and (3.8) hold. If u(n) = 0, then n is a node of u , γ = π , and (3.6) holds by sinθ (n+
1)cosθ (n) > 0, i.e. (−1)k sinΓ(−1)k cosγ > 0. �

COROLLARY 3.5. For all n ∈ Z we have


θu(n+1)/π�=

{

θu(n)/π�+1 if n is a node of u


θu(n)/π� otherwise.
(3.9)

Now we are able to count nodes of solutions of the Jacobi difference equation
using Prüfer variables and the number of nodes in an interval (m,n) is given by

THEOREM 3.6. Confer [20, Lemma 2.5]. We have

#(m,n)(u) = 
θu(n)/π�−�θu(m)/π�−1. (3.10)

Proof. We use mathematical induction: let n = m+1, then if u(m) = 0, u(n) �= 0
we have #(m,n)(u) = 0 and by Corollary 3.5


θu(n)/π�= 
θu(m+1)/π�= 
θu(m)/π︸ ︷︷ ︸
∈Z

�+1 = �θu(m)/π�+1 (3.11)
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holds. If u(m) �= 0 holds, then by Corollary 3.5 we have

�θu(m)/π︸ ︷︷ ︸
/∈Z

� = 
θu(m)/π�−1 =

{

θu(n)/π�−2 if m is a node


θu(n)/π�−1 otherwise.
(3.12)

The inductive step follows again from Corollary 3.5. �
Let s−/+(z) denote the solution of τs = zs fulfilling

s−(z,0) = 0,s−(z,1) = 1, resp. s+(z,N) = 0,s+(z,N +1) = 1 (3.13)

and let n0 denote the base point, i.e. n0 = 0, resp. n0 = N .
Then, by s±(n0) = 0 we have sinθ±(n0) = 0 and by s±(n0 + 1) = 1 we have

−a(n0)s±(n0 + 1) = ρs(n0)cosθ±(n0) > 0, hence θ±(n0) = 0 holds by θ±(n0) ∈
(−π ,π ] .

COROLLARY 3.7. We have

#(0,N)(s−) = 
θs−(N)/π�−1 and #(0,N)(s+) = −�θs+(0)/π�−1. (3.14)

In the last step we now introduce the difference Δ of two Prüfer angles on which
our subsequent considerations rely:

LEMMA 3.8. We find

E(−∞,z1)(J1)−E(−∞,z0)(J0) (3.15)

= 
Δs0,+(z0),s1,−(z1)(N)/π�−
Δs0,+(z0),s1,−(z1)(0)/π�
= �Δs0,−(z0),s1,+(z1)(N)/π�−�Δs0,−(z0),s1,+(z1)(0)/π�,

E(−∞,z1)(J1)−E(−∞,z0](J0) (3.16)

= 
Δs0,±(z0),s1,∓(z1)(N)/π�−�Δs0,±(z0),s1,∓(z1)(0)/π�−1,

E(−∞,z1](J1)−E(−∞,z0)(J0) (3.17)

= �Δs0,±(z0),s1,∓(z1)(N)/π�−
Δs0,±(z0),s1,∓(z1)(0)/π�+1,and

E(−∞,z1](J1)−E(−∞,z0](J0) (3.18)

= 
Δs0,−(z0),s1,+(z1)(N)/π�−
Δs0,−(z0),s1,+(z1)(0)/π�
= �Δs0,+(z0),s1,−(z1)(N)/π�−�Δs0,+(z0),s1,−(z1)(0)/π�,

where Δu,v = θv −θu ∈ �(Z) .

Proof. Abbreviate s j,± = s j,±(z j) . By Theorem 3.2, Corollary 3.7, and −
x� =
�−x� for all x ∈ R we have

E(−∞,z1)(J1)−E(−∞,z0)(J0) = #(0,N)(s1,−)−#(0,N)(s0,+) (3.19)
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= 
θs1,−(N)/π�−
−θs0,+(0)/π�= 
Δs0,+,s1,−(N)/π�−
Δs0,+,s1,−(0)/π�
= −(E(−∞,z0)(J0)−E(−∞,z1)(J1)) = �Δs0,−,s1,+(N)/π�−�Δs0,−,s1,+(0)/π�.

By Lemma 3.1 and (3.4) we have

z0 ∈ σ(J0) ⇐⇒ Δs0,−,s1,+(N)/π ∈ Z ⇐⇒ Δs0,+,s1,−(0)/π ∈ Z, (3.20)

z1 ∈ σ(J1) ⇐⇒ Δs0,+,s1,−(N)/π ∈ Z ⇐⇒ Δs0,−,s1,+(0)/π ∈ Z (3.21)

and hence

E(−∞,z1)(J1)−E(−∞,z0](J0) = 
Δs0,±,s1,∓(N)/π�−�Δs0,±,s1,∓(0)/π�−1 (3.22)

holds by

E(−∞,z1)(J1)−E(−∞,z0)(J0) (3.23)

= 
Δs0,±,s1,∓(N)/π�−�Δs0,±,s1,∓(0)/π�−
{

1 if z0 /∈ σ(J0)
0 if z0 ∈ σ(J0).

The rest now follows analogously. �

4. Nodes of the Wronskian

It remains to investigate the sign-changes of W (u0,u1) . We will express them
in terms of the difference Δ of Prüfer angles of the involved solutions to finally gain
their connection to the difference of the spectra of the corresponding matrices (which
is Theorem 1.1) by Lemma 3.8.

Therefore let u j be solutions of τ j − z, j = 0,1, where ρ j,θ j ∈ �(Z) are their
Prüfer variables from (3.4). They correspond to the same spectral parameter z , which
is no restriction, since we can always replace b1 by b1− (z1− z0) . We abbreviate

Δ = Δu0,u1 = θ1 −θ0 ∈ �(Z) (4.1)

and adopt Lemma 4.1 and Lemma 4.2 from [3]:

LEMMA 4.1. Confer [3]. Fix some n ∈ Z , then ∃ k j ∈ Z, j = 0,1 , such that

θ j(n) = k jπ + γ j, γ j ∈ (0,π ], (4.2)

θ j(n+1) = k jπ + Γ j, Γ j ∈ (0,2π), (4.3)

and one of the following holds:

(1) either u0 and u1 have a node at n or both do not have a node at n, then

γ1− γ0 ∈
(
− π

2
,

π
2

)
and Γ1 −Γ0 ∈ (−π ,π). (4.4)
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(2) u1 has no node at n, but u0 has a node at n, then

γ1− γ0 ∈ (−π ,0) and Γ1−Γ0 ∈ (−2π ,0). (4.5)

(3) u1 has a node at n, but u0 has no node at n, then

γ1 − γ0 ∈ (0,π) and Γ1−Γ0 ∈ (0,2π). (4.6)

Proof. Use Lemma 3.4. �

LEMMA 4.2. Confer [3]. We have


Δ(n)/π�−1 � 
Δ(n+1)/π�� 
Δ(n)/π�+1. (4.7)

Proof. Let k = k1− k0 , n ∈ Z . By Lemma 4.1 we have either

Δ(n) ∈
(
kπ − π

2
,kπ +

π
2

)
and Δ(n+1)∈ (kπ −π ,kπ + π), (4.8)

Δ(n) ∈ (kπ −π ,kπ) and Δ(n+1)∈ (kπ −2π ,kπ), or (4.9)

Δ(n) ∈ (kπ ,kπ + π) and Δ(n+1)∈ (kπ ,kπ +2π). (4.10)

In each case the lemma holds. �
The rest of this section is new, see also [1].

LEMMA 4.3. We have

Wn(u0,u1) = ρ0(n)ρ1(n)sinΔ(n), (4.11)

Wn(u0,u1)u0(n+1)u1(n+1) = psin(γ1 − γ0)cosγ0 cosγ1, (4.12)

Wn+1(u0,u1)u0(n+1)u1(n+1) = p̃sin(Γ1 −Γ0)cosγ0 cosγ1, (4.13)

where p, p̃ > 0 .

Proof. Consider

Wn(u0,u1) = u0(n)a1(n)u1(n+1)−u1(n)a0(n)u0(n+1)
= ρ0(n)ρ1(n)sin(θ1(n)−θ0(n)) (4.14)

= ρ0(n)ρ1(n)(−1)k1−k0 sin(γ1(n)− γ0(n))

and set p = ρ0(n)2ρ1(n)2

a0(n)a1(n) and p̃ = ρ0(n)ρ1(n)ρ0(n+1)ρ1(n+1)
a0(n)a1(n) . �

LEMMA 4.4. We have

u0(n+1) = u1(n+1) = 0 =⇒ Wn(u0,u1) = Wn+1(u0,u1) = 0, (4.15)

u0(n+1) = 0,u1(n+1) �= 0 =⇒ Wn(u0,u1)Wn+1(u0,u1) > 0, (4.16)

u0(n+1) �= 0,u1(n+1) = 0 =⇒ Wn(u0,u1)Wn+1(u0,u1) > 0. (4.17)
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Proof. The first claim holds obviously. For the second claim just observe that by
Lemma 3.3

Wn(u0,u1)Wn+1(u0,u1) = −u0(n)u0(n+2)a0(n+1)a1(n)u1(n+1)2 > 0 (4.18)

holds if u0(n+1) = 0,u1(n+1) �= 0 and

Wn(u0,u1)Wn+1(u0,u1) = −u1(n)u1(n+2)a0(n)a1(n+1)u0(n+1)2 > 0 (4.19)

holds if u0(n+1) �= 0,u1(n+1) = 0. �

COROLLARY 4.5. If Wn(u0,u1)Wn+1(u0,u1) < 0 holds or if Wn(u0,u1) = 0 and
Wn+1(u0,u1) �= 0 holds, or if Wn(u0,u1) �= 0 and Wn+1(u0,u1) = 0 holds, then

u0(n+1)u1(n+1) �= 0 (4.20)

and moreover Δa(n) �= 0 or Δb(n+1) �= 0 holds.

To shorten notation we denote

(+1) if 
Δ(n+1)/π�= 
Δ(n)/π�+1, (4.21)

(0) if 
Δ(n+1)/π�= 
Δ(n)/π�, and (4.22)

(−1) if 
Δ(n+1)/π�= 
Δ(n)/π�−1. (4.23)

LEMMA 4.6. Let n ∈ Z , then

(+1) ⇐⇒ Wn+1(u0,u1)u0(n+1)u1(n+1) > 0 and

either Wn(u0,u1)Wn+1(u0,u1) < 0 (4.24)

or Wn(u0,u1) = 0,Wn+1(u0,u1) �= 0,

(−1) ⇐⇒ Wn(u0,u1)u0(n+1)u1(n+1) > 0 and

either Wn(u0,u1)Wn+1(u0,u1) < 0 (4.25)

or Wn(u0,u1) �= 0,Wn+1(u0,u1) = 0,

(0) ⇐⇒ otherwise. (4.26)

Proof. If (+1) , then we either have case (1) of Lemma 4.1 and γ1− γ0 ∈ (− π
2 ,0] ,

Γ1 −Γ0 ∈ (0,π) or we have case (3) of Lemma 4.1 and γ1 − γ0 ∈ (0,π),Γ1 −Γ0 ∈
(π ,2π) . Clearly, by (4.11), in either case we have

Wn(u0,u1)Wn+1(u0,u1) < 0 or Wn(u0,u1) = 0,Wn+1(u0,u1) �= 0. (4.27)

Hence, by Corollary 4.5 we have u0(n+1)u1(n+1) �= 0 and thus cosγ0 cosγ1 �= 0. In
case (1) of Lemma 4.1 we have sin(Γ1 −Γ0) > 0 and cosγ0 cosγ1 > 0 by Lemma 3.4.
Hence, by (4.13) Wn+1(u0,u1)u0(n+1)u1(n+1) > 0 holds. In case (3) of Lemma 4.1
we have sin(Γ1 −Γ0) < 0 and cosγ0 cosγ1 < 0 by Lemma 3.4. Hence, by (4.13)

Wn+1(u0,u1)u0(n+1)u1(n+1) > 0 (4.28)
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holds.
If (−1) , then we either have case (1) of Lemma 4.1 and γ1−γ0 ∈ (0, π

2 ),Γ1−Γ0 ∈
(−π ,0] or we have case (2) of Lemma 4.1 and γ1−γ0 ∈ (−π ,0),Γ1−Γ0 ∈ (−2π ,−π ] .
Clearly, by (4.11), in either case we have

Wn(u0,u1)Wn+1(u0,u1) < 0 or Wn(u0,u1) �= 0,Wn+1(u0,u1) = 0. (4.29)

Hence, by Corollary 4.5 we have u0(n+1)u1(n+1) �= 0 and thus cosγ0 cosγ1 �= 0. In
case (1) of Lemma 4.1 we have sin(γ1 − γ0) > 0 and cosγ0 cosγ1 > 0 by Lemma 3.4.
Hence, by (4.12) Wn(u0,u1)u0(n+1)u1(n+1) > 0 holds. In case (2) of Lemma 4.1 we
have sin(γ1− γ0) < 0 and cosγ0 cosγ1 < 0 by Lemma 3.4. Hence, by (4.12)

Wn(u0,u1)u0(n+1)u1(n+1) > 0 (4.30)

holds.
On the other hand, if Wn(u0,u1)Wn+1(u0,u1) < 0 by (4.11) we have either (+1)

or (−1) . If, use (4.12),

Wn(u0,u1)u0(n+1)u1(n+1) = psin(γ1 − γ0)cosγ0 cosγ1 > 0, (4.31)

then we have either case (1) or case (2) of Lemma 4.1 and in each case we have (0) or
(−1) . Hence,

Wn(u0,u1)Wn+1(u0,u1) < 0 and Wn(u0,u1)u0(n+1)u1(n+1) > 0 =⇒ (−1) .

If, use (4.12),

Wn(u0,u1)u0(n+1)u1(n+1) = psin(γ1 − γ0)cosγ0 cosγ1 < 0, (4.32)

then we have either case (1) or case (3) of Lemma 4.1 and in each case we have (0) or
(+1) . Hence,

Wn(u0,u1)Wn+1(u0,u1) < 0 and Wn+1(u0,u1)u0(n+1)u1(n+1) > 0 =⇒ (+1) .

If Wn(u0,u1) = 0,Wn+1(u0,u1) �= 0, then we have case (1) of Lemma 4.1 and by
Corollary 4.5 we have cosγ0 cosγ1 > 0. Hence, if Wn+1(u0,u1)u0(n+1)u1(n+1) > 0,
then (4.13) implies sin(Γ1 −Γ0) > 0, thus, (+1) holds by case (1) of Lemma 4.1.

If Wn(u0,u1) �= 0,Wn+1(u0,u1) = 0, then by Corollary 4.5 we have cosγ0 cosγ1 �=
0. If additionally Wn(u0,u1)u0(n+ 1)u1(n+ 1) > 0 holds, then by (4.12) cosγ0 cosγ1

and sin(γ1− γ0) are of the same sign. Hence, we have case (1) of Lemma 4.1 and (−1)
or case (2) of Lemma 4.1 and (−1) .

Thus, (4.24) and (4.25) hold and clearly by Lemma 4.2 we have (0) otherwise. �

REMARK 4.7. Consider (1.6), then

Wn(u0,u1)Wn+1(u0,u1) �= 0 or Wn(u0,u1) = Wn+1(u0,u1) = 0 (4.33)

=⇒ #n(u0,u1) = −#n(u1,u0)
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and

Wn(u0,u1)Wn+1(u0,u1) < 0 =⇒ #n(u0,u1) �= 0

by Corollary 4.5. Moreover, if Wn(u0,u1) = 0 and Wn+1(u0,u1) �= 0 holds, then

u0(n) = 0 ⇐⇒ u1(n) = 0. (4.34)

From Lemma 4.6 we conclude

#n(u0,u1) = 
Δ(n+1)/π�−
Δ(n)/π�, (4.35)

#[m,n](u0,u1) = 
Δ(n)/π�−
Δ(m)/π�. (4.36)

LEMMA 4.8. We have

#(m,n](u0,u1) = 
Δ(n)/π�−�Δ(m)/π�−1, (4.37)

#[m,n)(u0,u1) = �Δ(n)/π�−
Δ(m)/π�+1, and (4.38)

#(m,n)(u0,u1) = �Δ(n)/π�−�Δ(m)/π�. (4.39)

Proof. By (4.11) we have Wj(u0,u1) = 0 ⇐⇒ Δ( j)/π ∈ Z and hence by (4.36)

#(m,n](u0,u1) = 
Δ(n)/π�−
Δ(m)/π�−
{

0 if Wm(u0,u1) �= 0

1 if Wm(u0,u1) = 0
(4.40)

= 
Δ(n)/π�−�Δ(m)/π�−1 (4.41)

holds. The second and the third claim follow analogously. �

LEMMA 4.9. We have

#[m,n](u0,u1) = −#(m,n)(u1,u0), #(m,n](u0,u1) = −#[m,n)(u1,u0). (4.42)

If Wm(u0,u1) �= 0 and Wn(u0,u1) �= 0 , then

#[m,n](u0,u1) = −#[m,n](u1,u0). (4.43)

Proof. Use 
x� = −�−x� and Lemma 4.8. �

THEOREM 4.10. Let a0,a1 < 0 , then

E(−∞,z1)(J1)−E(−∞,z0](J0)

= #(0,N](u0,+(z0),u1,−(z1)) = #(0,N](u0,−(z0),u1,+(z1)) (4.44)

and

E(−∞,z1)(J1)−E(−∞,z0)(J0)

= #[0,N](u0,+(z0),u1,−(z1)) = #(0,N)(u0,−(z0),u1,+(z1)),
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E(−∞,z1](J1)−E(−∞,z0](J0)

= #(0,N)(u0,+(z0),u1,−(z1)) = #[0,N](u0,−(z0),u1,+(z1)), (4.45)

E(−∞,z1](J1)−E(−∞,z0)(J0)

= #[0,N)(u0,+(z0),u1,−(z1)) = #[0,N)(u0,−(z0),u1,+(z1)),

where u j,±(z j), j = 0,1 , are solutions fulfilling the right/left Dirichlet boundary condi-
tion of Jj , i.e. u j,−(z j,0) = u j,+(z j,N) = 0 .

Proof. By Lemma 3.8 and Lemma 4.8 we have

E(−∞,z1)(J1)−E(−∞,z0](J0)

= 
Δs0,±(z0),s1,∓(z1)(N)/π�−�Δs0,±(z0),s1,∓(z1)(0)/π�−1 (4.46)

= #(0,N](s0,±(z0),s1,∓(z1)) = #(0,N](u0,±(z0),u1,∓(z1))

and the equations (4.45) can be shown analogously. �
Proof of Theorem 1.1. In Theorem 4.10 the solutions u j,±(z j), j = 0,1, depend on

the coefficients a j(0) and a j(N−1) of τ j , although Jj (and hence also σ(Jj)) doesn’t
depend on them. If a0(N−1) = a1(N−1) , then by (2.6) we have

WN(u0,±(z0)),u1,∓(z1))−WN−1(u0,±(z0),u1,∓(z1)) (4.47)

= (b0(N)− z0−b1(N)+ z1)u0,±(z0,N)u1,∓(z1,N) = 0

and hence there’s no node at N−1. �

We close the proof of our main theorem with the following

REMARK 4.11. By Theorem 1.1 we have

#[0,N](u0,±(z),u1,∓(z1)) = −#[0,N](u1,±(z),u0,∓(z)), (4.48)

#[0,N](u0,+(z),u3,−(z)) (4.49)

= #[0,N)(u0,+(z),u1,−(z))+#[0,N](u1,−(z),u2,+(z))+#(0,N](u2,+(z),u3,−(z))

and

#[0,N](u0,−(z),u3,+(z)) (4.50)

= #(0,N](u0,−(z),u1,+(z))+#[0,N](u1,+(z),u2,−(z))+#[0,N)(u2,−(z),u3,+(z)).

5. Triangle inequality and comparison Theorem

In the last section we now establish the Triangle Inequality and the Comparison
Theorem for Wronskians which generalize Theorem 5.12 and Theorem 5.13 from [2]
to different a ’s. Moreover, Theorem 5.3 generalizes and sharpens Theorem 5.11 from
[2]. We refer also to [1].
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THEOREM 5.1. (Comparison Theorem for Wronskians I) Let J1 � J2 , then

#[0,N](u0,±(z),u2,∓(z)) � #[0,N](u0,±(z),u1,∓(z)), (5.1)

where #[0,N] can be replaced by #(0,N] , #[0,N) , or #(0,N) .

Proof. Let σ(J1) = {z1, . . . ,zN−1} and σ(J2) = {z̃1, . . . , z̃N−1} , then zi � z̃i for all
i by J1 � J2 , confer [13, Theorem 8.7.1], and hence we have E(−∞,z)(J2) � E(−∞,z)(J1) .
Thus, by Theorem 1.1

#[0,N](u0,+(z),u2,−(z)) = E(−∞,z)(J2)−E(−∞,z)(J0) (5.2)

� E(−∞,z)(J1)−E(−∞,z)(J0) = #[0,N](u0,+(z),u1,−(z)).

The rest follows analogously from E(−∞,z](J2) � E(−∞,z](J1) and Theorem 1.1. �

COROLLARY 5.2. Let a0 = a1 = a2 and moreover let b0( j) � b1( j) � b2( j) for
all j = 1, . . . ,N−1 .

If 0 and N − 1 are positive nodes of W(u0,±(z),u1,∓(z)) , then the Wronskian
W (u0,±(z),u2,∓(z)) has at least two positive nodes at 0, . . . ,N−1 .

THEOREM 5.3. Let m < n, then

|#[m,n](u0,u1)− (#(m,n)(u1)−#(m,n)(u0))| � 1, (5.3)

where #[m,n] can be replaced by #(m,n] or #[m,n) .

Proof. For all x,y ∈ R we have

0 � 
x− y�− (
x�−
y�)� 1 and −1 � �x− y�− (�x�−�y�)� 0. (5.4)

Hence, by (4.36), Theorem 3.6, and −
x� = �−x� we have

|#[m,n](u0,u1)− (#(m,n)(u1)−#(m,n)(u0))|
= |
(θ1(n)−θ0(n))/π�− (
θ1(n)/π�−
θ0(n)/π�) (5.5)

+ �(θ0(m)−θ1(m))/π�− (�θ0(m)/π�−�θ1(m)/π�)| � 1.

Moreover, by Lemma 4.8 and Theorem 3.6 we have

#(m,n](u0,u1)− (#(m,n)(u1)−#(m,n)(u0))

= 
Δ(n)/π�− (
θ1(n)/π�−
θ0(n)/π�) (5.6)

− (�Δ(m)/π�− (�θ1(m)/π�−�θ0(m)/π�))−1

and

#[m,n)(u0,u1)− (#(m,n)(u1)−#(m,n)(u0))

= 1+ �(θ0(m)−θ1(m))/π�− (�θ0(m)/π�−�θ1(m)/π�) (5.7)

− (
(θ0(n)−θ1(n))/π�− (
θ0(n)/π�−
θ1(n)/π�)). �
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THEOREM 5.4. (Triangle Inequality for Wronskians) We have

|#[m,n](u0,u2)− (#[m,n](u0,u1)+#[m,n](u1,u2))| � 1, (5.8)

where #[m,n] can be replaced by #(m,n] .

Proof. Abbreviate Δi, j = Δui,u j , then Δ0,1 + Δ1,2 = Δ0,2 holds.
By (4.36) we have #[m,n](u0,u2) = 
Δ0,2(n)/π�−
Δ0,2(m)/π� and hence

#[m,n](u0,u1)+#[m,n](u1,u2) (5.9)

� 
Δ0,2(n)/π�+1−
Δ0,2(m)/π� = #[m,n](u0,u2)+1

and

#[m,n](u0,u1)+#[m,n](u1,u2) (5.10)

� 
Δ0,2(n)/π�− (
Δ0,2(m)/π�+1) = #[m,n](u0,u2)−1

holds by 
x+ y�� 
x�+ 
y�� 
x+ y�+1 for all x,y ∈ R . Further, by Lemma 4.8 and
�x+ y�−1 � �x�+ �y�� �x+ y� we have

#(m,n](u0,u1)+#(m,n](u1,u2) (5.11)

� 
Δ0,2(n)/π�−�Δ0,2(m)/π�= #(m,n](u0,u2)+1

and #(m,n](u0,u2) � #(m,n](u0,u1)+#(m,n](u1,u2)+1. �

THEOREM 5.5. (Comparison Theorem for Wronskians II) If either

(A) Wj(u0,u1)u0( j +1)u1( j +1) � 0 and Wj(u1,u2)u1( j +1)u2( j +1) � 0
for all j = 0, . . . ,N−2 or

(B) a0 = a1 = a2 and b0( j) � b1( j) � b2( j) for all j = 1, . . .N−1

holds and 0 and N−2 are (positive) nodes of W (u0,u1) , then W (u0,u2) has at least
one positive node at 0, . . . ,N−2 .

Proof. In either case for all j = 0, . . . ,N − 2 we have # j(u0,u1) � 0 and also
# j(u1,u2) � 0, hence from Theorem 5.4 we conclude

#[0,N−1](u0,u2) � #[0,N−1](u0,u1)︸ ︷︷ ︸
�2

+#[0,N−1](u1,u2)︸ ︷︷ ︸
�0

−1. � (5.12)
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